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Chapter 1

What is an Inverse Problem

Three essential ingredients define an inverse problem in this book. The central element
is the Measurement Operator (MO), which maps objects of interest, called parameters,
to information collected about these objects, called measurements or data. The main
objective of inverse problem theory is to analyze such a MO, primarily its injectivity and
stability properties. Injectivity of the MO means that acquired data uniquely character-
ize the parameters. Often, the inversion of the MO amplifies errors in the measurements,
which we refer to as noise. Stability estimates characterize this amplification.

When the amplification is considered “too large” by the user, which is a subjective
notion, then the inverse problem needs to be modified. How this should be done depends
on the structure of noise. The second essential ingredient of an inverse problem is thus
a noise model, for instance a statement about its size in a given metric, or, if available,
its statistical properties.

Once a MO and a noise model are available, the “too large” effect of noise on
the reconstruction is mitigated by imposing additional constraints on the parameters
that render the inversion well-posed. These constraints take the form of a prior model,
for instance assuming that the parameters live in a finite dimensional space, or that
parameters are sparsely represented in an appropriate frame.

The three elements (MO, noise model, prior model) are described in more detail in
section 1.1. Examples of MO are given in section 1.2.

The role of modeling is often crucial in the derivation of the triplet (MO, noise
model, prior model). In section 1.3, three different models of MO are obtained in a
simplified setting of Magnetic Resonance Imaging, one of the most successful medical
imaging modality.

Once a MO has been selected and proved to be injective, we need to understand how
its inversion amplifies noise. Typically, difficulties in inverse problems arise because such
an amplification becomes larger for higher frequencies. This is related to the smoothing
properties of the MO. We introduce a Hilbert scale of spaces in section 1.4 to quantify
such an amplification for a restricted but pedagogically useful class of inverse problems.

These preliminary notations set the stage for the introductory analysis in later chap-
ters of several (MO, noise model, prior model) that find applications in many inverse
problems

1



2 CHAPTER 1. WHAT IS AN INVERSE PROBLEM

1.1 Elements of an Inverse Problem

The definition of an inverse problem (IP) starts with that of a mapping between objects
of interest, which we call parameters, and acquired information about these objects,
which we call data or measurements. The mapping, or forward problem, is called the
measurement operator (MO). We denote it by M.

The MO maps parameters in a functional space X, typically a Banach or Hilbert
space, to the space of data Y, typically another Banach or Hilbert space. We write

y = M(x) for x ∈ X and y ∈ Y, (1.1)

the correspondence between the parameter x and the data y. Solving the inverse problem
amounts to finding point(s) x ∈ X from knowledge of the data y ∈ Y such that (1.1) or
an approximation of (1.1) holds.

The MO describes our best effort to construct a model for the available data y, which
we assume here depend only on the sought parameters x. The choice of X describes our
best effort to characterize the space where we believe the parameters belong.

1.1.1 Injectivity and stability of the Measurement Operator

The first question to ask about the MO is whether we have acquired enough data to
uniquely reconstruct the parameters. In other words, whether the MO is injective.
Injectivity is the following statement:

M(x1) = M(x2) =⇒ x1 = x2 for all x1, x2 ∈ X. (1.2)

Then the data y, if given in the range of M, uniquely characterize the parameter x.
Measurement operators used in practice are typically discretized and available data

typically contain noise as we shall see below. Such measurement operators are often not
(quite) injective. Yet, most practical measurement operators can be seen as approxima-
tions to measurement operators that are indeed injective.

When M is injective, we can construct an inversion operator M−1 mapping the range
of M to a uniquely defined element in X. This inverse operation is what is implemented
numerically in practice. The main features of the inverse operator are captured by
what are called stability estimates. Such estimates quantify how errors in the available
measurements translate into errors in the reconstructions. They take the form:

‖x1 − x2‖X ≤ ω(‖M(x1)−M(x2)‖Y), (1.3)

where ω : R+ → R+ is an increasing function, such that ω(0) = 0, quantifying the
modulus of continuity of the inversion operator M−1. This function gives an estimate
of the reconstruction error ‖x1− x2‖X based on what we believe is the error in the data
acquisition ‖M(x1)−M(x2)‖Y.

When noise is not amplified too drastically so that the error on the reconstructed
parameters is acceptable, for instance typically when ω(x) = Cx for some constant C,
then we say that the inverse problem is well-posed. When noise is strongly amplified
and the reconstruction is contaminated by too large a noisy component, for instance
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typically when ω(x) = | log |x||−1 so that measurement errors of 10−10 translate into
reconstruction errors of 1

10
, then we say that the inverse problem is ill-posed.

The notion of the ill-posedness of an inverse problem is thus to some extent a sub-
jective notion. The modulus of continuity ω depends on the choices of X and Y. Let
us assume that the metric space Y is endowed with a metric d(y1, y2) = ω(‖y1− y2‖Y).
Then the distance between the two reconstructions x1 and x2 is bounded by the distance
between the two measurements y1 and y2, which seems to correspond to a “nice”, well-
posed, inverse problem. The stability estimates and corresponding moduli of continuity
are thus subjective.

Note that we considered the difference between y1 = M(x1) and y2 = M(x2), that
is to say, errors of measurements in the range of the measurement operator. This is
legitimate since all that we have constructed so far is measurements in Y that are in the
range of the measurement operator M. In practice, however, noise in the data acquisition
may cause the measurements to leave the natural set M(X) where measurements are
currently defined. Data then need to be projected onto the range of the MO first, or an
entirely new set of stability estimates need to be developed.

In spite of the aforementioned caveats, the notions of injectivity and stability of a
measurement operator are very fruitful concepts that provide practically useful informa-
tion about the structure of the inverse problem of interest. Most of this book is devoted
to the analysis of injectivity of different MO and the derivation of (typically several)
corresponding stability estimates. Most practical inverse problems are approximations
to injective MOs with well-characterized stability properties. Most successful imaging
modalities are modeled by injective MOs with good stability properties.

1.1.2 Noise model and Prior model

The MO is typically not sufficient to describe an IP satisfactorily. Often, ”noisy” con-
tributions need to be added to realistically model the available data, for instance con-
tributions of parameters not included in x because we have no chance of reconstructing
them, or random fluctuations in how detectors operate. Such errors may have undesir-
able effects on the reconstructions, which, in turn, requires that the user introduce prior
constraints on the parameters. We first define what we mean by noise.

Modeling and Measurement Errors. Rather than modeling the IP as y = M(x),
it is customary to define an IP as y = M(x) + n, where n is “noise” and its definition is
precisely

n = n(x, y) := y −M(x), (1.4)

the discrepancy between the model M(x) and the available data y. n typically has two
contributions. One standard contribution is the detector noise, since measurements are
performed by instruments that are imperfect. Often, an equally important or more
important contribution is what we may call a modeling error, for instance reflecting that
M is an imperfect modeling of the physical underlying process mapping parameters x
to data y.

Let us assume that we can project the available data ỹ onto the range of M and
decompose it as y = M(x2) plus ỹ −M(x2). We discard ỹ − y for the moment. Then
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n = M(x2) −M(x) and the stability estimates provide a measure of the error x − x2

in the reconstruction. Estimating the above error term is therefore an important part
of solving an IP in practice. Several guiding principles to do so will be considered in
Chapter 12. For the moment, let us simply mention that it often makes sense to model
n as a “random” process. Indeed, if a simple (deterministic) model for n was available,
that is a model involving well-characterized parameters, then we would modify the MO
to account for said model.

The randomness comes from the aforementioned sources: the detector and modeling
errors. What are the statistics of n, and in particular the ensemble average m(x) =
E{n(x)} and the two point correlation function c(x, y) = {n(x)n(y)} are practically
important information whose knowledge can very significantly improve the solution to
a given IP.

Prior model. We now have two items characterizing an IP: a MO and a noise model.
The very reason“noise” is modeled is because it has an undesirable effect on the recon-
struction, which is estimated by the stability estimates associated to the MO. One is
then faced with essentially (a combination of) three strategies: (i) acquire more accurate
data to lower the size of ‖n‖Y and hence of ‖x1 − x2‖X. When the stability estimates
imply a strong amplification of the noise level in the reconstruction, this strategy has
limited value; (ii) change the MO and acquire different data. This ideal scenario may
not always be feasible; and (iii) restrict the class in which the unknown parameters are
sought. We now focus on (iii) and thus need a prior model. Several major methodologies
to do so can be classified as follows:

1. Penalization theory is a deterministic methodology that restricts the domain of def-
inition of the parameters. It includes two subcategories, one being regularization
theory, which assumes that the parameters of interest are ”sufficiently smooth”,
and the other one being sparsity theory, which assumes that the parameters are
sparsely represented in a given, specific, basis.

2. The Bayesian framework is an alternative, very versatile, methodology to incorpo-
rate prior assumptions in a statistical fashion. A prior probability density describes
the potential values that the parameters can take. A posterior probability density
describes how these potential values are affected by the measurements.

3. Several geometric constraints give rise to simplified reconstructions (of small in-
clusions for instance) or qualitative methods of reconstructions (of support of
inclusions for instance).

The structure (MO, noise model, prior model) completes the description of the in-
verse problem. Which prior model should be chosen strongly depends on the other two
components (MO, noise model). Heuristically, when the inversion of the MO does not
amplifies noise too drastically, then this limited lack of information in the available data
can be compensated by mild prior models, typically those considered in item 1 above.
However, when noise is strongly amplified, then more drastic prior models, such as those
in items 2 and 3, need to be chosen in order to compensate for the fact that available
data are not very informative. The analysis of an inverse problem therefore starts with
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that of the stability properties of the MO. Most of the rest of the book is devoted to
this task.

1.1.3 Numerical algorithms

The choice of the prior model has important consequences on the complexity of the
numerical algorithms that are used to solve the inverse problem in practice. We briefly
describe such complexity in cases that often appear in practice.

When the prior model takes the form of a penalization, then the computational cost
is typically reasonable and addressed in items (a) and (b) below. In the more versatile
Bayesian framework, used to compensate for the lack of information in the available
data, the computational cost may be significantly higher as is explained in item (c)
below. When the prior model consists of geometric constraints, the computational cost
then wildly depends on the choice of geometric constraints; see item (d) below.

To simplify the presentation, we assume that M is linear and consider an inverse
problem of the form y = Mx + n. Nonlinear problems y = M(x) + n are typically
linearized, for instance by iteratively solving linear problems in the form y −M(x0) =
A(x−x0)+n, where A is some differential of M at x0. The computational cost of solving
the inverse problem modeled by y = Mx + n typically falls into one of the following
categories.

(a) Linear penalization theories such as regularization theories typically replace y =
Mx + n by

M∗y = (M∗M + δB)xδ, (1.5)

where δ > 0 is a regularization parameter and B is a positive definite operator such that
(M∗M + δB) is an invertible operator with bounded inverse. Here M∗ is the adjoint
operator to M. The inverse problem then involves solving a linear system of equations.

(b) Penalization theories such as those based on sparsity constraints typically replace
y = Mx + n by

xδ = argmin ‖y −Mx‖Y1 + δ‖x‖X2 , (1.6)

where Y1 is typically a L2 norm and X2 for instance a L1 norm to promote sparsity.
Again, δ > 0 is a small, regularizing parameter. Solving such a problem therefore
requires solving an optimization (minimization) problem, which is algorithmically more
challenging than the linear problem in (1.5).

(c) In the setting of IPs with poor stability estimates, the available data may not be
very informative. The prior model then needs to compensate for this lack of information.
The Bayesian framework offers a very versatile way to introduce prior models.

The premise of such a framework is that we know a prior distribution π(x) which
assigns a probability (density) to all potential candidates x before any data are acquired.
We also assume that we know the likelihood function, which is the conditional distribu-
tion π(y|x) of the data y conditioned on knowing the parameter x. This is equivalent to
knowing the distribution of the noise n. Bayes theorem then states that the posterior
distribution is given by

π(x|y) = Cπ(y|x)π(x). (1.7)
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Here C is a normalizing constant so that π(x|y) is a probability density, i.e., so that∫
X
π(x|y)dµ(x) = 1 for dµ(x) the measure of integration on X. In other words, what we

know a priori, π(y|x), the noise model, and π(x), the prior model, before acquiring any
data, plus the additional knowledge obtained from measuring y, allows us to calculate
π(x|y) the probability distribution of the unknown parameter x knowing the data y.

There are many advantages and caveats associated to this formalism, which will be
presented in more detail in Chapter 11. However, from a computational view point, the
Bayesian framework poses extraordinary challenges. If we know the distribution of the
noise level n, then estimating π(y|x) requires solving a forward problem x 7→M(x). This
calculation has to be performed for a large number of values of x in order to sample
π(x|y). Moreover, sampling a distribution π(x|y) that does not necessarily admit a
closed form expression is in itself computationally very intensive. Sampling (1.7) is thus
computationally significantly more challenging than solving (1.5) or (1.6).

One of the main advantages of the Bayesian framework is that it insists on an impor-
tant aspect of inverse problems in general that motivated our description of an inverse
problem as the triplet (MO, noise model, prior model): data are often not sufficiently
informative to provide accurate reconstructions of x. The Bayesian framework recog-
nizes this fact by providing as an output a distribution of possible parameters x with
probability π(x|y).

Once it is defined, this posterior probability density needs to be processed and pre-
sented in a way that we can analyze and understand. Two main methodologies are
used to do so. The first one corresponds to estimating the maximum likelihood of the
posterior distribution

x = argmax π(x|y) = argmin −π(x|y). (1.8)

This MAP (maximum a posteriori) estimation is a minimization problem that bears
very strong resemblances with (1.6), including its computational cost. Most models of
the form (1.6) can be recast as MAP estimators of a Bayesian posterior.

A second, more accurate, method consists of estimating several statistical moments
of π(x|y), for instance

x̄ =

∫
X

xπ(x|y)dµ(x), c =

∫
X

(x− x̄)⊗ (x− x̄)π(x|y)dµ(x), (1.9)

with x̄ the ensemble average of x and c the correlation “matrix” of x. For x = (xi) a
vector, think of x ⊗ x̃ as the matrix with elements xix̃j. Here, dµ(x) is a measure of
integration on X. Other important moments, for instance for uncertainty quantification
involve the estimation of the quantiles of x:

ϕδ =

∫
X

H(ϕ(x)− δ)π(x|y)dµ(x). (1.10)

Here ϕ is a functional from X to R, and could be for instance a norm of x, or the value
of one component of a vector valued x, or the evaluation of the parameter x at a spatial
point and/or a specific time. Also, H(t) is the Heaviside function equal to H(t) = 1 for
t ≥ 0 and H(t) = 0 for t < 0. Then ϕδ above is the probability that ϕ(x) be larger than
a given parameter δ > 0.
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All of these moments require that we sample π(x|y). This is an extremely diffi-
cult and computationally expensive task. Standard methodologies to do so involve the
Markov Chain Monte Carlo method that will be briefly presented in Chapter 11.

(d) Geometric constraints and qualitative methods, are different prior models. They
severely restrict the set of potential parameters or try to recover not all of x but rather
partial information about x, such as for instance its spatial support. Many geometric
constraints and qualitative methods have been developed in the mathematical litera-
ture. Their main advantage is that they are computationally much more tractable than
Bayesian reconstructions; see Chapter 12.

1.2 Examples of Measurement Operator

We now present several examples of measurement operators. The first three MO are
mostly pedagogical, while the last two examples of MO find important applications in,
e.g., medical imaging.

Example 1. Let X = C([0, 1]), the space of continuous functions. Let Y = X and
define

M(f)(x) =

∫ x

0

f(y)dy.

Here, a “point” x in X is the function denoted by f , traditionally denoted by f(x). The
operator M is certainly injective since the equality of data M(f) = M(g) implies that
f = d

dx
M(f) = d

dx
M(g) = g, i.e., the equality of parameters.

However, the operator M is ”smoothing” since M(f) is one derivative more regular
than f . So inverting the operator, as indicated above, involves differentiating the data.
If “noise” is added to the data and “noise” is high frequency, the the derivative of
“noise” will be large and may overwhelm the reconstruction of f(x). The objective of
penalization theory is precisely to make sure this undesirable fact does not happen.

Example 2. On X = C1
0([0, 1]), the space of continuously differentiable functions

with value 0 at x = 0 and Y = C([0, 1]), we can define

M(f)(x) = f ′(x), the derivative of f.

Note that the derivative of a continuous function is not continuous (and may not exist as
a function although it can be defined as a distribution). So here, we found it convenient
to define the domain of definition of M as a subset of the space of continuous functions.

Why do we also insist on f(0) = 0 in X? It is because otherwise, M would not
be injective since antiderivatives are defined up to a constant. In X, we have from the
fundamental theory of calculus that

f(x) = f(0) +

∫ x

0

f ′(y)dy =

∫ x

0

f ′(y)dy =

∫ x

0

M(f)(y)dy.

Now obviously, M(f) = M(g) implies f = g. From the point of view of inverse problems,
this is a very favorable situation. If “noise” is added to M(f), it will be integrated during
the reconstruction, which is a very stable process.
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Example 3. With the same setting as in Example 1, consider M(f)(x) =
∫ 1

0
f(y)dy.

This operator is well defined. But it is clearly not injective. All we learn about f is its
mean on (0, 1). This operator corresponds to data that are not very informative.

