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1 Introduction to the Transport Equations

1.1 Movement of one particle

A particle is characterized by its position X(t) and its momentum P (t), which are
functions of the time t. In classical mechanics, P (t) = mV (t), where m is the mass of
the particle and V (t) its velocity. Moreover, Newton’s laws apply:

dX(t)
dt

=
P (t)
m

= V (t) and
dP (t)
dt

= F (X(t)) = −∇U(X(t)), (1)
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where
∇U =

( ∂U
∂x1

,
∂U

∂x2
,
∂U

∂x3

)t
, x = (x1, x2, x3).

Here F is the force imposed on the particle at position X. We assume that the force
derives from a potential U . We specify the initial conditions X(0) = X0 ∈ IR3 and
P (0) = P0 ∈ IR3. Introducing the Hamiltonian of the particle in the force field F

H(x, p) =
|p|2

2m
+ U(x), (2)

we obtain Hamilton’s equations:
dX(t)
dt

=
∂H

∂p
(X(t), P (t))

dP (t)
dt

= −∂H
∂x

(X(t), P (t))

with


X(0) = X0

P (0) = P0.

(3)

For regular potentials U , the Cauchy problem for this system of two ordinary differential
equations is well posed. Its solution gives the trajectory of the particle t 7→ X(t).

1.2 Equation for the density of particles

When the number of particles becomes large, we replace the particles by a probability
of presence at a given point (x, v) in phase space. Let us denote by

a(t, x, v) = phase space density function, (4)

which characterizes the expected particle density at point (x, v) ∈ Ω×K in phase space
and time t. Here Ω is the physical domain and K the set of velocities. They are subsets
of IR3. Let dV = dx dv be a unit volume in phase space. We have

a(t, x, v)dV = expected number of particles in dV about (x, v) at time t. (5)

In the absence of sources and absorption, the number of particles, and the volume they
occupy, remain constant in time. Therefore, we obtain

d

dt

[
a(t,X(t), V (t))dV

]
=

d

dt

[
a(t,X(t), V (t))

]
dV = 0. (6)

Assuming that the force field F = −∇U is known, we deduce from (2) and (3) that (6)
can be rewritten as the Liouville Equation:

∂ta(t, x, v) + v · ∇xa(t, x, v)−
1
m
∇xU · ∇va(t, x, v) = 0. (7)

When absorption and sources are present, the balance equation becomes

d

dt
[a(t,X(t), V (t))] = [gains(t,X(t), V (t))]− [losses(t,X(t), V (t))]
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where gains(t, x, v) and losses(t, x, v) are the density of created and absorbed particles
at point (x, v) and time t respectively. These terms characterize the interaction between
the particles and the underlying medium. In the linear theory, it is assumed that
particles do not interact with one another.

The interactions with the medium are characterized by macroscopic cross sections.
The mean free path (mfp) describes the mean distance traveled by a particle before
interacting with the medium, i.e. before changing position or direction, or being de-
stroyed. It is related to the total scattering cross section Σt(x, v) by

(mfp)−1 ≡ Σt(x, v) =
probability of interaction per unit distance
traveled by particles at point (x, v).

(8)

The distance traveled by a particle per unit time is dx = |v| dt; therefore the frequency
of collision is given by |v|Σt(x, v). The reaction rate density describing the number of
particles interacting with the medium per unit volume V and unit time dt is then

losses(t, x, v) = |v|Σt(x, v)a(t, x, v). (9)

When particles interact with the medium, secondary particles may be emitted in a
different direction. Their scattering probability function is defined by

f(x, v′ → v)dv =
probability that a secondary particle induced by an
incident particle at (x, v′) be emitted with velocity
in dv around v.

(10)

The number of secondary particles emitted by a collision at (x, v) is given by c(x, v).
The scattering cross section Σs is defined by

Σs(x, v′ → v) = Σt(x, v′)c(x, v′)f(x, v′ → v). (11)

It describes the number of particles emitted in direction v after an interaction at point
(x, v′).

A scattering event is characterized by a loss of particles at point (x, v′) and a gain
at point (x, v). A particle interacting with the medium is either emitted or absorbed.
Let us denote by Σa(x, v), which is also called the real absorption cross section, the
probability that a particle interact in a unit distance dx at point (x, v) and be not
reemitted. Then we have

Σt(x, v) = Σa(x, v) +
∫

Σs(x, v → v′)dv′.

More precisely, we obtain using (11) that

Σa(x, v) = (1− c(x, v))Σt(x, v). (12)

We denote by s(t, x, v) the density of particles created at point (x, v) and time t by a
different mechanism than reemission of scattered particles. The gains are given by

gains(t, x, v) =
∫
|v′|Σs(x, v′ → v)a(t, x, v′)dv′ + s(t, x, v). (13)
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We deduce that the general form of the transport equation is

∂ta+ v · ∇xa−
1
m
∇xU · ∇va+ |v|Σta =

∫
|v′|Σs(x, v′ → v)a(t, x, v′)dv′ + s. (14)

For transport problems posed in the full space IR3, we only need to prescribe the
initial value

a(t = 0, x, v) = a0(x, v). (15)

For transport problems posed in domains with boundaries, boundary conditions
must also be specified. Let be Ω a domain in IR3 with a regular boundary ∂Ω. We need
to prescribe the amount of particles entering the physical domain Ω. Let be xs ∈ ∂Ω.
The incoming boundary conditions are given for each time t by

a(t, xs, v) = g(t, xs, v) on Γ− = {(xs, v) ∈ ∂Ω×K such that v · n(xs) < 0}. (16)

Here, n(xs) is the outward normal at point xs, and g is a given function. We have
absorbing boundary conditions when g = 0. In general, b may depend on the outgoing
flux a(t, xs, v) for v · n(xs) > 0. We shall come back later to these more complicated
boundary conditions.

We consider in this course neutral particles, and assume that the force field F =
−∇U has a negligible influence. Hence we set U = 0. It is convenient for the mathe-
matical analysis to perform the change of variables:

u(t, x, v) = a(t, x, v) q(t, x, v) = s(t, x, v)

Σ(x, v) = |v|Σt(x, v) σ(x, v′, v) = |v′|Σs(x, v′ → v).
(17)

We also denote by σa = |v|Σa the absorption cross section. With these new variables,
the transport equation is given, for all τ > 0, by

∂tu+ v · ∇xu+ Σu =
∫
σ(x, v′, v)u(t, x, v′)dv′ + q in (0, τ)× Ω×K

u(0, x, v) = u0(x, v)

u(t, x, v) = g(t, x, v) on (0, τ)× Γ−.

(18)

1.3 Integral Formulation

We consider here only vanishing potentials. Hence the trajectories of the particles,
which are the characteristics of the transport equation, are now straight lines. We
recall that the characteristics (X(t), V (t)) are solutions of

dX(t)
dt

= V (t)

X(t0) = x
and


dV (t)
dt

= 0

V (t0) = v.
(19)
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Therefore V (t) = v and X(t) = x+ (t− t0)v. Let us denote by

S(t, x, v) =
∫
σ(x, v′, v)u(t, x, v′)dv′ + q(t, x, v). (20)

The form of the characteristics implies that for every t0 ∈ IR:

d

dt
u(t, x+ (t− t0)v, v) + (Σu)(x+ (t− t0)v, v) = S(t, x+ (t− t0)v, v). (21)

Let us define, for (x, v) ∈ Ω×K,

U(t) = u(t, x+(t− t0)v, v), Σ̃(t) = Σ(x+(t− t0)v, v) and S̃(t) = S(t, x+(t− t0)v, v).

Then (21) can be recast as

dU

dt
(t) + Σ̃(t)U(t) = S̃(t). (22)

One verifies that the solution of this equation is given for every t1 ≤ t by

U(t) = U(t1) exp[−
∫ t

t1
Σ̃(s)ds] +

∫ t

t1
S̃(s) exp[−

∫ t

s
Σ̃(τ)dτ ]ds

= U(t1) exp[−
∫ t−t1

0
Σ̃(s− t1)ds] +

∫ t−t1

0
S̃(t− s) exp[−

∫ s

0
Σ̃(s− τ)dτ ]ds.