Example 4. Let X = Cc(R2) the space of continuous functions with compact support
(functions supported in a bounded domain in R2, i.e., vanishing outside of that domain).
Let Y = C(R × (0, 2π)). We define l(s, θ) for s ∈ R and θ ∈ (0, 2π) as the line with
direction perpendicular to ϑ = (cos θ, sin θ) and at a distance |s| from the origin (0, 0).
More precisely, let ϑ⊥ = (− sin θ, cos θ) the rotation of ϑ by π

2
. Then

l(s, θ) = {x ∈ R2 such that x = sϑ+ tϑ⊥ for t ∈ R}. (1.11)

We define

M(f)(s, θ) =

∫
l(s,θ)

f(x)dl =

∫
R
f(sϑ+ tϑ⊥)dt,

where dl is the line measure along l(s, θ). In other words, M maps a function to the
value of its integrals along any line. The operator M is the two-dimensional Radon
Transform. We shall see that M is injective and admits an explicit inversion.

The Radon transform and its inversion form the mathematical back-bone of Com-
puterized Tomography (CT), one of the most successful medical imaging techniques
available to-date.

Example 5. Let us conclude with a more involved, though practically very rele-
vant, example: the Calderón problem. We first introduce the following elliptic partial
differential equation

−∇ · γ(x)∇u(x) = 0, x ∈ X

u(x) = f(x) x ∈ ∂X,
(1.12)

where X is a smooth, bounded, open, domain in Rn, ∂X its boundary, γ(x) a smooth
coefficient in X bounded above and below by positive constants, and f(x) is a prescribed
Dirichlet data for the elliptic problem. This equation is a standard elliptic problem and
is known to admits a unique solution. Moreover, the outgoing current

j(x) = γ(x)
∂u

∂ν
(x), with ν(x) the outward unit normal to X at x ∈ ∂X,

is a well defined function. This allows us to define the Dirichlet-to-Neumann (a.k.a.
Poincaré-Steklov) operator

Λγ :
H

1
2 (∂X) → H−

1
2 (∂X)

f(x) 7→ Λγ[f ](x) = j(x) = γ(x)
∂u

∂ν
(x).

(1.13)

Here, Hs(∂X) are standard Hilbert spaces of distributions defined at the domain’s
boundary.

Let now X = C2(X̄) and Y = L(H
1
2 (∂X), H−

1
2 (∂X)), where the space L(X1,X2)

means the space of linear bounded (continuous) operators from X1 to X2. We define the
measurement operator

M : X 3 γ 7→M(γ) = Λγ ∈ Y. (1.14)
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So the measurement operator maps the unknown conductivity γ to the Dirichlet-to-
Neumann operator Λγ, which is by construction a functional of γ since the solution u of
(1.12) is a functional of γ. The measurement operator therefore lives in a ”huge” (ad-
mittedly, this is subjective) space. Acquiring data means acquiring Λγ, which means for

each and every function g ∈ H 1
2 (∂X) at the domain’s boundary, perform an experiment

that measures j(x).
As we shall see, the Calderón problem is a typical example of what is usually regarded

as an ill-posed inverse problem. It finds important applications in Electrical Impedance
Tomography and Optical Tomography, two medical imaging modalities.

1.3 Inverse Problems and Modeling: application to

Magnetic Resonance Imaging

This section presents an extremely simplified version of the extremely successful medical
imaging modality called Magnetic Resonance Imaging (MRI). While doing so, we observe
that MRI reconstructions may be modeled by (at least) three different measurement
operators, and hence three different inverse problems. This serves as an example of the
importance of modeling when dealing with practical inverse problems.

MRI exploits the precession of the spin of protons in a magnetic field H(x), which
is a vector in R3 for each position x = (x, y, z) ∈ R3. The axis of the precession is
that of the magnetic field and the frequency of the precession is ω(x) = γ|H|(x), where
γ = e/(2m) is called the gyromagnetic ratio, e is the electric charge of the proton and
m its mass.

In a nutshell, MRI works as follows. Assume first that we impose a strong static
magnetic field H0 = H0ez along the z axis. All protons end up with their spin parallel to
H0 and slightly more so in the direction H0 than in −H0. This difference is responsible
for a macroscopic magnetization M pointing in the same direction as H0.

In a second step, we generate radio frequency magnetic waves at the Larmor fre-
quency ω0 = γ|H0|. In clinical MRI, the frequency is typically between 15 and 80 MHz
(for hydrogen imaging), which corresponds to wavelengths between 20 and 120 m (since
ω = ck = 2πc/λ and c ≈ 3 108). So the wavelength is not what governs spatial resolution
in MRI, which is as most successful medical imaging modalities, sub-millimetric. For
instance the pulse (assumed to be independent of x to start with) may be of the form
H1(t) = 2H1 cos(ω0t)ex and turned on for a duration tp. Because the field oscillates at
the Larmor frequency, the spins of the protons are affected. The resulting effect on the
macroscopic magnetization is that it precesses around the axis ez at frequency ω0. The
spins make an angle with respect to the direction ez given at time tp by

θ = γH1tp.

Generally, tp is chosen such that θ = π/2 or θ = π. The corresponding pulses are called
900 and 1800 pulses, respectively. Thus, after a 900 pulse, the magnetization oscillates
in the xy plane and after a 1800 pulse, the magnetization is pointing in the direction
−H0.

Once the radio frequency is turned off (but not the static field H0), protons tend to
realign with the static field H0. By doing so, they emit radio frequency waves at the
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Larmor frequency ω0 that can be measured. This wave is called the free induction decay
(FID) signal. The FID signal after a 900 pulse will have the form

S(t) = ρeiω0te−t/T2 . (1.15)

Here ρ is the density of the magnetic moments and T2 is the spin-spin relaxation time.
(There is also a spin-lattice relaxation time T1 � T2, which cannot be imaged with 900

pulses and which we ignore.) The main reason for doing all this is that the density
ρ and the relaxation time T2 depend on the tissue sample. We restrict ourselves to
the reconstruction of ρ here, knowing that similar experiments can be devised to image
T2 (and T1) as well. To simplify, we assume that measurements are performed over a
period of time that is small compared to T2 so that the exponential term e−t/T2 can be
neglected.

Now human tissues are not spatially homogeneous, which makes imaging a lot more
useful. The density of magnetic moments ρ = ρ(x) depends on type of tissue at x ∈ R3.
This is the parameter we wish to reconstruct.

The physical mechanism that allows for the good spatial resolution of MRI (sub-
millimeter resolution for brain imaging) is that only tissue samples under a static
magnetic field H such that |H| = γω0 will be affected by the radio frequency pulse
H1(t) = 2H1 cos(ω0t)ex. We thus need to make sure that the static field has the correct
amplitude in as small a spatial area as possible. To do so, we impose the static field

H(z) = H0 +Gzzez.

Only those protons in the slice with z is close to 0 will be affected by the pulse H1 since
we have assumed that |H0| = γω0. As a consequence, the measured signal takes the
form

S(t) = eiω0t

∫
R2

ρ(x, y, 0)dxdy so that e−iω0tS(t) =

∫
R2

ρ(x, y, 0)dxdy. (1.16)

The above right-hand-side thus describes the average density in the plane z = 0. MRI
is thus a tomographic technique (tomos meaning section or slice in Greek).

By changing H0 or ω0, we can obtain the average density in the plane z = z0 for all
values of z0 ∈ R. Moreover, by rotating the generated magnetic field H(z), we are ideally
able to obtain the average density in any plane in R3. Planes may be parameterized
by their normal vector φ ∈ S2, with S2 the unit sphere in R3, and their distance s to
the origin (0, 0, 0) ∈ R3. Let P (s, φ) be the corresponding plane. Then what we have
obtained is that MRI experiments allows us to obtain the plane integrals of the density

R(s, φ) =

∫
P (s,φ)

ρ(x)dσ(x), (1.17)

where dσ(x) is the surface (Euclidean) measure on the plane P (s, φ). Here, R(s, φ) is
the three-dimensional Radon transform of ρ(x). This is the first inverse problem
we encounter. The measurement operator maps functions defined on R3 (for instance
compactly supported continuous functions) to the Radon transform, which is a function
(for instance compactly supported continuous function) of (s, φ) ∈ R × S2. We thus
have the Inverse Problem:
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3D Radon Transform: Reconstruct density ρ(x) from knowledge of R(s, φ)
Equivalently: Reconstruct a function from its plane integrals.

There are several issues with the above inverse problem. First of all, the Radon
transform integrates over planes, which is a smoothing operation. This smoothing has
to be undone in the reconstruction procedure. With more modeling, we will obtain
another MO that does not involve any smoothing. More fundamentally from a practical
point of view, rotating the whole magnetic field from the direction ez to an arbitrary
direction φ is very challenging technologically. One could also rotate the object of
interest rather than the heavy magnet. However, for the imaging of human patients,
this is not feasible either for rather obvious reasons. Additional modeling is therefore
necessary.

So far, we have a vertical discrimination of the proton density. The transversal
discrimination is obtained by imposing a static field linearly varying in the x and y
directions. Remember that after the 900 pulse, the magnetization M(x, y, 0) rotates
with frequency ω0 in the xy plane (i.e., is orthogonal to ez), and is actually independent
of x and y. Let us now impose a static field H(y) = H0 + Gyyez for a duration T .
Since the frequency of precession is related to the magnetic field, the magnetization at
position y will rotate with frequency ω(y) = ω0 + γGyy. Therefore, compared to the
magnetization at z = 0, the magnetization at z will accumulate a phase during the time
T the field Gyyez is turned on given by T (ω(y)−ω0) = TγGyy. Once the field Gyyez is
turned off, the magnetization will again rotate everywhere with frequency ω0. However,
the phase depends on position y. This part of the process is call phase encoding. A
measurement of the FID would then give us a radio frequency signal of the form

S(t;T ) = eiω0t

∫
R2

eiγGyTyρ(x, y, 0)dxdy. (1.18)

By varying the time T or the gradient Gy, we see that we can obtain the frequency
content in y of the density ρ(x, y, 0). More precisely,∫

R
ρ(x, y, 0)dx =

1

2π

∫
R
e−ikyyS(t;

ky
γGy

)dky. (1.19)

This provides us with the line integrals of ρ(x, y, 0) at z = 0 for all the lines that are
parallel to the x-axis. Note that the phase encoding was performed by using a field that
was linear in the y variable. We can use a field that is linear in the variable cos θx+sin θy
instead. Denoting by ϑ = (cos θ, sin θ) ∈ S1 a unit vector in R2, by ϑ⊥ = (− sin θ, cos θ)
its rotation by π

2
, and by l(s, θ) the line with normal ϑ at a distance s from the origin

(0, 0) ∈ R2 defined in (1.11), we are thus able to measure all line integrals of the function
ρ(x, y, 0):

R(s, θ) =

∫
l(s,θ)

ρ(x, y, 0)dl(x, y) =

∫
R
ρ(sϑ+ tϑ⊥, 0)dt, (1.20)

where dl(x, y) is the line (Euclidean) measure on l(s, θ). This is the second inverse prob-
lem we encounter: we wish to reconstruct ρ(x, y) from knowledge of its line integrals
R(s, θ). This is the two-dimensional Radon transform of ρ(x, y, 0); see Example
4 above. The measurement operator maps functions defined on R2 (for instance com-
pactly supported continuous functions) to the Radon transform, which is a function (for
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instance compactly supported continuous function) of (s, φ) ∈ R × S1. We thus have
the Inverse Problem:

2D Radon Transform: Reconstruct density ρ(x, y) from knowledge of R(s, θ)
Equivalently: Reconstruct a function from its line integrals.

The 2D Radon transform still involves smoothing (integration along lines), as does
the three-dimensional Radon transform. Note, however, that there is no need to rotate
the magnet or the patient to acquire the data. Although the inverse Radon transform
is useful and used in practical MRI, the missing information in the x variable in mea-
surements of the form (1.18) can in fact be obtained by additional modeling. Indeed,
nothing prevents us from adding an x−dependent static field during the FID measure-
ments. Let us assume that after time T (where we reset time to be t = 0), we impose
a static field of the form H(x) = H0 + Gxxez. The magnetization will now precess
around the z axis with x−dependent frequency ω(x) = ω0 + γGxx. This implies that
the measured signal will be of the form

S(t;T ) =

∫
R2

eiγGyTyei(ω0+γGxx)tρ(x, y, 0)dxdy. (1.21)

We have thus access to the measured data

d(kx, ky) = e−iω0kx/(γGx)S(
kx
γGx

;
ky
γGy

) =

∫
R2

eikyyeikxxρ(x, y, 0)dxdy. (1.22)

By varying T (or Gy) and t and Gx, we can obtain the above information for essentially
all values of kx and ky. This is our third Inverse Problem:

2D Fourier Transform: Reconstruct density ρ(x, y, 0) from knowledge of d(kx, ky)
Equivalently: Reconstruct a function from its plane wave decomposition.

This is a well-known problem whose solution involves applying the Inverse Fourier
Transform

ρ(x, y, 0) =
1

(2π)2

∫
R2

e−i(kxx+kyy)d(kx, ky)dkxdky. (1.23)

Several approximations have been made to obtain this reconstruction formula. Within
this framework, we see however that density reconstructions are relatively simple: all
we have to do is to invert a Fourier transform. The above procedure can be repeated
for all values of z providing the density ρ(x, y, z) everywhere in the domain of interest.

We do not consider the difficulties of MRI further. The above derivation shows
that MRI can be modeled by at least three different inverse problems. A first inverse
problem, based on the three dimensional Radon transform, is not very practical. The
second and third inverse problems, based on the inverse Radon transform (RT) and the
inverse Fourier transform (FT), are used in practical reconstructions in MRI. Note that
the IP based on the FT requires the acquisition of more data than the IP based on the
RT. The reason for acquiring more data is that the IP based on the FT is better posed
than than based on the FT. The next section introduces a simple Hilbert scale that
allows one to quantify the notion of well- or ill-posedness in some simple cases.
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1.4 Inverse Problems, Smoothing, and ill-posedness

The elements (noise model, prior model) were introduced in response to the “too large”
amplification of noise during the inversion of the MO. Such MOs can be characterized
as ill-posed. Functional analytic definitions of well- and ill-posedness are presented in
sections 1.4.1 and 1.4.2.

The description of this subjective notion requires that we quantify and understand
this amplification. The main reason why noise is amplified in the reconstruction is
because the MO is a smoothing operator. The more smoothing (regularizing) the MO,
the more attenuated are the high frequencies of the unknown parameters, and hence
the more amplified are the high frequencies of the noise during the reconstruction. In
this section, we introduce a Hilbert scale of functional spaces that allows us to quantify
the aforementioned regularization for a restricted but pedagogically interesting class of
inverse problems. This allows us to be more specific about the notions of well-posedness
and ill-posedness of an inverse problem.

1.4.1 Well-posed Problems and Lipschitz Stability.

Let us revisit and make more explicit the notion of well-posedness and ill-posedness
mentioned in section 1.1. We assume that M is a linear operator A from X to Y for X
and Y Banach spaces associated with their natural norms. For a given data y ∈ Y, we
would like to solve the linear problem

Find x such that Ax = y. (1.24)

As we mentioned earlier, a well-posed problem is a problem where data noise is
not amplified too drastically during the reconstruction. Mathematically, this subjective
notion may be described by the property that the (bounded) operator A is invertible
(A−1y is defined for all y ∈ Y) and (hence by the open mapping theorem) of bounded
inverse, i.e., ‖A−1y‖X ≤ C‖y‖Y for a constant C that depends on A but not on y ∈ Y.
The error between two solutions x1 and x2 corresponding to two data y1 and y2 satisfies
that

‖x1 − x2‖X ≤ C‖y1 − y2‖Y. (1.25)

This stability estimate is consistent with the statement that “Noise” y1−y2 is not ampli-
fied by more than a multiplicative factor C during the reconstruction. Moreover, when
noise levels are reduced by a factor two, which may be performed by adding detectors or
obtaining higher quality measurements, then (1.25) states that the in the worst possible
case (since (1.25) for arbitrary x1 − x2, and hence C reflects the amplification of noise
in the worst scenario), the error in the reconstruction will also be reduced by a factor
two.

Note that the choice of the spaces X and Y and their norms ‖ ·‖X and ‖ ·‖Y matters.
The definition and the boundedness of the operator A−1 obviously depends upon these
choices and hence so does the validity of (1.25). An estimate of the form (1.25) is a
stability estimate with Lipschitz constant C and we then say that the inverse problem
(1.24) is Lipschitz-stable.
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1.4.2 Ill-posed Problems and Unbounded Operators.

The Fourier transform recalled in section A.1 of the appendix is an example of a well-
posed inverse problem from L2(Rn) to L2(Rn). We will see in the following chapter that
the two-dimensional and three-dimensional Radon transforms are also well posed with
appropriate choices of X and Y. Many inverse problems are, however, considered to
be ill-posed for instance because the application of A−1 to the noisy data y produces a
result that is deemed inadequate or because it is not possible to define an operator A−1.
Being ill-posed does not mean that a problem cannot be solved. However, it means that
additional information needs to be incorporated into the inversion.

Let us attempt to mathematize these subjective notions. Typically, we can distin-
guish two notions of ill-posedness. The first one corresponds to operators A that are
not injective. In this case, the data do not uniquely determine the parameters. This
situation is typically remedied by acquiring additional information. We will not consider
such settings much in these notes except to say that the Bayesian framework considered
in Chapter 11 is adapted to such problems. Many practical inverse problems may be
seen as discretization of injective operators.

The second notion of ill-posedness involves operators A that are injective but not
surjective on the whole space Y (i.e., the range of A defined by Range(A) = A(X) is a
proper subset of Y; that is to say, is not equal to Y). Because A is injective, A−1 can
be defined from Range(A) to X. However, it is not a bounded operator for the norms
of Y and X in the sense that a Lipschitz equality such as (1.25) does not hold. From a
practical point of view, applying A−1 to the available (noisy) data y provides a results
that the user feels is too different from the expected x.