(23)
Let us assume that Ω is a convex bounded domain of IR3. We define the travel time
for all (x, v) ∈ Ω×K by

t(x, v) = sup{t, x− sv ∈ Ω for all 0 ≤ s < t}, (24)

i.e. the time needed by a particle to travel from position x at time t = 0 to the boundary
∂Ω. The density u is not defined outside Ω. Therefore we can write u(t, x, v) =
u(t, x, v)Y (t(x, v)− t) where Y is the Heaviside function, i.e.

Y (s) = 0 if s < 0 and Y (s) = 1 if s > 0.

By linearity of the transport equation, we can treat separately the initial source term
u0 and the boundary source term g. Let us first assume that g = 0. We have

U(0) = u0(x− vt0, v)Y (t(x, v)− t0).

We deduce from (23) with t = t0 that

u(t, x, v) = u0(x− vt, v)Y (t(x, v)− t) exp[−
∫ t

0
Σ(x− vs, v)ds]

+
∫ t

0
exp[−

∫ s

0
Σ(x− vτ, v)dτ ]S(t− s, x− vs, v)Y (t(x, v)− s)ds.
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Assume now that u0 = 0 and S = 0. The influence of g on u(t, x, v) is obtained by
choosing t0 = t− t(x, v) in (23), which corresponds to the time needed by the particle
to go from x− t(x, v)v ∈ ∂Ω to the point x. We obtain that

u(t, x, v) = Y (t− t(x, v)) exp[
∫ t(x,v)

0
−Σ(x− sv, v)ds]g(t− t(x, v), x− t(x, v)v, v).

Summarizing the two precedent results, we obtain that the solution of (18) is also a
solution of the Integral Equation

u(t, x, v) = u0(x− vt, v)Y (t(x, v)− t) exp[−
∫ t

0
Σ(x− vs, v)ds]

+
∫ t

0
exp[−

∫ s

0
Σ(x− vτ, v)dτ ]S(t− s, x− vs, v)Y (t(x, v)− s)ds

+Y (t− t(x, v)) exp[
∫ t(x,v)

0
−Σ(x− sv, v)ds] g(t− t(x, v), x− t(x, v)v, v),

(25)
where S is given by (20).

1.4 Adjoint Equation

It is sometimes useful to consider an adjoint formulation of transport. Let us denote
by

A(u) = −v · ∇xu− Σu+
∫
σ(x, v′, v)u(t, x, v′)dv′. (26)

We assume to simplify that Ω = IR3 and that we have no other sources than those
given by the initial condition, i.e. q = 0 and g = 0 with the notations of section 1.3.
Then problem (18) reads

du

dt
= Au

u(0) = u0.
(27)

We define the adjoint equation by

dw

dt
= A∗w

w(0) = w0.
(28)

where A∗ is the adjoint operator to A. Let us denote by (·, ·) the L2 scalar product in
Ω×K, defined for every functions f, g ∈ L2(Ω×K) by

(f, g) =
∫
Ω×K

f(x, v)g(x, v)dx dv. (29)

By definition of the adjoint operator, we have (Au,w) = (u,A∗w). Integrations by
parts show that

A∗(w) = v · ∇xw − Σw +
∫
σ(x, v, v′)w(t, x, v′)dv′ (30)
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and the adjoint transport equation is given by

∂tw − v · ∇xw + σaw =
∫
σ(x, v, v′)(w(t, x, v′)− w(t, x, v))dv′ in (0, τ)× Ω×K

w(0, x, v) = w0(x, v).
(31)

The adjoint transport equation also admits an integral formulation. Replacing v by −v
in the definition of the characteristics (19), and (v, v′) by (v′, v) in the definition of the
scattering cross section (17), we obtain that w is a solution of

w(t, x, v) = w0(x+ vt, v) exp[−
∫ t

0
Σ(x+ sv, v)]

+
∫ t

0
ds exp [−

∫ s

0
Σ(x+ τv, v)dτ ]

∫
K
σ(x+ sv, v, v′)w(t− s, x+ sv, v′)dv′.

(32)
The solution of the adjoint equation is often referred to as the importance func-

tion. The reason comes from the following property

Proposition 1.1 Let be u and w smooth solutions of (27) and (28) respectively for
t ∈ [0, T ]. Then we have

(u0, w(T )) = (u(T ), w0). (33)

Assume now that w0 describes a detector of particles. For instance a perfect detector
located at position x0 and detecting only particles with velocity v0 would be modeled
by w0(x, v) = δx0 × δv0 . The number of particles detected at time T by the detector w0

is
(u(T ), w0),

which is precisely (u0, w(T )) according to the above proposition. We see w(T ) can be
interpreted as an importance function. It tells us how many particles will be detected at
time T by the detector knowing the initial distribution u0. Notice that the detector is
characterized by the solution of the adjoint problem w. The detection corresponding to
several initial source distributions is then obtained by solving only one adjoint equation,
instead of solving as many forward problems as there are initial conditions. The proof
of the proposition is an easy consequence of the properties of the adjoint operator:

Proof Since (Au,w) = (u,A∗w), we have(du
dt

(t), w(T − t)
)

= (Au(t), w(T − t)) = (u(t), A∗w(T − t))

=
(
u(t),

dw

dt
(T − t)

)
= −

(
u(t),

d[w(T − t)]
dt

)
.

This implies that d
dt(u(t), w(T − t)) = 0. Integrating this equality between 0 and T

yields the result.
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1.5 Probabilistic Interpretation and Monte Carlo Methods

We show in this section that the solution of the transport equation can be seen as the
expectation of a random process. The random process simulates the behavior of one
particle in the medium.

As in the previous section, we assume to simplify that Ω = IR3 and that we only
have initial conditions, i.e. q = 0 and g = 0 with the notations of section 1.3. We also
assume that there is no absorption, Σa(x, v) = 0 or c(x, v) = 1.

The particle is characterized by its position X(t) and its velocity V (t). It travels
along straight lines until it interacts with the medium. Since there is no absorption, the
particle is emitted into a different direction and with a different velocity. This process
goes on until final time T .

We have already described the law of reemission into a different velocity after an
interaction. For every particle interacting with the medium at (x, v), the probability
per unit distance traveled of being emitted into dv about direction v is f(x, v′ → v)dv.
Since c(x, v) = 1, the probability per unit time of being emitted into dv about direction
v is found to be σ(x,v′,v)dv

Σ(x,v′) .
It remains to define the law of free travel through the medium. By definition, a

particle travels freely as long as it does not interact with the medium. Let us denote
by

Px0,v0(τ1 > t) =
probability that a particle starting from (x0, v0)
at time t = 0 had no collision at time t.

(34)

Here τ1 denotes the time of first collision. The frequency of collision is described by
Σ = |v|Σt. Therefore we have that

Px0,v0(τ1 > t+ dt) = Px0,v0(τ1 > t)− Px0,v0(τ1 ∈ dt|τ1 > t)

= Px0,v0(τ1 > t)(1− Σ(x0 + tv0, v0)dt).

This implies that
d

dt
lnPx0,v0(τ1 > t) = −Σ(x0 + tv0, v0)

or equivalently, since Px0,v0(τ1 > 0) = 1,

Px0,v0(τ1 > t) = exp[−
∫ t

0
Σ(x0 + sv0, v0)ds]. (35)

The law of interaction with the medium is then described by the probability density

Px0,v0(τ1 = t) = Σ(x0 + tv0, v0) exp[−
∫ t

0
Σ(x0 + sv0, v0)ds]. (36)

We shall now use the integral formulation of transport to obtain a probabilistic
interpretation of the adjoint transport equation. Let be (X(t), V (t)) a random process
defined as follows. Between two successive shocks, the particles travel along straight
lines:

dX(t)
dt

= V (t) and
dV (t)
dt

= 0.
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The probability density of interaction is given by (36) and the law of change of direction

is governed by
σ(x, v, v′)dv′

Σ(x, v)
. One can prove in a very general setting that the random

process Z(t) = (X(t), V (t)) is Markovian. Roughly speaking, the Markovian property
means that the future of the process depends on the past only through the present.

Let us define z = (x, v) and

u(t, x, v) = E[u0(Z(t))/Z(0) = z], (37)

which is the conditional expectation of u0(X(t), V (t)) knowing that the particle started
at z = (x, v) at time t = 0. We can split this expectation in two components, corre-
sponding to whether an interaction occurred or not:

u(t, x, v) = E[u0(Z(t))/Z(0) = z, τ1 > t]P (τ1 > t)

+E[u0(Z(t))/Z(0) = z, τ1 < t]P (τ1 < t).