Mathematically, the unbounded character of A−1 very much depends on the choice
of functional space. The operator A−1 could very well be defined and bounded from the
other space Y′ to the other space X′, in which case the same inverse problem based on
the MO A could be ill posed from X to Y but well-posed from X′ to Y′. In other words, a
user comfortable with the modeling of A from X′ to Y′ deals with a well-posed problem,
whereas the user insisting on a modeling of A from X to Y needs to add information to
the inversion to obtain a more satisfactory answer.

In spite of the subjectivity of the notion of ill-posedness, one of the main reasons why
an inverse problem is deemed ill-posed in practice is because the MO A is “smoothing”.
Smoothing means that Ax is “more regular” than x, in the sense that details (small
scale structures) are attenuated by the MO. Again, this does not mean that the details
cannot be reconstructed. When the MO is injective, they can. This means, however,
that the reconstruction has to undo this smoothing. As soon as the data are noisy (i.e.,
always in practice), and that the noise contribution has small scale structures (i.e., often
in practice), then the deregularization process has the effect of amplifying the noise in
a way that can potentially be very harmful (which is, as we already said, subjective).

The answer to ill-posedness is to impose prior assumptions on the parameters we
wish to reconstruct. As we mentioned earlier in this chapter, the simplest example of
such an assumption is to assume that the function is sufficiently smooth. In order to
define what we mean by ill-posedness and quantify the degree of ill-posedness, we need
a scale of spaces in which the ”smoothing” of A can be measured. We will use what is
probably the simplest scale of function spaces, namely the scale of Hilbert spaces.
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1.4.3 Smoothing and Sobolev scale of Hilbert spaces.

Let s ≥ 0 be a non-negative real-number. We define the scale of Hilbert spaces Hs(Rn)
as the space of measurable functions f(x) such that

‖f‖2
Hs(Rn) =

∫
Rn

(1 + |k|2)s|Fx→kf |2(k)dk <∞. (1.26)

Here, Fx→kf is the Fourier transform of f defined in section A.1 of the appendix. We
verify that H0(Rn) = L2(Rn) since the Fourier transform is an isometry. We also verify
that

{f ∈ H1(Rn)} ⇐⇒
{
f ∈ L2(Rn) and

∂f

∂xi
∈ L2(Rn), 1 ≤ i ≤ n

}
. (1.27)

This results from (A.7). More generally the space Hm(Rn) for m ∈ N is the space of
functions such that all partial derivatives of f of order up tom are square integrable. The
advantage of the definition (1.26) is that it holds for real values of s as well. So H

1
2 (Rn)

is the space of functions such that “half-derivatives” of f are square integrable. Notice
also that s characterizes the degree of smoothness of a function f(x). The larger s, the
smoother the function f ∈ Hs(Rn), and the faster the decay of its Fourier transform
f̂(k) as can be seen from the definition (1.26).

It is also useful to define the Hilbert scale for functions supported on subdomains of
Rn. Let X be a sufficiently smooth subdomain of Rn. We define two scales. The first
scale is Hs

0(X), defined as the closure of C∞0 (X), the space of functions of class C∞ with
support in X (so these functions and all their derivatives vanish at the boundary of X),
for the norm in Hs(Rn). Thus, f ∈ Hs

0(X) can be described as the limit of functions
fn ∈ C∞0 (R) uniformly bounded in Hs(Rn). We also define Hs(X) as the space of
functions f on X that can be extended to functions f ∗ in Hs(Rn) (i.e., f = f ∗χX , where
χX is the characteristic function of X) and ‖f‖Hs(X) is the lower bound of ‖f‖Hs(Rn)

over all possible extensions. The are several (sometimes not exactly equivalent) ways to
define the scale of Hilbert spaces Hs(X).

Finally, it is also convenient to define Hs for negative values of s. We define H−s(Rn)
for s ≥ 0 as the subspace of S ′(Rn), the space of tempered distributions, such that (1.26)
holds. For bounded domains we define H−s(X) as the dual to Hs

0(X) equipped with
the norm

‖f‖H−s(X) = sup
g∈Hs

0(X)

∫
X

fgdx

‖g‖Hs
0(X)

. (1.28)

We can verify that the two definitions agree when X = Rn, in which case Hs
0(Rn) =

Hs(Rn).

A well-posed, ill-posed inverse problem. Let us illustrate on a simple example
how the Hilbert scale can be used to understand the ill-posedness of inverse problems.
Let f(x) be a function in L2(R) and let u be the solution in L2(R) of the following ODE

−u′′ + u = f, x ∈ R. (1.29)
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There is a unique solution in L2(R) to the above equation given by

u(x) =
1

2

∫
R
e−|y−x|f(y)dy = (g ∗ f)(x), g(x) =

1

2
e−|x|,

as can be verified by inspection. In the Fourier domain, this is

(1 + k2)û(k) = f̂(k).

This implies that when f ∈ L2(R), then u is not only in L2(R) but also in H2(R) as is
easily verified.

Exercise 1.4.1 Check this in detail.

The problem is ill-posed... Let us define the operator A as follows

A :
L2(R) → L2(R)

f 7→ Af = u,
(1.30)

where u is the solution to (1.29). As such, the operator A is not invertible on L2(R).
Indeed the inverse of the operator A is formally defined by A−1u = −u′′ + u. However
for u ∈ L2(R), −u′′ is not a function in L2(R) but a distribution in H−2(R). The inverse
problem consisting of reconstructing f(x) ∈ L2(R) from u(x) ∈ L2(R) is therefore ill-
posed. The reason is that the operator A is regularizing.

... and is well-posed. However let us define the “same” operator

Ã :
L2(R) → H2(R)

f 7→ Ãf = u.
(1.31)

Now Ã is invertible with a bounded inverse from H2(R) to L2(R) given by Ã−1u =
−u′′ + u. So Ã is well-posed from L2(R) to H2(R) as can easily be verified. Yet a third
instantiation of the “same” operator is

Ǎ :
H−2(R) → L2(R)

f 7→ Ǎf = u.
(1.32)

Now Ǎ is invertible with a bounded inverse from L2(R) to H−2(R) given by Ǎ−1u =
−u′′ + u and thus Ã is well-posed from H−2(R) to L2(R).

If we assume that noise (the error between measurement u1 and measurement u2) is
small in the H2-norm, so that ‖u1−u2‖H2(R) ≤ δ, and are comfortable with a small error
in the parameter in the L2(R) sense, then there is “no problem” of ill-posedness. The
reconstruction will be accurate in the sense that ‖f1−f2‖L2(R) ≤ Cδ, where fj = Ã−1uj,
j = 1, 2.

The same occurs if we assume that noise is small in the L2-norm and we are comfort-
able with a small error in the parameter in the H−2(R) sense. This would typically mean
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that we are satisfied if spatial moments of u (i.e., quantities of the form
∫
R u(x)ϕ(x)dx

for ϕ ∈ H2(R)) are accurate, rather than insisting that u be accurate in the L2 sense.
However, in many instance, noise is not small in the strong norm H2(R), but rather

in the weaker norm L2(R). At least this is our perception. Moreover, we do not want
small errors in the H−2(R) sense, but rather insist that the reconstructions “look good”
in some L2(R) sense. Then the problem is certainly ill-posed as A is not boundedly
invertible for the spaces X = Y = L2(R).

A possible definition of ill-posedness. We now introduce a useful practical dis-
tinction among ill-posed problems. As heuristic and subjective as the notion may be,
an ill-posed inverse problems that require relatively mild action from the user (in terms
of the introduction of prior information) will be called mildly ill-posed. Some inverse
problems may require much more stringent action from the user. They will be called
severely ill-posed problems.

Using the Hilbert scale introduced earlier, a possible mathematical definition of
mildly and severely ill-posed problems is as follows. We assume here that A is injective.
It is not that the inverse of A does not exist that causes problems. It is because A is
smoothing that action is necessary. When the smoothing is mild, then that action may
be limited to an appropriate penalization such as those that will be described in Chapter
11. When the smoothing is severe, then typically much more drastic prior information
needs to be introduced, for instance by using the Bayesian framework introduced in
Chapter 11. We somewhat arbitrarily separate mild smoothing by a finite number of
derivatives from severe smoothing by an “infinite” number of derivatives.

The problem (1.24) with X = Y = L2(Rn) is said to be mildly ill-posed provided
that there exists a positive constant C and α > 0 such that

‖Af‖Hα(Rn) ≥ C‖f‖L2(Rn). (1.33)

We define ‖Af‖Hα(Rn) = +∞ if f does not belong to Hα(Rn). We say that A is mildly
ill-posed of order α if α is the smallest real number such that (1.33) holds for some
C = C(α). Notice that we can choose any α ≥ 2 for Ã so the operator that maps f to
u solution of (1.29) is a mildly ill-posed problem of order 2. The operator Ã in (1.31)
essentially integrates twice the function f . Any injective operator that corresponds to
a finite number of integrations is therefore mildly ill-posed.

We call the inversion a severely ill-posed problems when no such α exists. Unfortu-
nately, there are many practical instances of such inverse problems. A typical example
is the following operator

Bf(x) = F−1
k→x[e

−k2Fx→kf ](x). (1.34)

Physically this corresponds to solving the heat equation forward in time: a very smooth-
ing operation. We easily verify that the operator B maps L2(R) to L2(R). Hoverer it
damps high frequencies exponentially strongly, and more strongly than any finite num-
ber of integrations (m integrations essentially multiply high frequencies by |k|−m) so no
α > 0 in (1.33) exists for B. Note that it does not mean that B is never invertible.
Indeed for sufficiently smooth functions g(x) in the range of B (for instance for functions
g such that ĝ(k) has compact support), we can easily define the inverse operator

B−1g(x) = F−1
k→x[e

k2Fx→kg](x).
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Physically, this corresponds to solving the heat equation backwards in time. It is clear
that on a space of sufficiently smooth functions, we have BB−1 = B−1B = Id. Yet, if
noise is present in the data, it will be amplified by ek

2
in the Fourier domain. Unless

noise is low frequency, this has devastating effects on the reconstruction. It is instructive
to numerically add the inverse Fourier transform of εn̂(k)ek

2
to an image f(x) for n̂(k) =

(1+k2)−1, say, so that noise is square integrable. Even when ε is machine precision, the
image is quickly drowned by noise even if a relatively small number of Fourier modes is
used to perform the Fourier transform.



Chapter 2

Integral Geometry. Radon
transforms

This chapter and the next two are devoted to integral transforms, which involves the
reconstruction of an object for instance described by a function from knowledge of
integral quantities of the object such as its integrals along lines or planes.

In this chapter we consider the simplest example of integral geometry: the integration
of a two-dimensional function along all possible lines in the plane, which is called the
Radon transform, and the inversion of such a transform. This forms the mathematical
backbone for one of the most successful medical imaging techniques: computed (or
computerized) tomography (CT).

Later in the chapter, we consider the three dimensional Radon transform, which
concerns the integral of functions over planes in three dimensions of space, as well as a
specific example of a weighted two dimensional Radon transform, the attenuated Radon
transform, which finds application in the important medical imaging modality called
Single Photon Emission Computerized Tomography (SPECT).

2.1 The Radon Transform

This section presents the main theoretical results on the integration of functions on
hyperplanes.

2.1.1 Transmission Tomography

In transmission tomography, objects to be imaged are probed with non-radiating sources
such as X-rays. X-rays are composed of high energy photons (on the order of 60keV,
which corresponds to a wavelength of about 0.02nm) that propagate through the object
along straight lines unless they interact with the underlying medium and get absorbed.
Let x = (x1, x2) denote two-dimensional spatial position and ϑ ∈ S1 orientation. We
denote by u(x, ϑ) the density of X-rays with position x and orientation ϑ, and by a(x)
a linear attenuation coefficient. Velocity of X-rays is normalized to 1 so that locally the
density u(x, ϑ) satisfies the following transport equation:

ϑ · ∇xu(x, ϑ) + a(x)u(x, ϑ) = 0, x ∈ X, ϑ ∈ S1. (2.1)

19
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Here X is the physical domain (assumed to be convex) of the object and S1 is the unit
circle. We identify any point ϑ ∈ S1 with the angle θ ∈ [0, 2π) such that ϑ = (cos θ, sin θ).
The advection operator is given by

ϑ · ∇x = cos θ
∂

∂x1

+ sin θ
∂

∂x2

and models free transport of X-rays while a(x)u(x, ϑ) models the number of absorbed
photons per unit distance at x.

The probing source is emitted at the boundary of the domain and takes the form

u(x, ϑ) = δ(x− x0)δ(ϑ− ϑ0), (2.2)

where x0 ∈ R2, say x0 ∈ ∂X and ϑ0 is entering the domain X, i.e., ϑ0 · n(x0) < 0
where n is the outward normal to X at x0 ∈ ∂X0. Above the ”delta” functions mean
that a unit amount of photons is created at (x0, ϑ0) in the sense that for any domain
(x0, ϑ0) ∈ Y ⊂ R2 × S1, we have ∫

Y

u(x, ϑ)dxdϑ = 1.

The solution to (2.1)-(2.2), which is a first-order ODE in the appropriate variables,
is given by

u(x+ tϑ, ϑ) = u(x, ϑ) exp
(
−
∫ t

0

a(x+ sϑ)ds
)
, x ∈ R2, ϑ ∈ S1. (2.3)

Indeed, write v(t) = u(x+ tϑ, ϑ) and b(t) = a(x+ tϑ) so that v̇ + bv = 0 and integrate
to obtain the above result. For our specific choice at (x0, ϑ0), we thus obtain that

u(x, ϑ) = δ(x− tϑ− x0)δ(ϑ− ϑ0) exp
(
−
∫ t

0

a(x− sϑ)ds
)
.

In other words, on the half line x0 + tϑ0 for t ≥ 0, there is a positive density of photons.
Away from that line, the density of photons vanishes.

For x1 = x0 + τϑ0 ∈ ∂X different from x0, if a detector collects the amount of
photons reaching x1 (without being absorbed), it will measure

exp
(
−
∫ τ

0

a(x1 − sϑ)ds
)

= exp
(
−
∫ τ

0

a(x0 + sϑ)ds
)
.

The travel time (for a particle with rescaled speed equal to 1, so it is also a “distance”)
from one side of ∂X to the other side depends on (x0, ϑ0) and is denoted by τ(x0, ϑ0) > 0.
By taking the logarithm of the measurements, we have thus access to∫ τ(x0,ϑ0)

0

a(x0 + tϑ0)dt.

This is the integral of a over the line segment (x0, x1). By varying the point x0 and the
direction of the incidence ϑ0, we can have access to integrals of a(x) over all possible seg-
ments (and since a can be extended by 0 outside X without changing the measurements,
in fact over all possible lines) crossing the domain X.
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The main question in transmission tomography is thus how one can recover a function
a(x) from its integration over all possible lines in the plane R2. This will be the object of
subsequent sections. In practice, we need to consider integrations over a finite number
of lines. How these lines are chosen is crucial to obtain a rapid and practical inversion
algorithm. We do not consider the problems of discretization here and refer the reader
to [45, 46].

2.1.2 Two dimensional X-ray (Radon) transform

We have seen that the problem of transmission tomography consisted of reconstructing
a function from its integration along lines. We have considered the two-dimensional
problem so far. Since X-rays do not scatter, the three dimensional problem can be
treated by using the two-dimensional theory: it suffices to image the object slice by slice
using the two dimensional reconstruction, as we did in MRI (Transmission Tomography
is indeed a tomographic method since tomos means slice in Greek as we already know).

We need to represent (parameterize) lines in the plane in a more convenient way
than by describing them as the line joining x0 and x1. This is done by defining an origin
0 = (0, 0), a direction (cos θ, sin θ) = ϑ ∈ S1, and a scalar s indicating the (signed)
distance of the line to 0. The line is defined by the set of points x such that x · ϑ⊥ = s,
where ϑ⊥ is the rotation of ϑ by π

2
, i.e., the vector given by ϑ⊥ = (− sin θ, cos θ). More

precisely, for a smooth function f(x) on R2, we define the X-ray transform Rf(s, θ) for
(s, θ) ∈ Z = R× (0, 2π) as

Rf(s, θ) =

∫
R
f(sϑ⊥ + tϑ)dt =

∫
R2

f(x)δ(x · ϑ⊥ − s)dx. (2.4)

Notice that the cylinder Z is a double covering of the space of lines in the real plane

Figure 2.1: Geometry of the X-ray transform.

R2. Indeed one easily verifies that

Rf(s, θ) = Rf(−s, θ + π), as {x · ϑ⊥ = s} = {x · (−ϑ⊥) = (−s)}.

Thus there is a redundancy of order two in the parameterization of lines in the Radon
transform.
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Radon transform versus X-ray transform. We pause here to make a remark
regarding notation. The notation introduced here for the X-ray transform Rf is not
the same as the notation introduced from the Radon transform Rf in Chapter 1 even
though both transforms integrate functions along all lines. Let us explain the reason
for this change of notation. A line in a two dimensional space is a hyperplane, as is a
plane in a three dimensional space, a notion that is used in the definition of the three
dimensional Radon transform that we consider below. So it is natural to parameterize
hyperplanes by their uniquely defined (up to a sign) normal vector.

Now, we have just seen that the reason why line integrals appear in Computerized
Tomography is because particles propagate along straight lines. This is true independent
of dimension. And it is natural to parameterize lines by their main direction ϑ. This is
the point of view of the X-ray transform (since X-rays roughly follow straight lines in
medical imaging applications).

In three (or higher) dimensions, the three dimensional Radon transform Rf(s, ϑ)
(along hyperplanes) and the three dimensional X-ray transform Rf(x, ϑ) (along rays)
are not the same object (if only because there are many more lines than there are
hyperplanes). In two dimensions, however, the X-ray and Radon transforms correspond
to the same geometric object: functions are integrated along all possible lines. In
Chapter 1, we emphasized the parameterization of hyperplanes and thus modeled lines
by their normal vector ϑ. In this chapter, we emphasize the X-ray transform and
parameterize lines by their main direction ϑ. One can go from one notation to the
other by replacing ϑ by its 90 degree rotation ϑ⊥. The rest of this chapter uses the line
parameterizations of the X-ray transform. However, in two dimensions, we still refer to
the integration of a function along lines, independent of the chosen parameterization,
as the Radon transform.

Some properties of the Radon transform. Let us derive some important proper-
ties of the Radon transform. We first define the operator

Rθf(s) = Rf(s, θ). (2.5)

This notation will often be useful in the sequel. The first important result on the Radon
transform is the Fourier slice theorem:

Theorem 2.1.1 Let f(x) be a smooth function. Then for all ϑ ∈ S1, we have

[Fs→ςRθf ](ς) = R̂θf(ς) = f̂(ςϑ⊥), ς ∈ R. (2.6)

Proof. We have that

R̂θf(ς) =

∫
R
e−isς

∫
R2

f(x)δ(x · ϑ⊥ − s)dxds =

∫
R2

e−ix·ϑ
⊥ςf(x)dx.

This concludes the proof.
This result should not be surprising. For a given value of ϑ, the Radon transform
gives the integration of f over all lines parallel to ϑ. So obviously the oscillations in
the direction ϑ are lost, but not the oscillations in the orthogonal direction ϑ⊥. The
oscillations of f in the direction ϑ⊥ are precisely of the form f̂(αϑ⊥) for α ∈ R. It is
therefore not surprising that the latter can be retrieved from the Radon transform Rθf .
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Notice that this result also gives us a reconstruction procedure. Indeed, all we have to
do is to take the Fourier transform of Rθf in the variable s to get the Fourier transform
f̂(σϑ⊥). It remains then to obtain the latter Fourier transform for all directions ϑ⊥ to
end up with the full f̂(k) for all k ∈ R2. Then the object is simply reconstructed by using
the fact that f(x) = (F−1

k→xf̂)(x). We will consider other (equivalent) reconstruction
methods and explicit formulas later on.

Before doing so, we derive additional properties satisfied by Rf . From the Fourier
slice theorem, we deduce that

Rθ[
∂f

∂xi
](s) = ϑ⊥i

d

ds
(Rθf)(s). (2.7)

Exercise 2.1.1 Verify (2.7).

This is the equivalent for Radon transforms of the property (A.7) for the Fourier trans-
form.

Smoothing properties of the Radon and X-ray transforms. Let us now look at
the regularizing properties of the Radon transform. To do so, we introduce a function
χ(x) of class C∞0 (R2) (i.e., χ is infinitely many times differentiable) and with compact
support (i.e. there is a radius R such that χ(x) = 0 for |x| > R). When we are interested
in an object defined on a bounded domain X, we can choose χ(x) = 1 for x ∈ X.

As we did for Rn in the previous chapter, let us now define the Hilbert scale for the
cylinder Z as follows. We say that g(s, θ) belongs to Hs(Z) when

‖g‖2
Hs(Z) =

∫ 2π

0

∫
R
(1 + σ2)s|Fs→σg(σ)|2dσdθ <∞. (2.8)

This is a constraint stipulating that the Fourier transform in the s variable decays
sufficiently fast at infinity. No constraint is imposed on the directional variable other
than being a square-integrable function. We have then the following result:

Theorem 2.1.2 Let f(x) be a distribution in Hs(R2) for some s ∈ R. Then we have
the following bounds

√
2‖f‖Hs(R2) ≤ ‖Rf‖

Hs+
1
2 (Z)

‖R(χf)‖
Hs+

1
2 (Z)

≤ Cχ‖χf‖Hs(R2).
(2.9)

The constant Cχ depends on the function χ(x), and in particular on the size of its
support.

Proof. From the Fourier slice theorem R̂θw(σ) = ŵ(σϑ⊥), we deduce that∫
Z

|R̂w(σ, θ)|2(1 + σ2)s+1/2dσdθ =

∫
Z

|ŵ(σϑ⊥)|2(1 + σ2)s+1/2dσdθ

= 2

∫
R2

|ŵ(k)|2 (1 + |k|2)s+1/2

|k|
dk,
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using the change of variables from polar to Cartesian coordinates so that dk = σdσdθ
and recalling that f̂(σϑ) = f̂((−σ)(−ϑ)). The first inequality in (2.9) then follows from
the fact that |k|−1 ≥ (1 + |k|2)−1/2 using w(x) = f(x). The second inequality is slightly
more difficult because of the presence of |k|−1. We now choose w(x) = f(x)χ(x). Let
us split the integral into I1 + I2, where I1 accounts for the integration over |k| > 1 and
I2 for the integration over |k| < 1. Since (1 + |k|2)1/2 ≤

√
2|k| for |k| > 1, we have that

I1 ≤ 2
√

2

∫
R2

|χ̂f(k)|2(1 + |k|2)sdk ≤ 2
√

2‖χf‖2
Hs .

It remains to deal with I2. We observe that

I2 ≤ C‖χ̂f‖2
L∞(R2).

Let ψ ∈ C∞0 (R2) such that ψ = 1 on the support of χ so that ψχf = χf . We define
ψk(x) = e−ix·kψ(x). Upon using the definition (A.2), the Parseval relation (A.4) and
the Cauchy Schwarz inequality (f, g) ≤ ‖f‖‖g‖, we deduce that

|χ̂f |(k) = |ψ̂χf |(k) =
∣∣∣ ∫

R2

ψk(x)(χf)(x)dx
∣∣∣ ≤ C‖ψk‖H−s(R2)‖χf‖Hs(R2).

Since ψ(x) is smooth and compactly supported, ψk is in H−s(R2) uniformly in |k| < 1.
This implies that

I2 ≤ C‖χ̂f‖2
L∞(R2) ≤ Cχ‖χf‖2

Hs(R2),

where the constant Cχ depends on the support of χ. This concludes the proof.
The theorem should be used as follows. For a function (or more generally a distribution)
f(x) of compact support, we choose χ of class C∞, with compact support, and equal to
1 on the support of f . We then use the above theorem with χf = f . The constant Cχ
depends then implicitly on the size of the support of f(x).

The above inequalities show that R is a smoothing operator. This is not really sur-
prising as an integration over lines is involved in the definition of the Radon transform.
However, the result tells us that the Radon transform is smoothing by exactly one half
of a derivative. The second inequality in (2.9) tells us that the factor 1

2
is optimal, in the

sense that the Radon transform does not regularize by more than one half of a deriva-
tive. Moreover this corresponds to (1.33) with α = 1

2
, which shows that the inversion

of the Radon transform in two dimensions is a mildly ill-posed problem of order α = 1
2
:

when we reconstruct f from Rf , a differentiation of order one half is involved.
At the same time, seen as an operator from Hs(R2) to Hs+ 1

2 (Z), the Radon transform
is a well posed problem. For s = −1

2
, small noise in the L2(Z) sense will generate small

reconstruction errors in the H−
1
2 (R2) sense.

Filtered-backprojection inversions. Let us now consider such explicit reconstruc-
tion formulas. In order to do so, we need to introduce two new operators, the adjoint
operator R∗ and the Hilbert transform H. The adjoint operator R∗ to R (with respect
to the usual inner products (·, ·)R2 and (·, ·)Z on L2(R) and L2(Z), respectively) is given
for every smooth function g(s, θ) on Z by

(R∗g)(x) =

∫ 2π

0

g(x · ϑ⊥, θ)dθ, x ∈ R2. (2.10)
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That R∗ is indeed the adjoint operator to R is verified as follows

(R∗g, f)R2 =

∫
R2

f(x)

∫ 2π

0

g(x · ϑ⊥, θ)dθdx

=

∫
R2

f(x)

∫ 2π

0

∫
R
δ(s− x · ϑ⊥)g(s, θ)dsdθdx

=

∫ 2π

0

∫
R
g(s, θ)

∫
R2

f(x)δ(s− x · ϑ⊥)dxdsdθ

=

∫ 2π

0

∫
R
g(s, θ)(Rf)(s, θ)dsdθ = (g,Rf)Z .

We also introduce the Hilbert transform defined for smooth functions f(t) on R by

Hf(t) =
1

π
p.v.

∫
R

f(s)

t− s
ds. (2.11)

Here p.v. means that the integral is understood in the principal value sense, which in
this context is equivalent to

Hf(t) = lim
ε→0

∫
R\(t−ε,t+ε)

f(s)

t− s
ds.

Both operators turn out to be local in the Fourier domain in the sense that they are
multiplications in the Fourier domain. More precisely we have the following lemma.

Lemma 2.1.3 We have in the Fourier domain the following relations:

(Fx→ξR∗g)(ξ) =
2π

|ξ|

(
(Fs→σg)(−|ξ|, ξ̂⊥) + (Fs→σg)(|ξ|,−ξ̂⊥)

)
(Ft→σHf)(σ) = −i sign(σ)Ft→σf(σ).

(2.12)

We have used the notation ξ̂ = ξ/|ξ|. For ϑ = (cos θ, sin θ) with ϑ ∈ S1 and θ ∈ (0, 2π),
we also identify the functions g(θ) = g(ϑ). Assuming that g(s, θ) = g(−s, θ + π), which
is the case in the image of the Radon transform (i.e., when there exists f such that
g = Rf), and which implies that ĝ(σ, ϑ) = ĝ(−σ,−ϑ) we have using shorter notation
the equivalent statement:

R̂∗g(ξ) =
4π

|ξ|
ĝ(|ξ|,−ξ̂⊥)

Ĥf(σ) = −i sign(σ)̂f(σ).
(2.13)

Proof. Let us begin with R∗g. We compute

R̂∗g(ξ) =

∫
e−ix·ξg(x · ϑ⊥, θ)dθdx =

∫
e−isξ·ϑ

⊥
g(s, θ)dsdθe−itξ·ϑdt

=

∫
2πδ(|ξ|ξ̂ · ϑ)ĝ(ξ · ϑ⊥, θ)dθ =

∫
2π

|ξ|
δ(ξ̂ · ϑ)ĝ(ξ · ϑ⊥, θ)dθ

=
2π

|ξ|

(
ĝ(−|ξ|, ξ̂⊥) + ĝ(|ξ|,−ξ̂⊥)

)
.
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In the proof we have used that δ(αx) = α−1δ(x) and the fact that there are two direc-
tions, namely ξ̂ and −ξ̂ on the unit circle, which are orthogonal to ξ̂⊥. When g is in the
form g = Rf , we have ĝ(−|ξ|, ξ̂⊥) = ĝ(|ξ|,−ξ̂⊥), which explains the shorter notation
(2.13).

The computation of the second operator goes as follows. We verify that

Hf(t) =
1

π

(1

x
∗ f(x)

)
(t).

So in the Fourier domain we have

Ĥf(σ) =
1

π

1̂

x
(σ)f̂(σ) = −isign(σ)f̂(σ).

The latter is a result of the following calculation

1

2
sign(x) =

1

2π

∫
R

eixξ

iξ
dξ.

This concludes the proof of the lemma.
The above calculations also show that H2 = H ◦ H = −Id, where Id is the identity
operator, as can easily be seen in from its expression in the Fourier domain. This
property is referred to as saying that the Hilbert transform is an anti-involution. We
are now ready to introduce some reconstruction formulas.

Theorem 2.1.4 Let f(x) be a smooth function and let g(s, θ) = Rf(s, θ) be its Radon
transform. Then, f can explicitly be reconstructed from its Radon transform as follows:

f(x) =
1

4π
R∗
( ∂
∂s

Hg(s, θ)
)

(x). (2.14)

In the above formula, the Hilbert transform H acts on the s variable.

Proof. The simplest way to verify the inversion formula is to do it in the Fourier
domain. Let us denote by

w(s, θ) =
∂

∂s
Hg(s, θ).

Since g(−s, θ + π) = g(s, θ), we verify that the same property holds for w in the sense
that w(−s, θ + π) = w(s, θ). Therefore (2.14) is equivalent to the statement:

f̂(ξ) =
1

|ξ|
ŵ(|ξ|,−ξ̂⊥), (2.15)

according to (2.13). Notice that ŵ is the Fourier transform of w in the first variable
only.

Since in the Fourier domain, the derivation with respect to s is given by multiplication
by iσ and the Hilbert transform H is given by multiplication by −isign(σ), we obtain
that

F−1
σ→s

∂

∂s
HFs→σ = |σ|.

In other words, we have
ŵ(σ, θ) = |σ|ĝ(σ, θ).
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Thus (2.15) is equivalent to
f̂(ξ) = ĝ(|ξ|,−ξ̂⊥).

This, however, is nothing but the Fourier slice theorem stated in Theorem 2.1.1 since
(−ξ̂⊥)⊥ = ξ̂ and ξ = |ξ|ξ̂. This concludes the proof of the reconstruction.
The theorem can equivalently be stated as

I =
1

4π
R∗

∂

∂s
HR =

1

4π
R∗H

∂

∂s
R. (2.16)

The latter equality comes from the fact that H and ∂s commute as can easily be observed
in the Fourier domain (where they are both multiplications). Here, I is the identity
operator, which maps a function f(x) to itself I(f) = f .

Here is some additional useful notation in the manipulation of the Radon transform.
Recall that Rθf(s) is defined as in (2.5) by

Rθf(s) = Rf(s, θ).

The adjoint Rθ (with respect to the inner products in L2
s(R) and L2

x(R2)) is given by

(R∗θg)(x) = g(x · ϑ⊥). (2.17)

Indeed (since ϑ is frozen here) we have∫
R
(Rθf)(s)g(s)ds =

∫
R2

∫
R
f(x)δ(s− x · ϑ⊥)g(s)dxds =

∫
R2

g(x · ϑ⊥)f(x)dx,

showing that (Rθf, g)L2(R) = (f,R∗θg)L2(R2). We can then recast the inversion formula
as

I =
1

4π

∫ 2π

0

ϑ⊥ · ∇R∗θHRθdθ. (2.18)

The only new item to prove here compared to previous formulas is that R∗θ and the
derivation commute, i.e., for any function g(s) for s ∈ R, we have

ϑ⊥ · ∇(R∗θg)(x) = (R∗θ
∂

∂s
g)(x).

This results from the fact that both terms are equal to g′(x · ϑ⊥).
One remark on the smoothing properties of the Radon transform. We have seen that

the Radon transform is a smoothing operator in the sense that the Radon transform is
half of a derivative smoother than the original function. The adjoint operator R∗ enjoys
exactly the same property: it regularizes by half of a derivative. It is not surprising that
these two half derivatives are exactly canceled by the appearance of a full derivation
in the reconstruction formula. Notice that the Hilbert transform (which corresponds
to multiplication by the smooth function isign(σ) in the Fourier domain) is a bounded
operator with bounded inverse in L2(R) (since H−1 = −H).

Exercise 2.1.2 Show that

f(x) =
1

4π

∫ 2π

0

(Hg′)(x · ϑ⊥, θ)dθ.

Here g′ means first derivative of g with respect to the s variable only.
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Exercise 2.1.3 Show that

f(x) =
1

4π2

∫ 2π

0

∫
R

d
ds
g(s, θ)

x · ϑ⊥ − s
dsdθ.

This is Radon’s original inversion formula.

Exercise 2.1.4 Starting from the definition

f(x) =
1

(2π)2

∫
R2

eik·xf̂(k)dk,

and writing it in polar coordinates (with change of measure dk = |k|d|k|dk̂), deduce the
above reconstruction formulas by using the Fourier slice theorem.

2.1.3 Three dimensional Radon transform

Let us briefly mention the case of the Radon transform in three dimensions (generaliza-
tions to higher dimensions being also possible). The Radon transform in three dimen-
sions consists of integrating a function f(x) over all possible planes. As we mentioned
earlier, the Radon transform is therefore a distinct object from the X-ray transform,
which integrates a function along all possible lines.

A plane P(s, ϑ) in R3 is characterized by its direction ϑ ∈ S2, where S2 is the unit
sphere, and by its signed distance to the origin s. Notice again the double covering in
the sense that P(s, ϑ) = P(−s,−ϑ). The Radon transform is then defined as

Rf(s, ϑ) =

∫
R3

f(x)δ(x · ϑ− s)dx =

∫
P(s,θ)

fdσ. (2.19)

Notice the change of notation compared to the two-dimensional case. The Fourier slice
theorem still holds

R̂f(σ, ϑ) = f̂(σϑ), (2.20)

as can be easily verified. We check that Rf(s, ϑ) = Rf(−s,−ϑ). The reconstruction
formula is then given by

f(x) =
−1

8π2

∫
S2

g′′(x · ϑ, ϑ)dϑ. (2.21)

Here dϑ is the usual (Lebesgue) surface measure on the unit sphere.
The result can be obtained as follows. We denote by S2/2 half of the unit sphere

(for instance the vectors ϑ such that ϑ · ez > 0).

f(x) =
1

(2π)3

∫
S2

2

∫
R
f̂(rϑ)eirϑ·x|r|2drdϑ =

1

(2π)3

∫
S2

2

∫
R
R̂f(r, ϑ)eirϑ·x|r|2drdϑ

=
1

(2π)2

∫
S2

2

(−g)′′(ϑ · x, ϑ)dϑ =
1

2

−1

(2π)2

∫
S2

g′′(ϑ · x, ϑ)dϑ.

Here we have used the fact that the inverse Fourier transform of r2f̂ is −f ′′.
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Exercise 2.1.5 Generalize Theorem 2.1.2 and prove the following result:

Theorem 2.1.5 There exists a constant Cχ independent of f(x) such that

√
2‖f‖Hs(R3) ≤ ‖Rf‖Hs+1(Z)

‖R(χf)‖Hs+1(Z) ≤ Cχ‖χf‖Hs(R3),
(2.22)

where Z = R× S2 and Hs(Z) is defined in the spirit of (2.8).