Here P stands for Px,v and τ1 stands for the time of first interaction. The first term
is obtained by remarking that the particle traveled freely. With probability P (τ1 > t),
the position of the particle at time t is (x+ vt, v). Therefore, we have

E[u0(Z(t))/Z(0) = z, τ1 > t]P (τ1 > t) = u0(x+ vt, v) exp[−
∫ t

0
Σ(x+ sv, v0)].

The second term is computed as follows:

E[u0(Z(t))/Z(0) = z, τ1 < t]P (τ1 < t)

=
∫ t

0
dsP (τ1 ∈ ds)E[u0(Z(t))/Z(s) = (x+ sv, v) τ1 = s]

=
∫ t

0
dsP (τ1 ∈ ds)

∫
K
P (dv′)E[u0(Z(t))/Z(s) = (x+ sv, v), τ1 = s, v(s+) = v′]

=
∫ t

0
dse−

∫ s

0
Σ(x+τv,v)dτ

∫
K
σ(x+ sv, v, v′)E[u0(Z(t− s))/Z(0) = (x+ sv, v′)]dv′

=
∫ t

0
dse−

∫ s

0
Σ(x+τv,v)dτ

∫
K
σ(x+ sv, v′, v)u(t− s, x+ sv, v′)dv′.

Here v(s+) denotes the velocity right after a jump that occurs at time s. Hence u is a
solution of the adjoint transport equation (32). The same techniques can be extended
to account for volume source terms, boundary conditions and absorption. It is also
possible to derive a general probabilistic interpretation of the direct transport equation
(18).

Actually, the direct and adjoint equations have analog probabilistic interpretations
in many practical cases. Indeed, let us consider that σ(x, v′, v) = σ(x,−v,−v′), which
is true for isotropic scattering for instance, i.e. σ(x, v′, v) = σ(x, v′ · v). Defining the
modified process Z̃(t) = (X̃(t), Ṽ (t)) by

dX̃(t)
dt

= −Ṽ (t) and
dṼ (t)
dt

= 0
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and denoting by ũ(t, x, v) = E[u0(Z̃(t))/Z̃(0) = z], we readily check that ũ is a solution
of the direct transport equation (18).

The probabilistic interpretation is suitable for numerical calculations. Let be N
realizations Zn(t), 1 ≤ n ≤ N of the random process Z defined above with initial
condition

Zn(0) = (x, v).

Then according to the law of large number, we have

u(t, x, v) = E[u0(Z(t))] = lim
N→∞

1
N

N∑
i=1

u0(Zi(t)).
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2 From Schrödinger to Transport equations

2.1 Schrödinger Equation and Wigner Transform

The Schrödinger equation is given by

i∂tψ(t, x) + 1
2∆ψ(t, x)− U(x)ψ(t, x) = 0

ψ(0, x) = ψ0(x).
(38)

Here U(x) is a given real potential. The scaling corresponding to the high frequency
regime is

t 7→ t

ε
and x 7→ x

ε
.

The potential U is split in two parts

U(x) = U0(x) + ε1/2U1(
x

ε
),

where U0 corresponds to the slowly varying component of the potential and U1 the
rapidly varying one. The constant ε1/2 describes the strength of the fast scale fluctua-
tions.

In the high frequency regime, the solutions of the Schrödinger equation are local-
ized in space and we can obtain an approximate equation for the probability density
|ψ|2. This is done mathematically by analyzing the behavior as ε → 0 of the rescaled
Schrödinger equation

iε∂tψε(t, x) + ε2

2 ∆ψε(t, x)− (U0(x) + ε1−αU1(x
ε ))ψε(t, x) = 0

ψε(0, x) = ψ0(x
ε ).

(39)

The Wigner Transform is adapted to the analysis of the probability density when
ε goes to 0. It is defined by

W [u](t, x, k) =
1

(2π)d

∫
eik·yu(t, x− y

2
)u(t, x+

y

2
)dy (40)

where u denotes complex conjugate of u and d is the spatial dimension. In other words,
the Wigner transform is the Fourier transform of a two-point correlation function of u.
Taking inverse Fourier transform of this equality (for y = 0), we obtain the important
property ∫

IRd
W [u](t, x, k)dk = |u|2. (41)

Therefore W [u] can be seen as an angularly resolved probability density. It is not
quite correct though because W is not necessarily positive for every k. In the high
frequency limit, the solution of the Schrödinger equation oscillates at the fast scale and
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the correlation function as defined in (40) cannot capture those oscillations. We have
to rescale our Wigner transform accordingly. This is done by introducing

Wε[u](t, x, k) =
1

(2π)d

∫
eik·yu(t, x− εy

2
)u(t, x+

εy

2
)dy. (42)

For simplicity we denote by Wε = Wε[ψε] where ψε is the solution of (39). For general
conditions on a sequence uε, basically that uε oscillates at the scale ε, we can show
[5] that Wε[uε] converges in the sense of bounded measures to a positive distribution
W (t, x, k). Therefore, even though Wε may not be positive for ε given, it becomes
positive in the limit ε → 0. The aim of this section is to show that W is actually a
solution of a transport equation.

2.2 The Liouville Equation

We assume here that U1 = 0. We rewrite (39) as follows

∂tψε(t, x)− iε
2 ∆ψε(t, x) + i

εU(x)ψε(t, x) = 0

ψε(0, x) = ψ0(x
ε ).

(43)

¿From (42) we have

∂tWε =
1

(2π)d

∫
eik·y[∂tψε(t, x−

εy

2
)ψε(t, x+

εy

2
) + ∂tψε(t, x+

εy

2
)ψε(t, x−

εy

2
)]dy.

We obtain an equation for Wε using (43) at points x− εy
2 and x+ εy

2 . We have

∂tWε + I1 + I2 = 0

where

I1 = − iε
2

1
(2π)d

∫
eik·y(∆ψε(t, x−

εy

2
)ψε(t, x+

εy

2
) + ψε(t, x−

εy

2
)∆ψε(t, x+

εy

2
)dy)

I2 =
i

ε

∫
eik·y(U(x− εy

2
)ψε(t, x−

εy

2
)ψε(t, x+

εy

2
) + ψε(t, x−

εy

2
)U(x+

εy

2
)ψε(t, x+

εy

2
)dy).

¿From the change of variables y 7→ −y we see that

I1 = 2Re(− iε
2

1
(2π)d

∫
eik·y∆ψε(t, x−

εy

2
)ψε(t, x+

εy

2
)dy)

where Re stands for real part. By integrations by parts, we obtain

I1 = 2Re(− iε
2

1
(2π)d

∫ 4
ε2

∆[ψε(t, x−
εy

2
)] eik·y ψε(t, x+

εy

2
)dy)

= 2Re(
iε

2
1

(2π)d

∫ 4
ε2
∇[ψε(t, x−

εy

2
)] · ∇[eik·yψε(t, x+

εy

2
)]dy)

= 2Re(
iε

2
1

(2π)d

∫ 4
ε2
∇[ψε(t, x−

εy

2
)] · (ik) eik·yψε(t, x+

εy

2
)dy)

= 2Re(
1

(2π)d

∫
eik·yk · ∇ψε(t, x−

εy

2
)ψε(t, x+

εy

2
)dy)

= k · ∇Wε.

12



Here, for instance, ∇[ψε(t, x− εy
2 )] means the derivative with respect to the variable y

of the composed function ψε(t, x− εy
2 ). This is not to be confused with ∇ψε(t, x− εy

2 )
which is the value of the function ∇ψε at (t, x− εy

2 ).
The term I2 is computed by introducing the Fourier transform of the potential U :

Û(p) =
1

(2π)d

∫
eip·xU(x)dx. (44)

We have I2 = I21 + I22, where

I21 =
i

ε

∫
eik·yU(x− εy

2
)ψε(t, x−

εy

2
)ψε(t, x+

εy

2
)dy

=
i

ε

∫
eik·y

∫
e−ip·(x− εy

2
)Û(p)ψε(t, x−

εy

2
)ψε(t, x+

εy

2
)dp dy

=
i

ε

∫
e−ip·xÛ(p)Wε(t, x, k +

εp

2
)dp,

and similarly I22 = − i
ε

∫
e−ip·xÛ(p)Wε(t, x, k− εp

2 )dp. Therefore Wε is a solution of the
following equation

∂tWε + k · ∇Wε +
i

ε

∫
e−ip·xÛ(p)[Wε(t, x, k +

εp

2
)−Wε(t, x, k −

εp

2
)]dp = 0. (45)

When ε→ 0, we have

1
ε
[Wε(t, x, k +

εp

2
)−Wε(t, x, k −

εp

2
)] → p · ∇kW (t, x, k)

assuming that Wε converges in some suitable sense to W . On the other hand, taking
inverse Fourier transform yields∫

e−ip·xÛ(p)ip dp = −∇xU.