The above result shows that the Radon transform is more smoothing in three dimensions
than it is in two dimensions. In three dimensions, the Radon transform smoothes by a
full derivative rather than a half derivative.

Notice however that the inversion of the three dimensional Radon transform (2.21)
is local, whereas this is not the case in two dimensions. What is meant by local is the
following: the reconstruction of f(x) depends on g(s, ϑ) only for the planes P(s, ϑ) that
pass through x (and an infinitely small neighborhood so that the second derivative can
be calculated). Indeed, we verify that x ∈ P(x·ϑ, ϑ) and that all the planes passing by x
are of the form P(x·ϑ, ϑ). The two dimensional transform involves the Hilbert transform,
which unlike differentiations, is a non-local operation. Thus the reconstruction of f at
a point x requires knowledge of all line integrals g(s, θ), and not only for those lines
passing through x.

Exercise 2.1.6 Calculate R∗, the adjoint operator to R (with respect to the usual L2

inner products). Generalize the formula (2.16) to the three dimensional case.

2.2 Attenuated Radon Transform

In the previous sections, the integration over lines for the Radon transform was not
weighted. We could more generally ask whether integrals of the form

Rαf(s, ϑ) :=

∫
R
f(sϑ⊥ + tϑ)α(sϑ⊥ + tϑ, ϑ)dt,

over all possible lines parameterized by s ∈ R and ϑ ∈ S1 and assuming that the
(positive) weight α(x, ϑ) is known, uniquely determine f(x). This is a much more
delicate question for which only partial answers are known.

The techniques developed in the next chapter allow one to prove that Rα is invertible
up to a finite dimensional kernel by an application of the Fredholm theory of compact
operators. Moreover, Jan Boman [22] constructed an example of a function f ∈ C∞0 (R2)
with compact support and a uniformly positive weight α(x, ϑ) also of class C∞(R2) such
that Rαf(s, ϑ) = 0. The operator Rαf is therefore not always injective.

Proving that Rαf is injective, when it is indeed injective, is a hard problem. In the
next chapter, we will see a methodology to prove injectivity based on energy estimates.
The alternative to energy estimates is to use what we will refer to as analytic/unique
continuation techniques. For the rest of this chapter, we focus on the inversion of one
example of such weighted Radon transforms, namely the Attenuated Radon transform
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(AtRT). The invertibility of the AtRT has been obtained recently by two different meth-
ods in [6] and [47]. Both rely on the continuation properties of analytic functions. We
focus here on the second method, which recasts the inverse Radon transform and the
inverse Attenuated Radon transform as a Riemann-Hilbert problem [1]. The rest of this
section is significantly more technical than the inversion of the Radon transform. It
is presented here as an example of the complications that often appear in the proof of
injectivity of many transforms of integral geometry when they are indeed injective.

2.2.1 Single Photon Emission Computed Tomography

An important application for the attenuated Radon transform is SPECT, single photon
emission computed tomography. The principle is the following: radioactive particles
are injected in a domain. These particles emit then some radiation. The radiation
propagates through the tissues and gets partially absorbed. The amount of radiation
reaching the boundary of the domain can be measured. The imaging technique con-
sists then of reconstructing the location of the radioactive particles from the boundary
measurements.

We model the density of radiated photons by u(x, θ) and the source of radiated
photons by f(x). The absorption of photons (by the human tissues in the medical
imaging application) is modeled by σ(x). We assume that σ(x) is known here. The
absorption can be obtained, for instance, by transmission tomography as we saw in
earlier sections. The density u(x, θ) satisfies then the following transport equation

ϑ · ∇u(x, θ) + σ(x)u(x, θ) = f(x), x ∈ R2, ϑ ∈ S1. (2.23)

We assume that f(x) is compactly supported and impose that no radiation comes from
infinity:

lim
s→∞

u(x− sϑ, θ) = 0. (2.24)

The transport equation (2.23) with conditions (2.24) admits a unique solution that
can be obtained by the method of characteristics. Let us define the following sym-
metrized beam transform

Dθσ(x) =
1

2

∫ ∞
0

[σ(x− tϑ)− σ(x+ tϑ)]dt =
1

2

∫
R

sign(t)σ(x− tϑ)dt. (2.25)

We verify that ϑ · ∇Dθσ(x) = σ(x) so that eDθσ(x) is an integrating factor for (2.23) in
the sense that

ϑ · ∇(eDθσ(x)u(x, θ)) = (eDθσf)(x, θ).

Therefore the solution u(x, θ) is given by

eDθσ(x)u(x, θ) =

∫ ∞
0

(eDθσf)(x− tϑ, θ)dt. (2.26)

We recall that ϑ = (cos θ, sin θ) and that ϑ⊥ = (− sin θ, cos θ) and decompose x =
sϑ⊥ + tϑ. We deduce from (2.26) that

lim
t→+∞

eDθσ(sϑ⊥+tϑ)u(sϑ⊥ + tϑ, θ) =

∫
R
(eDθσf)(sϑ⊥ + tϑ, θ)dt.
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In the above expression the left hand side is know from the measurements. Indeed
u(sϑ⊥+ tϑ, θ) is the radiation outside of the domain to image and is thus measured and
eDθσ(sϑ⊥+tϑ) involves the attenuation coefficient σ(x) which we have assumed is known.
The objective is thus to reconstruct f(x) from the right hand side of the above relation,
which we recast as

(Rσf)(s, θ) = (Rσ,θf)(s) = (Rθ(e
Dθσf))(s), (2.27)

where Rθ is the Radon transform defined for a function of f(x, θ) as

Rθf(s) =

∫
R
f(sϑ⊥ + tϑ, θ)dt =

∫
R2

f(x, θ)δ(x · ϑ⊥ − s)dx.

When σ ≡ 0, we recover that the measurements involve the Radon transform of
f(x) as defined in (2.4). Thus in the absence of absorption, SPECT can be handled
by inverting the Radon transform as we saw in earlier sections. When absorption is
constant, an inversion formula has been known for quite some time [62]. The inversion
formula for non-constant absorption is more recent and was obtained independently by
two different techniques [6, 47]. We do not consider here the method of A−analytic
functions developed in [6]. We will present the method developed in [47] based on the
extension of the transport equation in the complex domain and on the solution of a
Riemann Hilbert problem.

2.2.2 Riemann Hilbert problem

Riemann Hilbert problems find many applications in complex analysis. We consider
here the simplest of Riemann Hilbert problems and refer the reader to [1] for more
general cases and applications.

Let T be a smooth closed curve in the complex plane, which in our application will
be the unit circle, i.e., the complex numbers λ such that |λ| = 1. The reason why we
choose the notation λ to represent complex numbers will appear more clearly in the
next section. We denote by D+ the open bounded domain inside the curve T , i.e., in
our application the unit disk {λ ∈ C, |λ| < 1}, and by D− the open unbounded domain
outside of the curve T , i.e., in our application {λ ∈ C, |λ| > 1}. The orientation of the
curve T is chosen so that D+ is on the “left” of the curve T .

For a smooth function φ(λ) defined on D+ ∪D−, we denote by φ+(t) and φ−(t) the
traces of φ on T from D+ and D−, respectively. So in the case where T is the unit circle,
we have

φ+(t) = lim
0<ε→0

φ((1− ε)t), φ−(t) = lim
0<ε→0

φ((1 + ε)t).

We define ϕ(t) on T as the jump of φ, i.e.,

ϕ(t) = φ+(t)− φ−(t). (2.28)

Let ϕ(t) be a smooth function defined on T . The Riemann Hilbert problem is stated
as follows. Find a function φ(λ) on D+ ∪D− such that

1. φ(λ) is analytic on D+ and analytic on D−
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2. λφ(λ) is bounded as |λ| → ∞ on D−

3. the jump of φ is given by ϕ(t) = φ+(t)− φ−(t).

The solution to the above Riemann Hilbert problem is unique and is given by the Cauchy
formula

φ(λ) =
1

2πi

∫
T

ϕ(t)

t− λ
dt, λ ∈ C\T = D+ ∪D−. (2.29)

This is the form of the Riemann Hilbert problem we will use in the sequel. We refer the
reader to [1] for the theory.

2.2.3 Inversion of the Attenuated Radon Transform

We now want to apply the theory of Riemann Hilbert problems to invert the attenuated
Radon transform (AtRT). The first step is to extend the transport equation to the
complex domain as follows. We parameterize the unit circle in the complex plane as

λ = eiθ, θ ∈ (0, 2π). (2.30)

The new parameter takes values on the unit circle T for θ ∈ (0, 2π). It can also be seen
more generally as an arbitrary complex number λ ∈ C. With the notation x = (x1, x2),
the transport equation (2.23) can be recast as(λ+ λ−1

2

∂

∂x1

+
λ− λ−1

2i

∂

∂x2

+ σ(x)
)
u(x, λ) = f(x), x ∈ R2, λ ∈ T. (2.31)

We can simplify the above equation by identifying x with z = x+ iy and by defining

∂

∂z
=

1

2

( ∂

∂x1

− i ∂
∂x2

)
,

∂

∂z
=

1

2

( ∂

∂x1

+ i
∂

∂x2

)
. (2.32)

The transport equation (2.31) is then equivalent to(
λ
∂

∂z
+ λ−1 ∂

∂z̄
+ σ(z)

)
u(z, λ) = f(z), z ∈ C, λ ∈ T. (2.33)

The same boundary conditions (2.24) that no information comes from infinity need to
be added in the new variables as well.

The above equation can also be generalized to λ ∈ C instead of T . It is in this
framework that the Riemann Hilbert problem theory is used to invert the attenuated
Radon transform. This will be done in three steps

(i) We show that u(z, λ) is analytic in D+ ∪D− = C\T and that λu(z, λ) is bounded
as λ→∞.

(ii) We verify that ϕ(x, θ) = u+(x, θ) − u−(x, θ), the jump of u at λ = eiθ can be
written as a function of the measured data Raf(s, θ).

(iii) We solve the Riemann Hilbert problem using (2.29) and evaluate (2.33) at λ = 0
to obtain a reconstruction formula for f(z) = f(x).
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2.2.4 Step (i): The ∂ problem, an elliptic equation

Let us now analyze (2.33). In the absence of absorption the fundamental solution of
(2.33) solves the following equation(

λ
∂

∂z
+ λ−1 ∂

∂z̄

)
G(z, λ) = δ(z), |G(z, λ)| → 0 as |z| → ∞, (2.34)

for λ ∈ C\(T ∪ {0}).

Lemma 2.2.1 The unique solution to (2.34) is given by

G(z, λ) =
sign(|λ| − 1)

π(λz − λ−1z)
, λ 6∈ (T ∪ {0}). (2.35)

Proof. The formula can be verified by inspection. A more constructive derivation is
the following. Let us define the change of variables

ζ = λ−1z − λz̄, ζ̄ = λ−1z̄ − λ̄z. (2.36)

Let us assume that |λ| > 1. The Jacobian of the transformation is |λ|2 − |λ|−2. We
verify that

λ
∂

∂z
+ λ−1 ∂

∂z̄
= (|λ|−2 − |λ|2)

∂

∂ζ̄
.

The change of variables (2.36) has been precisely tailored so that the above holds.
Denoting G̃(ζ) = G(z), we thus obtain

∂

∂ζ̄
G̃(ζ) =

1

|λ|−2 − |λ|2
δ(z(ζ)) = −δ(ζ).

So −G̃(ζ) is the fundamental solution of the ∂ operator
∂

∂ζ̄
. We verify that

∂

∂ζ̄

1

ζ
= πδ(ζ). (2.37)

Indeed let ψ(z) be a smooth test function in C∞0 (R2) and let dµ(ζ) be the Lebesgue
measure dxdy in C ∼ R2. Then∫

C
ψ(ζ)

∂

∂ζ̄

1

ζ
dµ(ζ) = −

∫
C

∂ψ

∂ζ̄

1

ζ
dµ(ζ) = − lim

ε→0

∫
C\{|ζ|<ε}

∂ψ

∂ζ̄

1

ζ
dµ(ζ)

= − lim
ε→0

∫
C\{|ζ|<ε}

∂ζ−1ψ

∂ζ̄
dµ(ζ) =

1

2i

∫
|ζ|=ε

ψ

ζ
dµ(ζ),

by the Green formula with complex variables:∫
∂X

udz =

∫
∂X

(udx+ iudy) =

∫
X

(i
∂u

∂x
− ∂u

∂y
)dxdy = 2i

∫
X

∂u

∂z̄
dµ(z).

Sending ε to 0, we find in the limit∫
C
ψ(ζ)

∂

∂ζ̄

1

ζ
dµ(ζ) =

1

2i
2πiψ(0) = π

∫
R2

ψ(ζ)δ(ζ)dµ(ζ).
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This implies that G̃(ζ) = (−πζ)−1, hence G(z) = (−πζ)−1 = (π(λz̄ − λ−1z))−1. This
is (2.35) for |λ| > 1. For |λ| < 1, we verify that the Jacobian of the transformation
z → ζ(z) becomes |λ|−2 − |λ|2 so that

∂

∂ζ̄
G̃(ζ) =

1

|λ|−2 − |λ|2
δ(z(ζ)) = δ(ζ).

This yields (2.35) for |λ| < 1.
The above proof shows that (πz)−1 is the fundamental solution of the ∂̄ = ∂

∂z̄
oper-

ator. This implies that the solution to the following ∂̄ problem

∂

∂z̄
f(z) = g(z), z ∈ C, (2.38)

such that f(z) vanishes at infinity is given by convolution by the fundamental solution,
i.e.,

f(z) =
1

π

∫
C

g(ζ)

z − ζ
dµ(ζ) =

1

2πi

∫
C

g(ζ)

z − ζ
dζ ∧ dζ̄. (2.39)

Here we have used that dz∧dz̄ = (dx+ idy)∧ (dx− idy) = 2idx∧dy = 2idµ(z), whence
the change of 2-form in the above integrations.

Notice that the Green function G(z, λ) tends to 0 as z →∞ for λ 6∈ T . This is clearly
not true when λ ∈ T , where G(z, λ) = δ(lθ(z)), where lθ(z) is the segment {tϑ, t > 0}.
The reason is that for λ 6∈ (T ∪ {0}),

λ
∂

∂z
+ λ−1 ∂

∂z̄
and

∂

∂z̄
,

are elliptic operators, in the sense that in the Fourier domain, their symbol given by
λkz +λ−1kz and kz, respectively, are positive provided that kz is not 0. Indeed we verify
that

λkz + λ−1kz = 0 implies |λ|2 = 1,

when kz 6= 0 since |kz| = |kz| 6= 0.
Let us now define h(z, λ) as the solution to(

λ
∂

∂z
+ λ−1 ∂

∂z̄

)
h(z, λ) = σ(z), |h(z, λ)| → 0 as |z| → ∞, (2.40)

for λ 6∈ (T ∪ {0}). The solution is given by

h(z, λ) =

∫
R2

G(z − ζ, λ)σ(ζ)dµ(ζ). (2.41)

We now verify that (
λ
∂

∂z
+ λ−1 ∂

∂z̄

)
(eh(z,λ)u(z, λ)) = eh(z,λ)f(z),

so that for λ 6∈ (T ∪ {0}), the solution of (2.33) is given by

u(z, λ) = e−h(z,λ)

∫
R2

G(z − ζ, λ)eh(ζ,λ)f(ζ)dµ(ζ). (2.42)
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We verify that G(z, λ), h(z, λ) and u(z, λ) are defined by continuity at z = 0 since
G(z, λ) = 0 by continuity. We now verify that G(z, λ) is analytic in D+ (including at
z = 0) and in D−. Assuming that a(z) and f(z) are smooth functions, this is also
therefore the case for h(z, λ) and u(z, λ). Moreover we easily deduce from (2.42) that
λu(z, λ) is bounded on D−. The solution u(z, λ) of the transport equation extended to
the complex plane is therefore a good candidate to apply the Riemann Hilbert theorem.

2.2.5 Step (ii): jump conditions

We now want to find the limit of u(z, λ) as λ approaches T from above (in D−) and
below (in D+). Let us write λ = reiθ and let us send r − 1 to ∓0 on D±. The Green
function behaves according to the following result

Lemma 2.2.2 As r − 1→ ∓0, the Green function G(x, λ) tends to

G±(x, θ) =
±1

2πi(ϑ⊥ · x∓ i0 sign(ϑ · x))
. (2.43)

Proof. Let us assume that |λ| > 1, i.e., r = 1 + ε with ε > 0. We then find

G(z, reiθ) =
1

π

1

reiθz̄ − e−iθ

r
z

=
1

π

1

(1 + ε)eiθz̄ − e−iθ(1− ε)z + o(ε)

=
1

2π

1

−iI(e−iθz) + εR(e−iθz) + o(ε)
=

1

2iπ

−1

ϑ⊥ · x+ iε(ϑ · x) + o(ε)
.

Passing to the limit ε→ 0, we obtain

G−(x, θ) =
1

2iπ

−1

ϑ⊥ · x+ i0sign(ϑ · x)
.

Here by convention ±0 is the limit of ±ε as 0 < ε → 0. The limit on D+ is treated
similarly.
We have chosen to define G±(x, θ) as functions of θ ∈ (0, 2π) instead of functions of
eiθ. We have also identified x = (x, y) with z = x + iy. The above lemma gives us a
convergence in the sense of distributions. We can equivalently say that for all smooth
function ψ(x), we have∫

R2

G±(x− y, θ)ψ(y)dy = ± 1

2i
(HRθψ)(x · ϑ⊥) + (Dθψ)(x). (2.44)

We recall that the Hilbert transform H is defined in (2.11) and the Radon transform in
(2.4)-(2.5).