Therefore we obtain that Wε converges to a quantity W solution of the Liouville
Equation:

∂tW + k · ∇W −∇xU · ∇kW = 0. (46)

2.3 Radiative transfer equation

We consider now the case of a fast varying potential of small amplitude (α = 1/2). For
simplicity, we assume that U0 = 0. Also, U1 is a mean zero, stationary random function.
It models random fluctuations of the underlying potential U0. The correlation length
of this potential is of order one, so as to let the random potential interact fully with the
wave function. More precisely we assume that the fluctuations are space homogeneous
and isotropic so that there exists a positive real function R such that

< U1(x)U1(y) >= R(x− y) = R(|x− y|), (47)
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where < ·, · > denotes the statistical averaging over all realizations of the random
function. Denoting by R̂ the Fourier transform of R, we also check that

< Û1(p)Û1(q) >= R̂(p)δ(p+ q). (48)

where δ is the Delta function defined by < δ(x), φ(x) >D′(IR3),D(IR3)= φ(0).
As for the computation of I2 in the previous section, we find that Wε is a solution

of

∂tWε + k · ∇Wε +
i√
ε

∫
e−ip·x

ε Û(p)[Wε(t, x, k +
p

2
)−Wε(t, x, k −

p

2
)]dp = 0. (49)

The limit (if any) of the third term in the left-hand side of (49) is not obvious. We
want to analyze the behavior of (49) using a perturbation method, which consists in
looking at asymptotic expansion in powers of ε. Notice that two different scales play a
role here: the slow scale x and the fast scale y = x

ε . Therefore both of them must be
present in the expansion. We make the change of variables:

Wε = Wε(t, x,
x

ε
, k) = Wε(t, x, y, k).

Assuming that f(x) = g(x, x
ε ), we obtain that

∇f(x) = ∇xg(x,
x

ε
) +

1
ε
∇yg(x,

x

ε
).

Therefore, using this rule, we find the following equation for Wε(t, x, y, k):

∂tWε +
1
ε
k · ∇yWε + k · ∇xWε +

1√
ε
L(Wε) = 0, (50)

where
L(W ) = i

∫
e−ip·yÛ(p)[W (t, x, y, k +

p

2
)−W (t, x, y, k − p

2
)]dp (51)

Since there are powers of ε of order 0, −1/2 and −1 in (50), we look for an expansion
of the form

Wε(t, x, y, k) = W0(t, x, y, k) +
√
εW1(t, x, y, k) + εW2(t, x, y, k) + o(ε). (52)

Let us insert expansion (52) into (50). At the order ε−1 we obtain that

k · ∇yW0 = 0.

This means that W0 is independent of the fast scale variable y. Since the solution of
the Schrödinger equation is deterministic when U1 = 0, we also assume in the limit of
small ε that W0 is deterministic.

The equation at order ε−1/2 yields

k · ∇yW1 + L(W0) = 0.

14



As we shall see, this equation is easily invertible in Fourier domain. Since the Fourier
transform can blow up for certain directions, we regularize this equation by adding a
small absorption θ > 0 that we shall send to 0 eventually. After regularization, the
equation for W1 reads

k · ∇yW1 + θW1 + L(W0) = 0. (53)

Taking Fourier transform of this equation with respect to the variable y and with dual
variable q yields

W̃1(t, x, q, k) =
Û(q)[W0(t, x, k − q

2)−W0(t, x, k + q
2)]

k · q + iθ
,

where the W̃1 is the Fourier transform of W1 with respect to the fast variable:

W̃1(t, x, q, k) =
1

(2π)d

∫
eiq·yW1(t, x, y, k)dx.

The third and last equation is the term of order 0 in the expansion:

∂tW0 + k · ∇xW0 + k · ∇yW2 + L(W1) = 0. (54)

The fast scale variable y indicates variations caused by fluctuations. By ergodicity, the
averaging over realizations, or the integration over a large domain of the gradient with
respect to y of any quantity should vanish. Therefore we assume that

< k · ∇yW2 >= 0.

Averaging then (54) over realizations gives the equation

∂tW0 + k · ∇xW0+ < L(W1) >= 0. (55)

We replace W1 here by its expression in terms of W0 to obtain an equation for W0. Let
us consider the first contribution in L(W1). We have

< i

∫
e−ip·yÛ(p)W1(t, x, y, k +

p

2
)dp >

= < i

∫
e−ip·yÛ(p)

∫
e−iq·yW̃1(t, x, q, k +

p

2
)dp dq >

= < i

∫ ∫
e−i(p+q)·yÛ(p)Û(q)

W0(t, x, k + p−q
2 )−W0(t, x, k + p+q

2 )
(k + p

2) · q + iθ
>

= i

∫
R̂(q)

W0(k − q)−W0(k)
(k − q

2) · q + iθ
dq = i

∫
R̂(k − p)

W0(p)−W0(k)
1
2(|k|2 − |p|2) + iθ

dp

according to (48). Calculating the second contribution yields

< L(W1) >= i

∫
R̂(k − p)[W0(p)−W0(k)](

1
1
2(|k|2 − |p|2) + iθ

− 1
1
2(|k|2 − |p|2)− iθ

)dp

We have that
lim

θ→0+
(

1
x+ iθ

− 1
x− iθ

) = −2iπδ(x).
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Therefore, we deduce from∫
φ(r)δ(

r2 − α2

2
)dr = 2

∫ ∫
φ(r)δ(r2 − α2)dr

which is true for any test function φ ∈ D(IR), that

< L(W1) >= 4π
∫
R̂(k − p)[W0(t, x, p)−W0(t, x, k)]δ(|k|2 − |p|2)dp.

We have formally obtained that Wε converges as ε → 0 to a function W which is a
solution of the Radiative Transfer Equation

∂tW (t, x, k) + k · ∇xW (t, x, k) + ΣW (t, x, k) =
∫
σ(k, p)W (t, x, p)dp, (56)

where
σ(k, p) = 4πR̂(k − p)δ(|k|2 − |p|2)

Σ(k) =
∫
σ(k, p)dp.

(57)

When the statistical properties of the fluctuations vary at the large scale x, i.e. U1 =
U1(x, x

ε ), the power spectrum R̂ depends on the position x: R̂ = R̂(x, k − p) as well as
the cross sections σ and Σ.
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3 Existence Theory in Hilbert space

We concentrate now on the mathematical analysis of the steady-state transport equa-
tion in bounded physical domain. More precisely, the phase space and the coefficients
of the transport equations satisfy the following assumptions.

(H1) The domain Ω is a convex bounded open set.

(H2) The velocity space K is a compact subset of IRd which does not contain 0. Fur-
thermore K is assumed to be the closure of an open set (respectively the union
of a finite number of spheres). Its d-dimensional (respectively d− 1-dimensional)
measure is normalized to have |K| = 1.

(H3) The cross-sections Σ(x, v) and σ(x, v′, v) are measurable positive bounded func-
tions of their arguments. The scattering kernel is symmetric, i.e.

σ(x, v′, v) = σ(x, v, v′) a.e. in Ω×K ×K.

The absorption cross section Σa is non negative, i.e

Σa(x, v) = Σ(x, v)−
∫

K
σ(x, v, v′)dv′ ≥ 0 a.e. in Ω×K.

Condition (H2) for K is convenient to avoid the difficulties coming from high velocity
particles. It also ensures that each particle traveling along straight lines exits the
physical domain in a finite time.

We consider in this section solutions of the transport equation in the Hilbert space
L2(Ω ×K). The source term is q ∈ L2(Ω ×K). Here we assume to simplify that no
particles enter the domain. The set of boundary conditions are defined by

Γ− = {(x, v) ∈ ∂Ω×K | v · n(x) < 0}, Γ+ = {(x, v) ∈ ∂Ω×K | v · n(x) > 0}. (58)

We equip them with two different norms

‖u‖L2(Γ±,|v·n|) =
( ∫

Γ±
|v · n|u2(x, v)dσdv

)1/2

‖u‖L2(Γ±,dξ) =
( ∫

Γ±
|v · n|t(x, v)u2(x, v)dσdv

)1/2
,

(59)

where dσ is the surface measure on ∂Ω and t(x, v) is the travel time defined in (24).
Vanishing boundary conditions for the transport equation are given by u = 0 on Γ−.
The steady-state transport equation reads then

v · ∇u+ Σu = Fu+ q in Ω×K

u = 0 on Γ−.
(60)

Here we have defined the operator F by

Fu(x, v) =
∫

K
σ(x, v′, v)u(x, v′)dv′. (61)
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We also rewrite the transport equation as

v · ∇u+ Σau = Qu+ q in Ω×K

u = 0 on Γ−,
(62)

where the scattering operator Q is defined by

Qu(x, v) =
∫

K
σ(x, v′, v)(u(x, v)− u(x, v′))dv′ (63)

because of Hypothesis (H3). We prove that the transport equation (60) admits a unique
solution in the Hilbert space W 2(Ω×K), where for 1 ≤ p ≤ ∞, the space W p(Ω×K)
is defined by

W p(Ω×K) = {u(x, v) ∈ Lp(Ω×K) such that v · ∇u(x, v) ∈ Lp(Ω×K)}. (64)

One checks that for 1 ≤ p <∞, W p is a Banach space.

3.1 An a priori estimate

Our result of existence relies on the following a priori estimate.

Lemma 3.1 Let be g ∈ L2(Γ−, |v · n|) and q ∈ L2(Ω × K). We assume that u ∈
W 2(Ω×K) is a solution of the transport equation

v · ∇u+ Σu =
∫

K
σ(x, v′, v)u(x, v′)dv′ + q in Ω×K

u = g on Γ−.
(65)

Then we have the following estimate. There exists a constant C independent of Σa, g,
q and u such that

‖u‖L2(Ω×K) + ‖v · ∇u‖L2(Ω×K) + ‖u‖L2(Γ+,|v·n|)

≤ C(‖q‖L2(Ω×K) + ‖g‖L2(Γ−,|v·n|)).
(66)

Prior to proving this lemma, we need an analog result to the Poincaré inequality
for elliptic problems.

Lemma 3.2 Let u(x, v) ∈ W 2(Ω × K) be such that the restrictions of u on Γ+ and
Γ− exist and be elements of L2(Γ+, dξ) and L2(Γ−, dξ) respectively. Furthermore, there
exists a constant C, independent of u, such that

‖u‖L2(Ω×K) + ‖u‖L2(Γ+,dξ) ≤ C
(
‖v · ∇u‖L2(Ω×K) + ‖u‖L2(Γ−,dξ)

)
. (67)
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Remark 3.3 For each function u(x, v) ∈W 2(Ω×K), the restrictions of u on Γ+ and
Γ− exist and are elements of L2(Γ+, dξ) and L2(Γ−, dξ) respectively. Therefore the
assumptions given in the lemma are redundant. This result is a trace theorem that can
be found in [2] for instance.

Proof of Lemma 3.2. Let us define the following projection on the boundary:

Ω×K → ∂Ω

(x, v) 7→ xv = x− t(x, v)v.
(68)

For any smooth function u(x, v) ∈ Ω×K, we have

u(x, v) =
∫ t(x,v)

0
v · ∇u(x− sv, v)ds+ u(x, v).

Since Ω is bounded, we deduce from the Cauchy-Schwartz inequality that

|u(x, v)|2 ≤ C

(∫ t(x,v)

0
(v · ∇u)2(x− sv, v)ds+ |u(x, v)|2

)
. (69)

Let us denote by χ(x) the characteristic function of Ω, i.e. χ(x) = 1 if x ∈ Ω and
χ(x) = 0 otherwise. Since Ω is bounded by (H1) and 0 6∈ K by (H2), there exists a
constant tmax < ∞ such that t(x, v) ≤ tmax for all (x, v) ∈ Ω ×K. We integrate the
first term in the right-hand side of (69) with respect to x and obtain∫

Ω

∫ t(x,v)

0
|v · ∇u|2(x− sv, v)dsdx

=
∫
Ω

∫ tmax

0
χ(x− sv)|v · ∇u|2(x− sv, v)dsdx

=
∫ tmax

0

∫
Ω+sv

χ(y)|v · ∇u|2(y, v)dyds

=
∫ tmax

0

∫
(Ω+sv)∩Ω

|v · ∇u|2(y, v)dyds ≤ tmax

∫
Ω
|v · ∇u|2(y, v)dy.

(70)

We now integrate with respect to x the second term in the right-hand side of (69). Let
v ∈ K be given and introduce an orthonormal basis (x1, . . . , xd) = (x′, xd) such that
xd be parallel to v. The point on the boundary xv is then only a function of x′. Then
we have∫

Ω
|u(xv, v)|2dx =

∫
IRd−1

|u(x, v)|2
(∫

IR
χ(x)dxn

)
dx′ =

∫
Ω′
|u(xv, v)|2t(xv, v)dx′,

where Ω′ is the projection of Ω on IRd−1. Because Ω is convex, there exists a diffeomor-
phism from Ω′ to the part of the boundary ∂Ω defined by Γ−v = {x ∈ ∂Ω, n(x) · v < 0}.
Changing the variable x′ in xv ∈ Γ−v yields dx′ = |v · n|dσ and∫

Ω
|u(xv, v)|2dx =

∫
Γ−v

|v · n|t(x, v)|u(x, v)|2dσ. (71)
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The upper bound for the L2(Ω × K) norm of u is obtained by integrating (70) and
(71) with respect to v. We apply the same method to have the upper bound of the
L2(Γ+, dξ) norm of u.

Proof of Lemma 3.1. Let us multiply both sides of (65) by u and integrate over
Ω × K. The integrals are well-defined by hypothesis on the regularity of u. We first
observe that∫

Ω

∫
K
v · ∇uu dxdv = −

∫
Ω

∫
K
v · ∇uu dxdv +

∫
∂Ω

∫
K

(v · n)u2 dσdv

and therefore∫
Ω

∫
K
v · ∇uu dxdv =

1
2

∫
Γ+

|v · n|u2dσdv − 1
2

∫
Γ−
|v · n|g2dσdv.

We also have that∫
Ω

∫
K

[(Σ(x, v)− Σa(x, v))u2(x, v)−
∫

K
σ(x, v′, v)u(x, v′)u(x, v)dv′]dxdv

=
∫
Ω

∫
K

∫
K

[σ(x, v, v′)u(x, v)− σ(x, v′, v)u(x, v′)]u(x, v)dxdvdv′

=
1
2

∫
Ω

∫
K

∫
K
σ(x, v′, v)[u(x, v)− u(x, v′)]2dxdvdv′ = (Qu, u) ≥ 0.

(72)

because of (H3). Therefore multiplying (65) by u and integrating yields∫
Ω

∫
K

Σau
2dxdv +

1
2

∫
Γ+

|v · n|u2dσdv + (Qu, u)

=
∫
Ω

∫
K
qu dxdv +

1
2

∫
Γ−
|v · n|g2dσdv.

We deduce the existence of a constant C such that

‖
√

Σau‖2
L2(Ω×K) + ‖u‖2

L2(Γ+,|v·n|) + (Qu, u)

≤ C(‖u‖L2(Ω×K)‖q‖L2(Ω×K) + ‖g‖2
L2(Γ−,|v·n|)).

(73)

We obtain from equation (65) that

‖v · ∇u‖L2(Ω×K) ≤ C(‖Σau‖L2(Ω×K) + ‖Qu‖L2(Ω×K) + ‖q‖L2(Ω×K)). (74)

Let us show that ‖Qu‖2
L2(Ω×K) ≤ C(Qu, u). Indeed

(Qu,Qu) =
∫
Ω

∫
K

( ∫
K
σ(x, v′, v)[u(x, v)− u(x, v′)]dv′

)2
dxdv,

hence the result from (72) and the Cauchy-Schwartz inequality. We deduce from (74)
that

‖v · ∇u‖2
L2(Ω×K) ≤ C(‖u‖L2(Ω×K)‖q‖L2(Ω×K) + ‖q‖2

L2(Ω×K) + ‖g‖2
L2(Γ−,|v·n|)). (75)
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The Poincaré inequality (67) yields, since t(x, v) is bounded,

‖u‖L2(Ω×K) ≤ C(‖v · ∇u‖L2(Ω×K) + ‖g‖L2(Γ−,|v·n|)). (76)

Using the estimate (75) for ‖v · ∇u‖L2(Ω×K) in (76), we have

‖u‖L2(Ω×K) ≤ C(‖q‖L2(Ω×K) + ‖g‖L2(Γ−,|v·n|)).