Proof. The derivation is based on the following result. For any f(x) ∈ C∞0 (R), we
have

lim
ε→0

∫
R

f(x)

ix+ ε
dx = −ip.v.

∫
R

f(x)

x
dx+ sign(ε)πf(0). (2.45)

Exercise 2.2.1 Prove the above limit called Plemelj’s formula.
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Let us denote x = ςϑ⊥ + τϑ and y = sϑ⊥ + tϑ. We have∫
R2

G+(y)ψ(x− y)dy =
1

2π

∫
R2

ψ((ς − s)ϑ⊥ + (τ − t)ϑ)

is+ 0sign(t)
dsdt

=
1

2π

∫
R

p.v.

∫
R

ψ((ς − s)ϑ⊥ + (τ − t)ϑ)

is
dsdt+

1

2

∫
R

sign(t)ψ(ςϑ⊥ + (τ − t)ϑ)dt

=
1

2π
p.v.

∫
R

∫
R

ψ((ς − s)ϑ⊥ + (τ − t)ϑ)

is
dtds+

1

2

∫
R

sign(t)ψ(x− tϑ)dt

=
1

2i
(HRθψ)(x · ϑ⊥) + (Dθψ)(x).

A similar derivation yields the limit on D−.
We deduce that the function h(z, λ) defined in (2.40) admits the limits

h±(x, θ) = ± 1

2i
(HRθσ)(x · ϑ⊥) + (Dθσ)(x). (2.46)

Notice that Rθ and Dθ involve integrations in the direction ϑ only so that

Rθ[u(x)v(x · ϑ⊥)](s) = v(s)Rθ[u](s), Dθ[u(x)v(x · ϑ⊥)](x) = v(x · ϑ⊥)Dθ[u](x).

Using this result and (2.44), we deduce that the limits of the solution u(z, λ) to (2.31)
are given by

u±(x, θ) = e−Dθσe
∓1
2i

(HRθσ)(x·ϑ⊥)±1

2i
H
(
e
±1
2i

(HRθσ)(s)Rθ(e
Dθσf)

)
(x · ϑ⊥)

+e−DθσDθ(e
Dθσf)(x).

(2.47)

We recall that Rθ(e
Dθσf) = Rσ,θf(s) are our measurements. So whereas u+ and u−

do not depend only on the measurements (they depend on Dθ(e
Dθσf)(x) which is not

measured), the difference u+ − u− depends only on the measurements. This is the
property that allows us to invert the attenuated Radon transform. More precisely, let
us define

ϕ(x, θ) = (u+ − u−)(x, θ). (2.48)

Using (2.47), we deduce that

iϕ(x, θ) = R∗−σ,θHσRσ,θf(x), (2.49)

where we have defined the following operators

R∗σ,θg(x) = eDθσ(x)g(x·ϑ⊥), Hσ = CcHCc + CsHCs

Ccg(s, θ) = g(s, θ) cos(
HRθσ(s)

2
), Csg(s, θ) = g(s, θ) sin(

HRθσ(s)

2
).

(2.50)

Here R∗σ,θ is the formal adjoint operator to Rσ,θ.

The above derivation shows that iϕ(x, θ) is real-valued and of the form e−Dθa(x)M(x ·
ϑ⊥, θ) for some function M . We deduce therefore that

ϑ · ∇ϕ(x, θ) + σϕ(x, θ) = 0. (2.51)
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2.2.6 Step (iii): reconstruction formulas

We have seen that u(z, λ) is analytic in λ on D+∪D− and is of order O(z−1) at infinity.
Moreover the jump of u(z, λ) across T is given by ϕ(x, θ) for 0 ≤ θ < 2π. We thus
deduce from the Cauchy formula (2.29) that

u(x, λ) =
1

2πi

∫
T

ϕ(x, t)

t− λ
dt, λ ∈ D+ ∪D−, (2.52)

where we identify ϕ(x, t) with ϕ(x, θ) for t = eiθ. We now deduce from (2.33) in the
vicinity of λ = 0 that

f(x) = lim
λ→0

λ−1 ∂

∂z̄
u(x, λ). (2.53)

Indeed we verify that u(z, λ) = O(λ) on D+ so that σ(x)u(x, λ) → 0 as λ → 0. Since
u(x, λ) is known thanks to (2.52) in terms of the boundary measurements Rσ,θf(s), this
is our reconstruction formula. Let us be more specific. We verify that

u(x, λ) =
1

2πi

∫
T

ϕ(x, t)

t
dt+ λ

1

2πi

∫
T

ϕ(x, t)

t2
dt+O(λ2). (2.54)

We thus deduce from (2.53) and the fact that u(x, λ) = O(λ) on D+ that

0 =
1

2πi

∫
T

ϕ(x, t)

t
dt and f(x) =

1

2πi

∫
T

∂ϕ

∂z̄
(x, t)

1

t2
dt. (2.55)

The second equality is the reconstruction formula we were looking for since ϕ is defined
in (2.49) in terms of the measurements Ra,θf(s). The first equality is a compatibil-
ity conditions that iϕ must satisfy in order for the data to be the attenuated Radon
transform of a function f(x). This compatibility condition is similar to the condition
g(s, θ) = g(−s, θ + π) satisfied by the Radon transform in the absence of absorption.
These compatibility conditions are much more difficult to visualize when absorption
does not vanish because the integrals along the line {sϑ⊥ + tϑ; t ∈ R} differ depending
on the direction of integration.

Let us recast the reconstruction formula so that it only involves real-valued quanti-
ties.

Exercise 2.2.2 Using t = eiθ and dt = ieiθ, deduce that

1

2πi

∫
T

ϕ(x, t)

t
dt =

1

2π

∫ 2π

0

ϕ(x, θ)dθ

1

2πi

∫
T

∂ϕ

∂z̄
(x, t)

1

t2
dt =

1

4π

∫ 2π

0

ϑ⊥ · ∇(iϕ)(x, θ)dθ +
1

4π

∫ 2π

0

ϑ · ∇ϕ(x, θ)dθ.

Use (2.51) and (2.55) to show that

f(x) =
1

4π

∫ 2π

0

ϑ⊥ · ∇(iϕ)(x, θ)dθ. (2.56)

Let us denote by gσ(s, θ) = Rσf(s, θ) the SPECT measurements. From the above results
we recast (2.56) as

f(x) = [N g](x) ≡ 1

4π

∫ 2π

0

ϑ⊥ · ∇(R∗−σ,θHσg)(x, θ)dθ. (2.57)
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Exercise 2.2.3 Show that (2.57) simplifies to (2.14) when σ ≡ 0.

Exercise 2.2.4 (Reconstruction with constant absorption.) We assume that f(x) =
0 for |x| ≥ 1 and that σ(x) = µ for |x| < 1. This corresponds thus to the case of a
constant absorption coefficient on the support of the source term f(x).
(i) Show that

eDθσ(x) = eµx·ϑ, |x| < 1.

Deduce that

ϑ⊥ · ∇(eDθσ(x)g(x · ϑ⊥, θ)) = eµx·ϑ
∂g

∂s
(x · ϑ⊥).

(ii) Verify that the operator Hµ defined by Hµ = Ha for a constant is diagonal in the
Fourier domain and that

Ĥµu(σ) = −isignµ(σ)û(σ), signµ(σ) =

 sign(σ) |σ| ≥ µ,

0 |σ| < µ.

(iii) Show that

gµ(s, θ) = Rθ(e
µx·ϑf)(s),

f(x) =
1

4π

∫ 2π

0

e−µx·ϑ(Hµ
∂

∂s
gµ)(x · ϑ⊥, θ)dθ.

(2.58)

Verify that in the limit µ→ 0, we recover the inversion for the Radon transform.



Chapter 3

Integral geometry and FIO

We recast the Radon transform as a Fourier Integral Operator (FIO) and look at prop-
agation of singularities for such operators.

3.1 Radon transform and FIO

Let us consider the Radon transform in dimension n

Rf(s, ϑ) =

∫
Rn
δ(s− x · ϑ)f(x)dx. (3.1)

Since the above delta function is one dimensional, we may formally recast it as

δ(s) =

∫
R
eiσs

dσ

2π
. (3.2)

We thus observe that the Radon transform may be written as

Rf(s, ϑ) =

∫
eiϕ(s,ϑ,x,σ)a(s, ϑ, x, θ)f(x)dσdx, (3.3)

where the phase ϕ and the amplitude a are given by

ϕ(s, ϑ, x, σ) = σ(s− x · ϑ), a(s, ϑ, x, σ) =
1

2π
,

respectively.

All integrals above, starting with (3.2), involve integrands that are not integrable in
the sense of Lebesgue. They will be properly defined in the next section. We will see
in this chapter and the next that the representation of problems in integral geometry
as oscillatory integrals as in (3.3) provides extremely fruitful. In particular, it is the
right language to understand how singularities propagate, which is the main criterion
we should use to understand how ill-posed an inverse problem really is.

39
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3.2 Oscillatory integrals, symbols, and phases

We now introduce necessary notation and material for the definition of operators of the
form (3.3). The presentation essentially follows those in [33, 36].

We first define the space of symbols on a domain X ⊂ Rn and for some n ∈ Ṅ, where
Ṅ = N\{0}. We also define ṘN = RN\{0}.

Definition 3.2.1 (Symbols) We define Sm(X × RN) as the space of functions a ∈
C∞(X × RN) such that for all compact K ⊂ X and all α ∈ Nn and β ∈ NN , there is a
constant C = CK,α,β(a) such that

|∂αx∂
β
θ a(x, θ)| ≤ C(1 + |θ|)m−|β|, (x, θ) ∈ K × RN . (3.4)

In the above definition, we used the multi-indices α = (α1, . . . , αn) and β = (β1, . . . , β−
N). We now list several properties of the space of symbols, whose proofs may be found
in [33].
(i) The space Sm(X × RN) is a Fréchet space with seminorm CK,α,β(a) chosen as the
smallest constants in (3.4). This is the topology we now consider.
(ii) The operator ∂αx∂

β
θ is continuous from Sm(X × Rn) to Sm−|β|(X × Rn).

(iii) If m < m′, then Sm(X × RN) ⊂ Sm
′
(X × RN). 1

(iv) The intersection of all Sm(X ×Rn) for m ∈ R (or m ∈ N) is called S−∞(X ×RN);
this is also a Fréchet space.
(v) If aj ∈ Smj(X × RN) for j = 1, 2 then a1a2 ∈ Sm1+m2(X × RN) and the bilinear
map thus defined is continuous.
(vi) If {aj}j≥1 is a sequence of symbols in Sm converging at each point (x, θ) ∈ X ×RN

to a(x, θ), then a ∈ Sm(X,RN) and aj → a in the topology generated by the above
seminorms in Sm

′
(X × RN) for all m′ > m.

(vii) S−∞(X,RN) is dense in Sm(X,RN) for the topology generated by the above semi-
norms in Sm

′
(X × RN) for m′ > m.

(viii) Let aj ∈ Smj(X × RN) for all j ∈ N with mj strictly decreasing to −∞ as j
increases to ∞. Then there exists a unique a ∈ Sm0(X × RN) up to the addition of an
element in S−∞(X×RN) such that a−

∑J
j=0 aj ∈ SmJ (X×RN) for all k ∈ N. We then

write a ∼
∑

j aj.

Exercise 3.2.1 Show that for a(x, θ) ∈ C∞(X × RN) such that a(x, λθ) = λma(x, θ)
for |θ| > 1 and λ > 1, we have a ∈ Sm(X × RN).

Definition 3.2.2 (Phase) A function ϕ(x, θ) ∈ C∞(X×ṘN) is called a phase function
if for all (x, θ) ∈ X × ṘN , we have

(i) =ϕ(x, θ) ≥ 0,

(ii) ϕ(x, λθ) = λϕ(x, θ) for all λ > 0,

(iii) dϕ = ϕ′xdx+ ϕ′θdθ 6= 0; in other words |ϕ′x|2 + |θ|2|ϕ′θ|2 > 0, on X × ṘN .

Here ϕ′x denotes the vector of the n partial derivatives ∂xjϕ while ϕ′θ denotes the
N partial derivatives ∂θjϕ. Property (ii) means that ϕ is a positively homogeneous

function of degree one. Property (i) implies that |eiϕ(x,θ)| ≤ 1.

1Hilbert spaces Hm becomes smaller as m increases. Spaces of symbols Sm become larger.
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For X ⊂ R× Sn−1 × Rn and N = 1, we find that

ϕ(s, ϑ, x, σ) = σ(s− x · ϑ),

is a phase as (i) its imaginary part vanishes, (ii) it is positively homogeneous of degree
one in σ, and (iii) its differential is given by

dϕ = σds− σx · ϑ⊥(ϑ)dg(ϑ)− σϑdx+ (s− x · ϑ)dσ,

with dϕ = 0 implying that σ = 0 so that dϕ 6= 0 on X × ṘN . Here, ϑ⊥(ϑ) is a param-
eterization of TϑSn−1 the tangent space to Sn−1 at ϑ embedded in Rn and dg(ϑ) is the
differential at that point. This generalizes ϑ⊥(ϑ) = (− sin θ̃, cos θ̃) for ϑ = (cos θ̃, sin θ̃)
and g(ϑ) = θ̃ in dimension n = 2.

We are now ready to define general oscillatory integrals of the form

Ia,ϕ(x) :=

∫
eiϕ(x,θ)a(x, θ)dθ. (3.5)

The above integration is implicitly performed over RN .
By definition of the phase and the symbol, the above integration over any ball of the

form |θ| < R <∞ is defined in the usual (Lebesgue) sense. It is the integration in the
vicinity of |θ| ∼ ∞ that difficulties may arise.

For a phase a ∈ Sm(X × RN) with m + k < −N , we obtain that Ia,ϕ(x) ∈ Ck(X).
Indeed, for k = 0, we obtain that |eiϕ(x,θ)a(x, θ)| ≤ C(1 + |θ|)m, which is integrable on
RN for −m > N .

Exercise 3.2.2 Verify that the above function Ia,ϕ(x) ∈ Ck(X) when m+ k < −N .

When m is larger than −N , then the above integral is not necessarily defined in the
sense of Lebesgue. For m = 0 and N = 1, the calculation in (3.2) shows that Ia,ϕ(x),
once properly defined, is not necessarily a function but rather a distribution in D′(X).

The definition of the integral (3.5) proceeds by integrations by parts. Each differen-
tiation of a(x, θ) in the θ variable lowers the order of the resulting symbol by one; more
precisely ∂βθ a(x, θ) belongs to Sm−|β|(X ×RN) if a is of order m. When m− |β| < −N ,
then the integral is defined in the usual sense. Such integrations by parts require that
eiϕ(x,θ) be written as the partial derivative of another function. However, in order for
these integrations to be defined generally, the integrations by parts need to be performed
with respect to both variables (x, θ). Then, we have the following precise statement.

Define

Φ(x, θ) = |ϕ′x|2 + |θ|2|ϕ′θ|2, (3.6)

which is positively homogeneous of degree 2, i.e., Φ(x, λθ) = λ2Φ(x, θ) for λ > 0 for
(x, θ) ∈ X × ṘN . Because Φ and ϕ are not defined at θ = 0 (or may not be regular
there), we introduce a cut-off function χ(θ) ∈ C∞0 (RN) with compact support such that
χ(θ) = 1 in a neighborhood of θ = 0. We then define the (transpose) first-order operator

Lt =
1− χ(θ)

iΦ(x, θ)

(
|θ|2ϕ̄′θ∂θ + ϕ̄′x∂x

)
+ χ(θ) = d′∂θ + b′∂x + c′, (3.7)
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with d′ and b′ with components (d′j)1≤j≤N and (b′j)1≤j≤N such that d′j ∈ S0, b′j ∈ S−1

and c′ ∈ S−∞ for 1 ≤ j ≤ N . Here and below, we use the shorter notation Sm instead
of Sm(X × RN).

It is then not difficult to verify that Lt(eiϕ) = eiϕ.
The adjoint operator L is given by

L = d∂θ + b∂x + c, d = −d′, b = −b′, c = c′ + divθd
′ + divxb

′. (3.8)

Here, we define divθd
′ =

∑
j ∂θjd

′
j and divxb

′ =
∑

j ∂xjb
′
j. This shows that dj ∈ S0,

bj ∈ S−1 and c ∈ S−1 for 1 ≤ j ≤ N .
Let u ∈ C∞0 (X) and a ∈ S−∞. We thus obtain after k integrations by parts:

〈Ia,ϕ, u〉 =

∫
(Lt)keiϕ(x,θ)a(x, θ)u(x)dxdθ =

∫
eiϕ(x,θ)Lk

(
a(x, θ)u(x)

)
dxdθ. (3.9)

Note that no terms appear on the boundary ∂X by choice of the test function u. No
‘boundary’ term appears as |θ| → ∞ either by choice of a.

For a ∈ S−∞, we define the distribution Ia,ϕ ∈ D′(X) by the above right-hand side,
which is defined in the usual (Lebesgue) sense when m−k < −N since Lk(a(x, θ)u(x)) ∈
Sm−k and is independent of k.

Exercise 3.2.3 Prove the latter statement (using the symbol properties of the coeffi-
cients (d, b, c)).

Moreover, for m and k fixed, the above map a 7→ Ia,ϕ is continuous as a distribution in
D′(k)(X) acting on test functions in Ck

0 (X). Since S−∞ is dense in Sm and since (3.9) is
independent of k and uniquely defined for a ∈ S−∞, we obtain that the above definition
is independent of k with m− k < −N for a ∈ Sm and uniquely defined.

We have the result ([33])

Theorem 3.2.3 (Oscillatory integrals) Let ϕ be a phase function on X × ṘN and
a ∈ Sm(X × RN). Then Ia,ϕ ∈ D′(X) in (3.5) is defined in a unique way by (3.9) for
any k such that m − k < −N . Moreover, the map a → Ia,ϕ is continuous from Sm to
D′(k)(X).