Recalling (73) and (75) completes the proof of the result.

Remark 3.4 Notice that the Poincaré inequality (67) is not necessary when the ab-
sorption cross section Σa is uniformly bounded from below by a positive constant.
Indeed, we directly obtain an a priori bound for ‖u‖L2(Ω×K) from (73). As for elliptic
problems however, absorption is not necessary in bounded domains, where the creation
of particles, i.e. the source terms q and g, is compensated by enough leakage at the
boundary of the domain.

There exists an analogous a priori estimate for the adjoint equation.

Lemma 3.5 Let be g ∈ L2(Γ+, |v · n|) and q ∈ L2(Ω × K). We assume that u ∈
W 2(Ω×K) is a solution of the transport equation

−v · ∇u+ Σu =
∫

K
σ(x, v′, v)u(x, v′)dv′ + q in Ω×K

u = g on Γ+.
(77)

Then we have the following estimate. There exists a constant C independent of Σa, g,
q and u such that

‖u‖L2(Ω×K) + ‖v · ∇u‖L2(Ω×K) + ‖u‖L2(Γ−,|v·n|)

≤ C(‖q‖L2(Ω×K) + ‖g‖L2(Γ+,|v·n|)).
(78)

Notice that (77) is an adjoint problem to (65) because σ(x, v, v′) = σ(x, v′, v) by hy-
pothesis.

3.2 A Theorem of Existence and Uniqueness

The results of existence rely on the theory of closed linear unbounded operators. Let
T be a non-bounded linear operator in L2(Ω ×K) with domain of definition D(T ) ⊂
L2(Ω×K). To simplify we denote by X = L2(Ω×K). The Graph of T is defined by

G(T ) =
⋃

u∈X

(u, Tu) ⊂ X ×X. (79)

We say that the operators T is closed if G(T ) is closed in X×X. For every set Y ⊂ X,
we denote by Y its closure in X. Let us recall the following result of functional analysis
(see for instance §VII.5 of [9])
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Proposition 3.6 Let T : D(T ) ∈ X → X a linear non bounded, closed operator with
dense domain of definition in X, i.e. D(T ) = X. Then the following properties are
equivalent

(i) T is onto, i.e. R(T ) =
⋃

u∈X
Tu = X.

(ii) There exists a positive constant C such that

‖v‖X ≤ C‖T ∗v‖X for all v ∈ D(T ∗).

We are then ready to prove the following result:

Theorem 3.7 Assume that Hypotheses (H1)-(H3) are satisfied. Let be q ∈ L2(Ω×K).
Then there exists a unique solution to (60) in W 2(Ω×K).

Proof We want to apply Proposition 3.6 for the operator −A defined in (26). The
domain of definition of A is defined by

D(A) = {u ∈ L2(Ω×K) such that v · ∇u ∈ L2(Ω×K) and u = 0 on Γ−}. (80)

Here we say that u = 0 on Γ− if u = 0 on every compact subset Γ of Γ−. It is proven
in Chapter 21, §2 of [3], that the application of restriction u 7→ γ(u) on every compact
subset Γ is well defined for every function u ∈ W 2(Ω ×K). Moreover the application
is continuous. Therefore −A is a linear operator from D(A) to L2(Ω ×K). Moreover
W 2(Ω×K) ⊂ D(A) ⊂ L2(Ω×K). Since W 2(Ω×K) is dense in L2(Ω×K), we deduce
that D(A) = L2(Ω×K).

We now prove that A is closed. Let un be a sequence of functions ofD(A) converging
to u in L2(Ω×K), and such that Aun converges to f in L2(Ω×K). We deduce from the
convergence of Aun and un that v · ∇un converges in L2(Ω×K). By uniqueness of the
convergence in the sense of distributions, v·∇un converges to v·∇u, and u ∈W 2(Ω×K).
By the continuity of the application γ, u = 0 on Γ−. Therefore u ∈ D(A). Moreover
we clearly have that Aun converges to Au hence f = Au. Therefore G(A) is closed,
and so is A.

It remains to check (ii) in Proposition 3.6. We deduce from Lemma 3.5 and (78)
that

‖u‖L2(Ω×K) ≤ C‖q‖L2(Ω×K) = C‖ −A∗u‖L2(Ω×K).

Therefore (i) is also valid and problem (60) admits a solution in D(A) and therefore in
W 2(Ω×K). The uniqueness of the solution is a straightforward consequence of the a
priori estimate (66).

3.3 The Evolution Problem

The properties obtained for the operator A also allow to treat the evolution problem.
This is the Hille-Yosida theorem [4, 9]. Let us first introduce the definition
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Definition 3.8 A closed linear operator A : D(A) ∈ X → X is said dissipative if

(−Au, u) ≥ 0 for all u ∈ D(A).

A is maximally dissipative if in addition R(I−A) = X, i.e. the operator I−A is onto.

Theorem 3.9 Let A be a maximally dissipative operator. Let be u0 ∈ D(A). Then the
problem

du

dt
= Au in [0,∞)

u(0) = u0 (initial condition)
(81)

admits a unique solution

u ∈ C1([0,∞);X) ∩ C([0,∞);D(A)).

Here D(A) is equipped with the norm of the graph ‖u‖X + ‖Au‖X . The solution u
satisfies

‖u(t)‖X ≤ ‖u0‖X and ‖du
dt

(t)‖X = ‖Au(t)‖X ≤ ‖Au0‖X ∀t ≥ 0.

Moreover, if u0 ∈ D(Ak) for k ≥ 2, then

u ∈ Ck−j([0,∞);D(Aj)) for 0 ≤ j ≤ k.

It is clear from Lemma 3.1 and Theorem 3.7 that A defined in (26) is maximally
dissipative. Therefore the theory applies to the transport equation. An analogous result
exists for volume source terms. Let us assume that q(t, x, v) ∈ C1([0, T ];L2(Ω×K) for
T > 0 and g = 0. Then problem (18) for τ = T admits a unique solution

u ∈ C1([0, T ];L2(Ω×K)) ∩ C([0, T ];D(A)).

These results can be obtained by directly analyzing the semigroup Tt = etA instead of
its infinitesimal generator A (see [3]).
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4 Maximum Principle and L∞ Theory

In this section, we still assume the Hypotheses (H1) and (H2) given at the beginning
of section (3). We replace (H3) by (H3)∞:

(H3)∞ The cross-sections Σ(x, v) and σ(x, v′, v) are measurable positive bounded func-
tions of their arguments. There exists a positive constant Σ0 such that

Σ(x, v) ≥ Σ0 > 0 a.e. in Ω×K.

There exists a constant β such∫
K
σ(x, v′, v)dv′ ≤ β Σ(x, v), 0 ≤ β < 1 a.e. in Ω×K. (82)

Notice that the hypothesis (82) is equivalent to assuming that the absorption cross
section Σa is uniformly bounded from below by a positive constant α:

∞ > Σa(x, v) ≥ α > 0 a.e. in Ω×K. (83)

For instance, we can choose α = (1 − β)Σ0. Let us recall the transport problem with
non homogeneous boundary condition:

Tu = Fu+ q in Ω×K

u = g on Γ−,
(84)

where the free transport operator T is defined by

Tu = v · ∇u+ Σu. (85)

We have the following result:

Theorem 4.1 Assume that (H1), (H2) and (H3)∞ are satisfied, q ∈ L∞(Ω×K) and
g ∈ L∞(Γ−). Then (84) admits a unique solution in L∞(Ω×K). Moreover,

‖u‖L∞(Ω×K) ≤ ‖g‖L∞(Γ−) +
1
α
‖q‖L∞(Ω×K). (86)

Proof By linearity of the transport equation, we can treat the source terms q and
g successively.

Step 1: Let us first assume that g = 0. The free transport equation is given by

Tu = h in Ω×K

u = 0 on Γ−.
(87)

We define its domain of definition D(T ) as the set of functions u ∈ L∞(Ω ×K) such
that v · ∇u ∈ L∞(Ω ×K) and u = 0 on Γ−. For h ∈ L∞(Ω ×K), we use the method
of characteristics to solve (87) and obtain

u(x, v) = T−1h =
∫ t(x,v)

0
exp

(
−
∫ t

0
Σ(x− sv, v)ds

)
h(x− tv, v)dt,
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where t(x, v) is defined in (24). We easily check that u and v ·∇u belong to L∞(Ω×K).
Let us prove that T−1F is a contraction. We have

|(T−1F h)|(x, v) = |
∫ t(x,v)

0
e−
∫ t

0
Σ(x−sv,s)dsΣ(x− tv, t)

Fh

Σ(x− tv, t)
dt|

≤ ‖Fh
Σ
‖L∞(Ω× V )(1− e−

∫ t(x,v)

0
Σ(x−sv,s)ds ≤ ‖Fh

Σ
‖L∞(Ω×V ).

We deduce that ‖T−1‖L(L∞(Ω×K)) ≤ (Σ0)−1. Moreover

|Fh
Σ
|(x, v) = |

∫
K

σ(x, v′, v)
Σ(x, v)

h(x, v′)dv′| ≤ β‖h‖L∞(Ω×V ).

This proves that
‖T−1F‖L(L∞(Ω×K)) ≤ β < 1.

Therefore, the transport equation (84) with g = 0 is equivalent to looking for u ∈ D(T )
such that

u = T−1Fu+ T−1q. (88)

Since T−1F is a strict contraction, we obtain that (84) admits a unique solution. More-
over we obtain that

‖u‖L∞(Ω×K) ≤ β‖u‖L∞(Ω×K) + ‖T−1q‖ ≤ (1− β)−1Σ−1
0 ‖q‖L∞(Ω×K).

Since α = (1− β)Σ0, we obtain that

‖u‖L∞(Ω×K) ≤
1
α
‖q‖L∞(Ω×K).

Step 2: Let us now assume that q = 0 and g 6= 0. Notice that the uniqueness is
easily deduced from Step 1 by linearity of the transport equation. We will construct a
solution by the following iterative procedure: u0 = 0 and for all n ≥ 0,

v · ∇un+1 + Σun+1 = Fun in Ω×K

un+1 = g on Γ−.
(89)

We prove by induction that ‖un‖L∞(Ω×K) ≤ ‖g‖L∞(Γ−) for all n ≥ 0. This is obviously
true for n = 0. Let us suppose it for n− 1. It remains to prove it for n. By the method
of characteristics, and mimicking the computations of step 1, we have

|un(x, v)| = || exp (−
∫ t(x,v)

0
Σ(x− sv, s)ds) g(x− t(x, v)v, v)

+
∫ t(x,v)

0
exp (−

∫ t

0
Σ(x− sv, s)ds)Σ(x− tv, t)

Fun−1

Σ(x− tv, t)
dt|

≤ exp (−
∫ t(x,v)

0
Σ(x− sv, s)ds) ‖g‖L∞(Γ−)

+
(
1− exp (−

∫ t(x,v)

0
Σ(x− sv, s)ds)

)
β‖un−1‖L∞(Ω×K).
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We easily deduce the result.
Here is one way to compute the solution of the transport equation. Let us define

the sequence u0 = 0 and for all n ≥ 0,

Tun+1 = Fun + q in Ω×K

un+1 = g on Γ−.
(90)

We easily see that un converges to the unique solution u of (84). The rate of convergence
of the method ‖un+1−un‖L∞(Ω×K)

‖un−un−1‖L∞(Ω×K)
is governed by the constant (1 − β)−1. We easily

deduce that the iterative method converges fast if the absorption is important, but
may be extremely slow for media with strong scattering.

The scattering operator F and the free transport operator are positive, in the sense
that if un, q and g are non negative functions, then un1 defined as the solution to (90)
is also non negative. By induction, we easily deduce the following result:

Corollary 4.2 Assume that q and q are non negative functions. Then the solution u
of the transport equation (84) is also non negative.
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5 Averaging Lemma and Applications

5.1 Averaging Lemma

We give now an averaging lemma, which is used to obtain regularity and compactness
properties for the solution of transport equations [6, 7].

Lemma 5.1 Let f ∈ S ′(IRd × IRd) such that

f + v · ∇xf ∈ L2(IRd × IRd). (91)

Then we have that f ∈ L2(IRd × IRd). Moreover

f(x) =
∫

IRd
f(x, v)ψ(v)dv ∈ H1/2(IRd) ∀ψ ∈ L∞(IRd) with compact support. (92)

Here S ′ stands for the space of distributions which is the dual to the Schwartz space
S, given by the smooth functions having all their derivatives decaying at infinity faster
than any polynomial. We recall that the Fourier transform is defined for all functions
in S ′. A definition of the Sobolev spaces Hs is given in (95) below.

Proof Since f ∈ S ′, we can define its Fourier transform f̂ . Let be g ∈ L2(IRd× IRd)
such that f + v · ∇xf = g. Taking Fourier transform of this equality yields

(1 + iv · ξ)f̂(ξ, v) = ĝ(ξ, v), (93)

both sides of the equation being in L2(IRd × IRd). We deduce from (93) that

|f̂ | = |ĝ|√
1 + (v · ξ)2

. (94)

This clearly implies that f ∈ L2(IRd × IRd). We denote by Hs(IRd), s > 0, the subset
of functions h ∈ L2(IRd) satisfying∫

IRd
(1 + |ξ|2)s|ĥ|2dξ <∞. (95)

So we want to prove that∫
IRd

(1 + |ξ|2)1/2|f̂ |2dξ =
∫

IRd
(1 + |ξ|2)1/2|

∫
IRd

f̂(ξ, v)ψ(v)dv|2dξ <∞ (96)

¿From (94) and using the Cauchy-Schwartz inequality, we ¿have

|
∫

IRd
f̂(ξ, v)ψ(v)dv|2 ≤ G2(ξ)

( ∫
IRd

|ψ(v)|2

1 + (v · ξ)2
dv
)
,

where
G(ξ) =

( ∫
IRd

|ĝ|2(ξ, v)dv
)1/2
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By assumption, there exist two constant Φ and R such that ψ is bounded by Φ and its
support is included in the ball B(0, R) of radius R centered at 0. Therefore

(1 + |ξ|2)1/2
∫

IRd

|ψ(v)|2

1 + (v · ξ)2
dv ≤ Φ2

∫
B(0,R)

(1 + |ξ|2)1/2

1 + (v · ξ)2
dv

The latter integral is clearly bounded if |ξ| < 1. It is also bounded if |ξ| ≥ 1 and d = 1
since (1 + x2)−1 is integrable in IR. Let us assume that d ≥ 2 and ξ ≥ 1. We write
B(0, R) in spherical coordinates (r, θ1, . . . , θd−1). Up to some rotation, that leaves the
integral invariant, we assume that v · ξ = |v||ξ| cos θ1. Then, there exists a universal
constant Cd such that

Iξ =
∫

B(0,R)

(1 + |ξ|2)1/2

1 + (v · ξ)2
dv = Cd

∫ R

0

∫ π

0
rd−1 (1 + |ξ|2)1/2

1 + r2|ξ|2(cos θ1)2
sin(θ1)dθ1dr.

By the change of variables t = cos(θ1), we have∫ π

0

sin(θ1)dθ1
1 + r2|ξ|2(cos θ1)2

=
∫ 1

0

dt

1 + r2|ξ|2t2
=

1
r|ξ|

arctan r|ξ|.

This yields, since |ξ| ≥ 1,

Iξ ≤ Cd

∫ R

0
rd−2

√
2× 2π ≤ CRd−1

¿From this we deduce that Iξ is bounded uniformly in ξ, hence∫
IRd

(1 + |ξ|2)1/2|f̂ |2dξ ≤ C

∫
IRd

G2(ξ)dξ = C‖g‖2
L2(IRd×IRd) <∞,

where C is a constant which depends only on the function ψ. This completes the proof
of the lemma.

There exists also a version for the evolution problem.

Lemma 5.2 Let f ∈ L2(IR× IRd × IRd) be a weak solution of

∂tf + v · ∇xf = g (x, v) ∈ IRd × IRd, t ∈ IR (97)

where g ∈ L2(IRd × IRd × IR). Moreover let ψ ∈ L∞(IRd) with compact support. Then

f(t, x) =
∫

IRd
f(t, x, v)ψ(v)dv ∈ H1/2(IR× IRd). (98)

The proof of this lemma is very similar to that of lemma 5.1. We use Fourier transforms
both in space and time. We also have an averaging lemma in bounded domains:

Lemma 5.3 Let Ω be a convex open subdomain in IRd. Let f be such that

‖f‖L2(Ω×IRd) + ‖v · ∇xf‖L2(Ω×IRd) + ‖f‖L2(Γ−,|v·n|) <∞.