We have thus defined distributions of the form Ia,ϕ(x) =
∫
eiϕ(x,θ)a(x, θ)dθ. By the

continuity argument, we observe that

Ia,ϕ(x) = lim
ε→0

∫
eiϕ(x,θ)a(x, θ)χ(εθ)dθ (3.10)

for any χ ∈ S(RN) with χ(0) = 1 (here limit is in the sense of distributions).

Remark 3.2.4 (Continuous dependence on parameters and differentiation) If
t 7→ a(x, θ; t) and t 7→ ϕ(x, θ; t) are continuous, then t 7→ Ia(·;t)ϕ(·,t) is also continuously
defined as a distribution thanks to (3.10) and the dominated Lebesgue convergence
theorem.

For instance, the distribution defined with a(x+ h, θ) and ϕ(x+ h, θ) for h ∈ Rn is
differentiable with respect to h. For h = hjej with (e1, . . . , en) a basis of Rn, we find
that

∂xjIa,ϕ(x) =

∫
eiϕ(x,θ)

(
i∂xjϕ(x, θ)a(x, θ) + ∂ja(x, θ)

)
dθ.
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If a ∈ Sm(X×RN), we observe that i∂xjϕ(x, θ)a(x, θ)+∂ja(x, θ) is a symbol in Sm+1(X×
RN) since ∂xjϕ(x, θ) is homogeneous of degree 1 in θ.

More generally, for each Ia,ϕ(x) define with a ∈ Sm(X × RN) and a phase ϕ ∈
C∞(X × ṘN), and for each P (D) a differential operator of order k, then P (D)Ia,ϕ(x)
is a distribution in D′(X) that can be written in the form (3.5) with the same phase ϕ
and a symbol aP (x, θ) ∈ Sm+k(X × RN).

3.3 Schwartz kernels and Fourier integral operators

We are now ready to define Fourier integral and pseudo-differential operators. Let
X ⊂ RnX and Y ⊂ RnY be open sets. Then Z = X × Y ⊂ RnX × RnY = RnX+nY plays
the role of the open set X in the preceding section while z = (x, y) plays the role of
the variable x. We wish to see the distributions Ia,ϕ constructed above as the kernels
of operators mapping functions in the Y variable to functions (in fact distributions) in
the X variables.

The Schwartz kernel theorem states that there is a bijection between the distributions
K ∈ D′(X × Y ) and the bounded linear operators A : C∞0 (Y ) → D′(X), with the
correspondence given by

〈Au, v〉X = 〈K, v ⊗ u〉X×Y =

∫
Z

K(x, y)u(y)v(x)dxdy, u ∈ C∞0 (Y ), v ∈ C∞0 (X).

(3.11)
We then say that K is the distribution kernel of the operator A.

Let now ϕ(x, y, θ) be a phase function in X × Y × ṘN and a(x, y, θ) a symbol in
Sm(X × Y × RN). Then K = Ia,ϕ ∈ D′(X × Y ) defined in the preceding section is the
distribution kernel of the operator

Au(x) =

∫
eiϕ(x,y,θ)a(x, y, θ)u(y)dydθ, u ∈ C∞0 (Y ). (3.12)

Such an operator is called a Fourier integral operator (FIO). When ϕ(x, y, θ) =
(x− y) · θ, then the operator is called a Pseudo-differential operator (ΨDO).

The operators A are more regular than stated above and are defined on a larger class
of functions (and distributions) when the phase satisfies additional properties.

Let us assume that ϕ is a phase function in the (y, θ) variables, i.e., such that
dy,θϕ 6= 0 for all x ∈ X (this is obviously more restrictive than dx,y,θϕ 6= 0 as we had
assumed earlier). Then as we did in the preceding section, we can construct a vector
field Lt

Lt = Lt(x, y, θ, ∂y, ∂θ) = d′∂y + b′∂θ + c′,

such that Lteiϕ(x,y,θ) = eiϕ(x,y,θ). Denoting by L its adjoint (in the usual way in the (y, θ)
variables), we find that

Au(x) =

∫
eiϕ(x,y,θ)Lk

(
a(x, y, θ)u(y)

)
dydθ, u ∈ C∞0 (Y ), (3.13)

for k = N +m+ j + 1, say, for j ∈ N. The integral is defined in the sense of Lebesgue
and is a function in Cj(X) by the dominated Lebesgue convergence theorem. Since
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this holds for all j ∈ N, we thus obtain that A is continuously defined from C∞0 (Y ) to
C∞(X). More precisely, we find that A is continuously defined from Ck

0 (Y ) to Cj(X)
when m+N + j < k.

Let us now assume that ϕ is a phase in the (x, θ) variables. We then define the
adjoint operator At to A by

〈u,Atv〉 = 〈Au, v〉 = 〈K, v ⊗ u〉 u ∈ C∞0 (Y ), v ∈ C∞0 (X). (3.14)

We have just seen that At was continuously defined from C∞0 (X) to C∞(Y ). By duality,
we may then define Au for all u ∈ E ′(Y ) by 〈Au, v〉 = 〈u,Atv〉 for all v ∈ C∞0 (X). This
defines Au ∈ D′(X). This extension is by construction continuous and uniquely defined
by density of C∞0 (Y ) in E ′(Y ). By duality, we also obtain that A maps E ′j(Y ) (the dual
space to Cj(Y )) to D′k(X) (the dual space to Ck

0 (X)) continuously.
We summarize these results in the

Theorem 3.3.1 (Regularity property) Let A be given by (3.12) for ϕ(x, y, θ) a phase
function in X × Y × ṘN and a(x, y, θ) ∈ Sm(X × Y × RN).

If ϕ(x, y, θ) is a phase function in the variables (y, θ) for all x ∈ X, then A is
continuous from Ck

0 (Y ) to Cj(X) when k > m+N + j. In particular, A is continuous
from C∞0 (Y ) to C∞(X).

If ϕ(x, y, θ) is a phase function in the variables (x, θ) for all y ∈ Y , then A is
continuous from E ′j(Y ) to D′k(X) when k > m+N + j. In particular, A is continuous
from E ′(Y ) to D′(X).

The phase function ϕ(x, y, θ) = (x− y) · θ is a phase function in the (y, θ) and (x, θ)
variables. We thus obtain that ΨDO are continuous from C∞0 (Y ) to C∞(X) and have
a continuous extension from E ′(Y ) to D′(X). We will also obtain that ΨDO of order
m are continuous from Hs(Y ) to Hs+m(X). This property does not necessarily hold
for FIO, although it will be shown to hold for a restricted class of FIO that find many
applications in inverse problems theory.

Exercise 3.3.1 Let A given by (3.12) satisfy the hypotheses of Theorem 3.3.1 (with a
symbol a(x, y, θ) ∈ Sm(X × Y × RN)) and let P (D) be a differential operator of order
k. As in Remark 3.2.4, show that P (D)A (the operator which to u ∈ C∞0 (Y ) applies the
differential operator P (D) to the function Au(x)) is a FIO with the same phase function
as A and with a symbol of class Sm+k(X × Y × RN).

Remark 3.3.2 (Case of regular Schwartz kernels) We observe that for a ∈ Sm(X×
Y ×ṘN) with m < −N−k, then KA(x, y) is a function in Ck(X×Y ). As a consequence,
A maps continuously E ′k(Y ) = (Ck0 (Y ))′ to Ck(X).

3.4 Critical set and propagation of singular support

Assuming that u is not C∞ in the vicinity of a point y ∈ Y , we wish to find sufficient
conditions under which Au is in C∞ in the vicinity of a point x ∈ Y . To do so, we
analyze the regularity of the distribution Ia,ϕ.
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Definition 3.4.1 (Critical set of a phase) Let ϕ(x, θ) a phase function on X× ṘN .
We define the critical set of ϕ as

Cϕ :=
{

(x, θ) ∈ X × ṘN such that ϕ′θ = 0
}
. (3.15)

Note that (x, θ) ∈ Cϕ implies that (x, λθ) ∈ Cϕ for λ > 0. In other words, Cϕ is a cone.
For ϕ(x, y, θ) = (x− y) · θ, we find that Cϕ = {(x, y, θ);x = y}.

Let us assume that a(x, θ) is a symbol of order m that vanishes in a conical neigh-
borhood of Cϕ, i.e., for all (x, θ) such that the (Euclidean) distance from (x, θ|θ|) to Cϕ
is less than a given positive number.

As in (3.7), we construct the transpose first-order operator as

Lt =
1− χ(θ)

i(|ϕ′θ|2 + β)
ϕ′θ∂θ + χ(θ), (3.16)

with 0 ≤ β(x, θ) ∈ C∞(X × ṘN) equal to 1 in the vicinity of Cϕ and such that supp β ∩
supp a = ∅. Then we find again that Lteiϕ = eiϕ on the support of a so that

Ia,ϕ(x) =

∫
eiϕ(x,θ)Lk(a(x, θ))dθ, (3.17)

for k = N +m+ 1. As in (3.13), we deduce that Ia,ϕ(x) ∈ C∞(X).
This provides information on the singular support of Ia,ϕ(x). The singular support

of a distribution u defined on X, denoted by sing supp u, is defined as follows. Let Scu
be the set of x0 ∈ X such that ϕu ∈ C∞(X) for some function ϕ(x) ∈ C∞0 (X) such
that ϕ(x0) = 1. Then x0 belongs to the complement set of the singular support of u,
i.e., sing supp u = Su = X\Scu.

Let now Π denote the natural projection Π : X × RN 3 (x, θ) 7→ Π(x, θ) = x ∈ X.
Then the above result shows that sing supp Ia,ϕ ⊂ Π(Cϕ). Indeed, let x0 6∈ Π(Cϕ) and
let V be a neighborhood of x0 such that V ∩Π(Cϕ) = ∅. Let b ∈ C∞0 (X) such that b = 1
on V and b = 0 on Π(Cϕ). Then for each u ∈ C∞0 (V ), we find that 〈Ia,ϕ, u〉 = 〈Iba,ϕ, u〉.
In other words, Ia,ϕ = Iba,ϕ in D′(V ) and we have just seen that Iba,ϕ ∈ C∞(X).

We summarize this as:

Theorem 3.4.2 (Regularity of Ia,ϕ)
(i) If a ∈ Sm(X×RN) vanishes in a conical neighborhood of Cϕ, then Ia,ϕ(x) ∈ C∞(X).
(ii) sing supp Ia,ϕ ⊂ Π(Cϕ) = {x ∈ X such that ϕ′θ(x, θ) = 0 for some θ ∈ ṘN}.

The above result was obtained for a phase in the x variable. We now extend these
results to an understanding of Au defined in (3.12). Let Z = X × Y as before and
ϕ(x, y, θ) a phase. Define Cϕ as the closed subset of X×Y ×ṘN where the N constraints
ϕ′θ(x, y, θ) = 0 hold. We define Zϕ as the open set of X ×Y where ϕ′θ(x, y, θ) 6= 0 for all
θ ∈ ṘN . Then for a(x, y, θ) ∈ Sm, the above theorem shows that Ia,ϕ(x, y) ∈ C∞(Zϕ).

Let now x0 ∈ X such that x0 × Y ⊂ Zϕ so that Ia,ϕ(x, y) is C∞ in the vicinity of
x0. Define again a function b(x) ∈ C∞0 (X) such that supp b × Y ⊂ Zϕ and b(x) = 1
in a neighborhood V of x0. Then Ia,ϕ = Iba,ϕ in the vicinity of x0. Since the phase ϕ
does not have any critical point on Zϕ, we deduce from Theorem 3.3.1 that A defined
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in (3.12) maps C∞0 (Y ) to C∞(V ) (and has a continuous extension mapping E ′(Y ) to
D′(V )). As a consequence, we find that

sing supp Au ⊂ ΠXCϕ = {x ∈ X, (x, y, θ) ∈ Cϕ for some (y, θ) ∈ Y × ṘN}, (3.18)

for any smooth function u ∈ C∞0 (Y ).

Let us now assume that u ∈ E ′(Y ). We wish to find a constraint on the singular
support of Au in terms of that of u. This is an interesting question when Au is smooth
as soon as u is smooth (unlike (3.18)) and we therefore restrict ourselves to the setting
where dy,θϕ(x, y, θ) 6= 0 and dx,θϕ(x, y, θ) 6= 0 so that by Theorem 3.3.1, A defined in
(3.12) maps C∞0 (Y ) to C∞(X) and has a continuous extension mapping E ′(Y ) to D′(X).

Let x0 ∈ X be such that (x0, y, θ) 6∈ Cϕ for all y ∈ sing supp u and all θ ∈ ṘN .
Let W be a sufficiently small neighborhood of x0 and d ∈ C∞0 (W ) with d = 1 in the
vicinity of x0. Let us finally take c ∈ C∞0 (Y ) be such that c(y) = 1 in the vicinity Yc of
sing supp u but with a sufficiently small support so that (x, y, θ) 6∈ Cϕ for all x ∈ W ,
y ∈ supp c and θ ∈ ṘN . Then Iacd,ϕ is in C∞(W × YC).

As a consequence Iacd,ϕ extends as a continuous operator from E ′(Yc) → C∞(W ).
We now decompose u = v + w with v ∈ C∞(Y ) and w supported in Yc. We know from
Theorem 3.3.1 that Av ∈ C∞(X) since dy,θϕ(x, y, θ) 6= 0. We have also just seen that
〈Ia,ϕ, w〉Y = 〈Iac,ϕ, w〉Y = 〈Iacd,ϕ, w〉Y ∈ C∞(W ). This proves that Au(x) is of class C∞

in the vicinity of x0.

Collecting the preceding derivation, we obtain the

Theorem 3.4.3 (Propagation of singular support) Let a ∈ Sm(X ×Y ×RN) and
ϕ a phase on X×Y ×ṘN with singular set Cϕ = {(x, y, θ) ∈ X×Y ×ṘN s.t. ϕ′θ(x, y, θ) =
0}. Then for u ∈ C∞0 (Y ), we find that

sing supp Au ⊂ ΠXCϕ = {x ∈ X, (x, y, θ) ∈ Cϕ for some (y, θ) ∈ Y × ṘN}. (3.19)

Assume moreover that dy,θϕ(x, y, θ) 6= 0 and dx,θϕ(x, y, θ) 6= 0 on X×Y ×ṘN . Then
for u ∈ E ′(Y ) and Su := sing supp u, we have that

sing supp Au ⊂ ΠXCϕ(Su) = {x ∈ X, (x, y, θ) ∈ Cϕ for some (y, θ) ∈ Su × ṘN}.
(3.20)

In other words, when dy,θϕ 6= 0 and dx,θϕ 6= 0 on X×Y × ṘN , then the singular support
of u is propagated by the relation Cϕ and then projected onto the first component
x ∈ X. When only dx,y,θϕ 6= 0 is available, then all we can deduce is that Au is smooth
away from the projection of Cϕ onto the first component x ∈ X independent of the
singularities of u. Of course, Y in (3.19) may be replaced by supp u with additional
obvious improvements if a vanishes on parts of Y .

3.5 Applications to ΨDO and Radon transform

For a ΨDO, ϕ(x, y, θ) = (x− y) · θ with Cϕ = {x = y} and dx,θϕ 6= 0 and dy,θϕ 6= 0 on
X × Y × Ṙn with n = nX = nY . There is no real point in having Y different from X
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since all singularities occur for x = y and we thus assume that X = Y . Then Theorem
3.4.3 applies and we find that for P a ΨDO,

sing supp Pu ⊂ sing supp u for all u ∈ E ′(X). (3.21)

For the Radon transform in two dimensions (with obvious extensions in higher di-
mensions) we have ϕ(s, θ, x, σ) = σ(s− x · ϑ) so that Cϕ = {s = x · ϑ} ⊂ R2 × R2 × Ṙ.
We verify that ds,θ,σϕ 6= 0 and dx,σϕ 6= 0 since ∂sϕ = σ 6= 0 and ∂xϕ = −σθ⊥ 6= 0 so
that (3.20) applies. We thus have for the Radon transform that

sing supp Rf ⊂ {(s, θ) ∈ R× [0, 2π) s.t. s = x · ϑ for some x ∈ sing supp f}. (3.22)

This result holds for any u ∈ E ′(R2).

Exercise 3.5.1 Prove that in dimension n ≥ 2 and for all u ∈ E ′(Rn), we have:

sing supp Rf ⊂ {(s, ϑ) ∈ R× Sn−1 s.t. s = x · ϑ for some x ∈ sing supp f}. (3.23)

For the adjoint Radon transform R∗g(x), defined as

R∗g(x) =

∫
R×Sn−1

δ(s− x · ϑ)g(s, ϑ)dsdϑ =

∫
R2×Sn−1

e−iσ(s−x·ϑ) 1

2π
g(s, ϑ)dσdsdϑ, (3.24)

we have that ϕ′(x, s, θ, σ) = −ϕ(θ, s, x, σ) = −σ(s− x · ϑ) with again C ′ϕ = {s = x · ϑ}.
We thus obtain that in dimension n ≥ 2 and for all u ∈ E ′(Rn), we have:

sing supp R∗g ⊂ {x ∈ Rn s.t. s = x · ϑ for some (s, ϑ) ∈ sing supp g}. (3.25)

How about R∗R? We recall the definitions

Rf(s, ϑ) =

∫
Rn
f(x)δ(s− x · ϑ)dx, R∗g(x) =

∫
R×Sn−1

g(s, θ)δ(s− x · ϑ)dsdϑ.

Formally, we thus obtain

R∗Rf(x) =

∫
δ(s− x · ϑ)δ(s− y · ϑ)f(y)dydsdϑ

=
1

2π

∫
ei(x−y)·ϑσf(y)dydσdϑ =

1

π

∫
ei(x−y)·ξf(y)dy

1

|ξ|n−1
dξ.