Then we have

f(x) =
∫

IRd
f(x, v)ψ(v)dv ∈ H1/2(Ω) ∀ψ ∈ L∞(IRd) with compact support. (99)
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The result follows from the application of lemma 5.1 to a function whose restriction to
Ω with f . This is the aim of the following extension lemma.

Lemma 5.4 Let us define first

W 2
−(Ω× IRd) = {u(x, v) ∈W 2(Ω× IRd) s.t. ‖u‖L2(Γ−,|v·n|) <∞}. (100)

There exists a continuous extension operator

E : W 2
−(Ω× IRd) →W 2(IRd × IRd), i.e. (Eu)|Ω×IRd = u. (101)

The proof of these results can be found in [2, 6] and is not given here.

5.2 Transport Equation and Compactness Property

We shall now apply the averaging lemma to derive an important compactness property.
Let us first start with a corollary:

Corollary 5.5 Let be Ω a convex bounded domain in IRd. Let be σ(v, v′) in L∞(IRd ×
IRd) with compact support. Let be U the family of functions u such that

‖u‖W 2(Ω×IRd) + ‖u‖L2(Γ−,|v·n|) ≤ 1

and F the family of functions f ∈ L2(Ω× IRd) defined by

f(x, v) =
∫

IRd
σ(v, v′)u(x, v′)dv′. (102)

Then F is relatively compact in L2(Ω× IRd).

Proof We want to use the Riesz-Fréchet-Kolmogorov Theorem [1]. Let us denote
by τh the translation in phase space,

τhf = f(x+ hx, v + hv), where h = (hx, hv) ∈ IRd × IRd. (103)

u is prolongated outside Ω using the extension lemma 5.4, so that τh is defined for every
h ∈ IRd × IRd. We want to prove that for every ε > 0, there exists a δ > 0 such that
for all h of norm |h| < δ, and for all f ∈ F , we have

‖τhf − f‖L2(Ω×IRd) ≤ ε. (104)

Then the Riesz-Fréchet-Kolmogorov Theorem implies the relative compactness of the
family F in L2(Ω× IRd).

To simplify, we denote by ‖ · ‖ = ‖ · ‖L2(Ω×IRd) and compute

‖τhf − f‖ = ‖
∫
IRd σ(v + hv, v

′)u(x+ hx, v
′)dv′ −

∫
IRd σ(v, v′)u(x, v′)dv′‖

≤ ‖
∫
IRd

(
σ(v + hv, v

′)− σ(v, v′)
)
u(x+ hx, v

′)dv′‖

+‖
∫
IRd σ(v, v′)

(
u(x+ hx, v

′)− u(x, v′)
)
dv′‖.
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The second term is ‖f(x+hx, v)−f(x, v)‖. Let be a fixed v. According to the averaging
lemma (5.3), we have

‖f(x, v)‖H1/2(Ω) ≤ C

where C is a constant independent of u ∈ U . Therefore we deduce from the compactness
embedding from H1/2(Ω) into L2(Ω) that for every η > 0 there exists a δ so that for
all |hx| < δ and f ∈ F , ∫

Ω

(
f(x+ hx, v)− f(x, v)

)2
≤ η.

Since σ has a compact support, we easily deduce that

‖f(x+ hx, v)− f(x, v)‖ ≤ Cη.

This proves the convergence of the second term. It remains to consider

‖
∫
IRd

(
σ(v + hv, v

′)− σ(v, v′)
)
u(x+ hx, v

′)dv′‖

≤ C‖u‖ ‖σ(v + hv, v
′)− σ(v, v′)‖L2(IRd×IRd)

Now since σ ∈ L2(IRd × IRd) because it is of compact support, we know that [1]

‖σ(v + hv, v
′)− σ(v, v′)‖L2(IRd×IRd) → 0

when |hv| tends to 0. Therefore the condition (104) is satisfied and the family F
relatively compact in L2(Ω× IRd).
Let us come back to the transport equation

Tu = Fu+ q in Ω×K

u = 0 on Γ−.
(105)

We assume here that Ω is a bounded open convex subset of IRd and that K is a closed
subset of IRd. The domain of definition of T is D(T ) = D(A), defined by (80). Then
we have the following result

Theorem 5.6 Let T and F be given by (85) with domain D(T ) and (61). We assume
that

σ(x, v′, v) =
I∑

i=1

ci(x)σi(v′, v), (106)

where I ∈ IN , ci ∈ L∞(Ω) and σi ∈ L∞(K×K) with compact support, for i = 1, . . . , I.
We also assume that the cross section Σ is uniformly bounded from below by Σ0 > 0.

Then the operators T−1F and FT−1 are compact in L2(Ω×K).
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Proof The operators T−1F and FT−1 are clearly bounded in L2(Ω × K). The
adjoint of T−1F in L2(Ω×K) is given by F ∗(T ∗)−1, where T ∗ and F ∗ are defined by T ∗u = −v · ∇u+ Σu

u = 0 on Γ+

, F ∗u =
I∑

i=1

ci(x)
∫

K
σi(v, v′)u(x, v′)dv′.

We will prove that FT−1 and F ∗(T ∗)−1 are compact. The result follows from the fact
that if an operator K is compact, its adjoint operator K∗ is also compact.

Assume that σ(x, v′, v) = σi(v′, v) for some 1 ≤ i ≤ I. Let us consider FT−1. Let
be g in the unit ball of L2(Ω×K). We denote by u = T−1g. Therefore,

v · ∇xu+ Σu = g.

This implies that u and v · ∇u are in L2(Ω × K) since Σ is uniformly bounded from
below by Σ0 > 0. We use Corollary 5.5 to obtain that the family Fu = FT−1g for u in
the unit ball of L2(Ω ×K) is relatively compact in L2(Ω ×K). This is the definition
of the compactness of FT−1. Since the multiplication operator ci(x)(·) is continuous,
we obtain that FT−1 is compact as the finite sum of compact operators.

We notice that both operators F and F ∗ satisfy (106). Moreover, we also deduce
from the equation u = (T ∗)−1 that u and v · ∇u are in L2(Ω×K). The proof is then
completed as above.
An important property of positive compact operators is the following [3, 8]

Theorem 5.7 (Krein Rutman.) Let be T a compact operator in L2(Ω × K) such
that for all non negative functions u ≥ 0, we have Tu ≥ 0 is also non negative. Then
there exists ψ ≥ 0 and λ > 0 such that Tψ = λψ. Moreover λ is the unique eigenvalue
associated with a positive eigenvector. At last, λ is simple and every other eigenvalue
µ of T satisfies |µ| ≤ λ.

This theorem is a powerful result that allows us to obtain an optimal result of existence
for the transport equations:

Theorem 5.8 Let T and F satisfy the hypotheses of Theorem 5.6. Then the problem

Tu = µFu+ q in Ω×K

u = 0 on Γ−
(107)

admits a unique solution for all q if and only if µ 6∈ σ(T−1F ), the (point-)spectrum of
T−1F . Denote by λ the largest positive eigenvalue of T−1F . Then for all µ < λ−1,
(107) admits a unique solution. Moreover the solution u is non negative if q is non
negative. It is given by the Neumann series

u =
∞∑

k=0

(µT−1F )kT−1q. (108)
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Proof This theorem is simply an application of the Fredholm alternative for positive
compact operators, satisfying the hypothesis of Krein Rutman’s theorem.

Remark 5.9 Assume that the medium is conservative or dissipative, i.e. that Hy-
pothesis (H3) is satisfied. We also assume (H1) and (H2) to simplify. Then the a priori
estimate (65) holds, and for every µ ≤ 1, solutions of

u = µT−1Fu

satisfy u = 0. This implies that the largest eigenvalue of T−1F satisfies λ < 1. Even
for a bounded conservative medium, i.e. without pure absorption Σa = 0, there is no
possible equilibrium due to some leakage at the boundary of the domain. In order to
obtain an equilibrium, particles must be created to compensate for the leakage. The
eigenvalue λ indicates how much creation is necessary to obtain equilibrium. In this
sense, this is a criticality constant for the domain Ω.
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