The last equality comes from the change of variables ξ = σϑ in polar coordinates and
the change of variables σ → −σ. In other words πR∗R is a ΨDO with amplitude
ã(x, y, ξ) = |ξ|1−n. The latter function is not smooth at ξ = 0. However, the above
integral is defined in the sense of Lebesgue in the vicinity of ξ = 0. We may thus write
|ξ|1−n = χ(ξ)|ξ|1−n + a(ξ) with χ(ξ) ∈ C∞0 (Rn) so that the corresponding integral is a
C∞(Rn) function in the x variable, and with a ∈ S1−n(Rn × Rn × Rn).

Note that cnR
∗R = F−1|ξ|1−nF for cn = π/(2π)n, which is therefore an invertible

operator with inverse (cnR
∗R)−1 = F−1|ξ|n−1F . This inverse operator may also be

written as a ΨDO with amplitude b̃(x, y, ξ) = |ξ|n−1. As for a, we may write b̃ =
|ξ|n−1χ(ξ)+ b(ξ) with a first contribution providing a C∞(Rn) function in the x variable
and b ∈ Sn−1(Rn × Rn × Rn).
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Modulo C∞ contributions coming from integrations in the vicinity of ξ = 0, we thus
obtain that R∗R is a ΨDO of order 1−n and that its inverse (R∗R)−1 is a ΨDO of order
n− 1. Thus (3.21) applies and we find that

sing supp (R∗R)kf = sing supp f for all u ∈ E ′(X), (3.26)

and all k ∈ N. The equality, say for k = 1 comes from the fact that f = (R∗R)−1g for
g = R∗Rf so that the singular support of f is included in the singular support of g, as
well as the reciprocal.

Remark 3.5.1 Note that we obtained the above result by writing R∗R as a ΨDO. We
may also consider R∗R as a composition of the two FIO R∗ and R. By doing so and
using (3.22) and (3.24), we would find that

sing supp R∗Rf

⊂ ΠxC
′
ϕsing supp Rf = {x ∈ R2 s.t. s = x · ϑ for (s, θ) ∈ sing supp Rf}

⊂ ΠxC
′
ϕΠ(s,θ)Cϕsing supp f = {x ∈ R2 s.t. s = x · ϑ & s = y · ϑ for y ∈ sing supp f}

⊂ R2, when sing supp f 6= ∅.

Indeed, as soon as y ∈ sing supp f , then there exists a line passing through y and any
other point x ∈ R2. This result is therefore far from the optimal result in (3.26). It also
shows the limitations of the propagation of singularities obtained by using the notion
of singular support. The latter is not sufficiently rich to account for the propagation of
singularities. We now revisit this problem with the notion of wavefront set.

3.6 Propagation of singularities for FIO.

3.6.1 Wave Front Set and Distributions.

As we have seen in Remark 3.5.1, the notion of singular support is not sufficient to
describe the propagation of singularities for a FIO such as the Radon transform or the
generalized ray transform. For a large class of FIO A with adjoint A∗, we expect A∗A to
be a ΨDO as is the case for the Radon transform. The propagation of singular supports
by the relations ΠXCϕ and ΠYC

′
ϕ as in Remark 3.5.1 does not provide the identity map.

Some cancellations are therefore missed by this composition since we know that the
singular support of A∗Af is included in that of f .

One way to solve this problem is to refine the notion of singular support to a support
that is defined in the space of positions and directions. Mathematically, the appropri-
ate space to model positions and directions is the cotangent bundle of the manifold of
interest. For us, the spatial domain is an open set X ⊂ Rn so that the cotangent bundle
T ∗X may be identified with X × Rn, which in coordinates is often denoted as (x, ξ).
Note that only the direction ξ̂ = ξ

|ξ| ∈ Sn−1 is of interest. By homogeneity in ξ, we thus

mostly deal with (x, ξ) ∈ X × Ṙn. Once we have the cotangent bundle T ∗X, we need a
notion of phase-space singular support (called microlocal singular support, or µsupp )
for distributions.
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Definition 3.6.1 For u ∈ D′(X) and X ⊂ Rn, we define the Wave Front Set of u
denoted by WF (u) ⊂ X × Ṙn as follows. We say that (x0, ξ0) 6∈ WF (u) if and only
if there exists a function φ ∈ C∞0 (X) with φ(x0) 6= 0 such that the Fourier transform

ξ → φ̂u(ξ) is rapidly decreasing uniformly in a conic neighborhood of the half ray with
direction ξ0, i.e., for ξ such that ξ̂ − ξ̂0 is sufficiently small. This means that for each
k ≥ 0, we have Ck such that |φ̂u(ξ)| ≤ Ck|ξ|−k uniformly in ξ in the conic neighborhood
of ξ0.

Exercise 3.6.1 Show that the Wave Front Set of δ(x) is the set (0, ξ 6= 0).
Let X be an open domain with smooth boundary and let ν(x) be the outward unit

normal to X at x ∈ ∂X. Let u be the function equal to 1 on X and 0 otherwise. Show
that WF (u) = {(x, λν(x)); x ∈ ∂X, λ 6= 0}.

The main result on Wave Front Sets of the distributions defined as oscillatory inte-
grals in (3.5) is then as follows:

Theorem 3.6.2 Let X ∈ Rn, Γ an open cone in X × ṘN and ϕ a real-valued phase
function in Γ . If a ∈ Sm(X × RN), vanishes near the zero section X × {0} and
cone supp a ⊂ Γ , then for the distribution Ia,ϕ defined in (3.5), we have

WF (Ia,ϕ) ⊂ {(x, ϕ′x); (x, θ) ∈ cone supp a, ϕ′θ(x, θ) = 0}. (3.27)

Here, cone supp a is defined as the set of (x, λθ) for (x, θ) in the support of a and λ > 0.
Proof. The proof of this result goes as follows. Let φ(x) be a function concentrating

near a point x0. Then

Îa,ϕφ(ξ) =

∫
RN×Rn

eiϕ(x,θ)−ix·ξa(x, θ)φ(x)dθdx.

Let ψ(x, θ) = ϕ(x, θ)− x · ξ. Then

dψ = ϕ′θdθ + (ϕ′x − ξ)dx.

This means that for ξ in a cone away from ξ0 = ϕ′x, we can define a smooth differential
operator of the form L = b∂x + c for b ∈ S−1(Γ) so that Lteiψ(x,ξ) = eiψ(x,ξ). The reason
is that since ξ is away from ξ0 = ϕ′x, which is homogeneous of degree one in θ, then

|ϕ′x(x, θ)− ξ| ≥ C(|θ|+ |ξ|).

The usual integrations by parts then give us that |Îa,ϕφ(ξ)| ≤ C|ξ|−k for all k ∈ N. This
proves that (x0, ξ0) 6∈ WF (Ia,ϕ) and concludes the proof of the result.

3.6.2 Propagation of singularities in linear transforms

LetK(x, y) ∈ D′(X×Y ) be a Schwartz kernel for a linear operator fromX ⊂ RnX to Y ⊂
RNY . We have seen the notion of WF (K), a subset in T ∗(X×Y ) ∼ (X×Y )× ṘnX+nY .
We recast the latter as X ×RnX × Y ×RnY \X × Y ×{0}RnX+nY and we parametrize it
by (x, ξ; y, ζ) rather than (x, y, ξ, ζ). It is defined for (ξ, ζ) 6= 0 in RnX+nY .
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We define the following singular sets:

WF ′(K) =
{

(x, ξ; y,−ζ) ∈ X × Y × ṘnX+nY such that (x, ξ : y, ζ) ∈ WF (K)
}

WFX(K) =
{

(x, ξ) ∈ X × ṘnX such that (x, ξ; y, 0) ∈ WF (K)
}

WF ′Y (K) =
{

(y,−ζ) ∈ Y × ṘnY such that (x, 0; y, ζ) ∈ WF (K)
}
.

Let us consider the case of the kernel of a FIO K(x, y) = Ia,ϕ(x, y) for a ∈ Sm(X ×
Y ×ṘN) and ϕ(x, y, θ) a phase in the (x, y, θ) variables. From Theorem 3.6.2, we deduce
that

WF ′(Ia,ϕ) ⊂
{(
x, ϕ′x(x, y, θ); y,−ϕ′y(x, y, θ)

)
s.t. ϕ′θ = 0, θ 6= 0

}
WFX(Ia,ϕ) ⊂

{(
x, ϕ′x(x, y, θ)

)
s.t.

(
x, ϕ′x(x, y, θ); y, 0

)
∈ WF (Ia,ϕ)

}
WF ′Y (Ia,ϕ) ⊂

{(
y,−ϕ′y(x, y, θ)

)
s.t.

(
x, 0; y,−ϕ′y(x, y, θ)

)
∈ WF (Ia,ϕ)

}
.

When ϕ is a phase in the (y, θ) variables, i.e., when dy,θϕ 6= 0, then ϕ′θ = 0 and
ϕ′y(x, θ) = 0 together is not possible for θ 6= 0. We thus deduce that WFX(Ia,ϕ) = ∅.

Similarly, when ϕ is a phase in the (x, θ) variables, i.e., when dx,θϕ 6= 0, then ϕ′θ = 0
and ϕ′x(x, θ) = 0 together is not possible for θ 6= 0. We then deduce that WF ′Y (Ia,ϕ) = ∅.

In the latter case, we have then seen in Theorem 3.3.1 that A mapped E ′j(Y ) to
D′k(X) so that Au(x) was defined in D′(X) for all u ∈ E ′(Y ).

Theorem 3.6.3 Let a ∈ Sm(X × Y × RN) and ϕ ∈ C∞0 (X × Y × ṘN) a phase in the
(x, θ) variables, i.e., dx,θϕ 6= 0 for all y ∈ Y . Let A be the FIO defined in (3.12) with
Schwartz kernel K(x, y) = Ia,ϕ(x, y). Then for u ∈ E ′(Y ), we have Au ∈ D′(X) and

WF (Au) ⊂ WF ′(K)
(
WF (u)

)
∪WFX(K) = WF ′(K)

(
WF (u) ∪OY

)
. (3.28)

Proof. By assumption ϕ is a phase in the (x, θ) variables for all y so that Au is
defined in D′(X) for all u ∈ E ′(Y ). Once Au(x) is defined as a distribution, we wish to
understand its microlocal support. We want to prove that

WF (Au) ⊂ WF ′(K)
(
WF (u)

)
∪WFX(K) = WF ′(K)

(
WF (u) ∪OY

)
,

the latter set being given by

ΓAu = {(x, ξ); (x, ξ, y,−ζ) ∈ WF (K) and (y, ζ) ∈
(
WF (u) ∪OY

)
}.

Let (x0, ξ0) 6∈ ΓAu. We want to show that (x0, ξ0) 6∈ WF (Au). Let φ(x) ∈ C∞0 (X) of
sufficiently small support in the vicinity of x0 with φ(x0) = 1. Then, using the Parseval
identity,

φ(x)Au(x) =

∫
φ(x)K(x, y)u(y)dy, φ̂Au(ξ) =

1

(2π)nX

∫
φ̂K(ξ,−ζ)û(ζ)dζ.

We want to analyze the decay properties of φ̂Au(ξ) as |ξ| → ∞ in a conic vicinity of ξ0.
Such estimates require that we localize the y variable. We introduce a (locally finite)
partition of unity φj(y) such that

∑
j φ

2
j(y) = 1 and obtain that

φAu(x) =
∑
j

∫
Kj(x, y)uj(y)dy, Kj(x, y) = φ(x)K(x, y)φj(y), uj(x, y) = u(y)φj(y).
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The choice of the functions φj and φ is as follows.
Since (x0, ξ0) 6∈ ΓAu, we have that ΓK(x0, ξ0, y)∩Γu(y) = ∅ for all y ∈ Y . The result

remains true, i.e., ΓK(x, ξ, y) ∩ Γu(y) = ∅, for all y ∈ Y and all (x, ξ) in a conic vicinity
of (x0, ξ0). We assume that φ(x) is supported in that vicinity. Now for ζ ∈ Γu(yj),
we deduce from the fact that WF (K) is closed that ζ 6∈ ΓK(x, ξ, y) for (x, ξ, y) in a
sufficiently small neighborhood of (x0, ξ0, yj). For Y compact, we find a finite number
of points yj and neighborhoods of yj where the functions φj are supported.

We denote by Γ̃j the set of (ξ, ζ) for ξ in the above conic vicinity of ξ0 and ζ such
that (y, ζ) ∈ WF (u)∪OY for y in the above vicinity of yj. By construction, Γ̃j is in the
vicinity of ξ0× (WF (u)|y=yj ×{0}). We denote by Γj the set of (ξ, ζ) such that there is
a x and y in the vicinities of x0 and yj, respectively, so that (x, ξ, y,−ζ) ∈ WF (K). By
construction, Γj is in the vicinity of WF ′(K)|x=x0,y=yj . Since ΓK(x0, ξ0, yj)∩Γu(yj) = ∅,
the above construction shows that Γj ∩ Γ̃j = ∅.

We then have by the Parseval identity

φ̂Au(ξ) =
1

(2π)nX

∑
j

∫
K̂j(ξ,−ζ)ûj(ζ)dζ.

Each term is treated in the same way. We consider ξ in the above vicinity of ξ0.
Define pj ∈ C∞(ṘnY ) a function homogeneous of degree 0 (i.e., a function pj(ζ) =
pj(

ζ
|ζ|)) such that pj(ζ) = 1 for ζ ∈ WF (u)y∈supp φj and pj(ζ) = 0 for (ξ,−ζ) ∈

WF (Kj)(x,y)∈supp φ×supp φj . Then we find that∣∣∣ ∫ K̂j(ξ,−ζ)ûj(ζ)pj(ζ)dζ
∣∣∣ ≤ C

∫
〈ξ〉−k〈ζ〉−k〈ζ〉qdζ ≤ C〈ξ〉−k,

where k is arbitrary large enough for some fixed q that exists for the distribution uj.
Define vj(ζ) = (1− pj(ζ))ûj(ζ), which is a function that is bounded by Cq〈ζ〉−q for

any q by construction of pj. Since (ξ, 0) 6∈ WF (Kj)(x,y)∈supp φ×supp φj by construction,
we find that for ε sufficiently small and all k > 0,

|K̂j(ξ,−ζ)| ≤ Ck〈ξ〉−k, on |ζ| < ε|ξ|.

For the distribution Kj, we also have the uniform bound |K̂j(ξ,−ζ)| ≤ (〈ξ〉+ 〈ζ〉)Q. We
thus find that∣∣∣ ∫ K̂j(ξ,−ζ)vj(ζ)dζ

∣∣∣ ≤ Ck〈ξ〉−k + C

∫
|ζ|>ε|ξ|

(〈ξ〉+ 〈ζ〉)Q|vj(ζ)|dζ.

Since |vj(ζ)| ≤ Cq〈ζ〉−q for any q, we obtain a bound of the form Ck〈ξ〉−k for all k. This

shows that for this choice of ξ, we have |φ̂Au(ξ)| ≤ Ck〈ξ〉−k for all k, which implies that
(x0, ξ0) 6∈ WF (Au).

Remark 3.6.4 The above theorem is written for an FIO of the form (3.12). However,
the proof extends to any operator A with Schwartz kernel K satisfying the hypotheses of
the theorem. The main additional difficulty for more general operators is to prove that
Au is indeed a distribution when u is a distribution satisfying appropriate constraints.
In the above theorem, this issue was solved by assuming that ϕ was a phase in the
variables (x, θ) so that Theorem 3.3.1 applies.
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Remark 3.6.5 When ϕ is a phase in the variables (y, θ), then WFX(K) = ∅, so that

WF (Au) ⊂ WF ′(K)(WF (u)) =
{

(x, ξ); (x, ξ, y,−ζ) ∈ WF (K) and (y, ζ) ∈ WF (u)
}
.

This is one of the main results of the chapter. It describes the possible set of singularities
of WF (Au). Now, operators of the form A may not always preserve all singularities.
The operators that do so are the elliptic ones. We are still several steps away from being
able to obtain such a result.

When A is a ΨDO , then ϕ(x, y, θ) = (x− y) · θ and we find that

WF (KA) ⊂ N∗∆ := {(x, ξ;x,−ξ), x ∈ X, ξ ∈ Ṙn}. (3.29)

Since clearly WF ′Y (KA) = ∅ and WFX(KA) = ∅, we find that for u ∈ D′(X), we have

WF (Au) ⊂ WF (u). (3.30)

This important result shows that ΨDO do not propagate µlocal singularities.

Let us conclude with a few remarks on the propagation of singularities. In all above
estimates, we obtain thatWF (Au) is included inWF ′(A)WF (u), not that it is equal to it
as a set. Inclusion is sometimes (often) strict, even for ΨDO . For instance, consider the
ΨDO P = −∂x1∂x2 in two space dimensions. Consider the function f(x) = H(x1)H(x2),
where H is the Heaviside function. Verify that

WF (f) = {(0, x2; ξ1 6= 0, 0)} ∪ {(x1, 0; 0, ξ2 6= 0)} ∪ {(0, 0; ξ 6= 0)}

whereas WF (Pf) is given by only that last component of the union. Singularities are
therefore possibly destroyed by operators. Incidentally, P is a wave operator in the
diagonal variables so that the Cartesian axes form the light cone associated to that
operator (Exercise!).

Now, let us consider an operator A with a relation WF ′(A) and let us assume the
existence of a parametrix Q, i.e., a FIO such that QA = I + R with R a smoothing
operator, and let us assume that we can verify that WF ′(Q) is an inverse relation of
WF ′(A) in the sense that WF ′(Q)WF ′(A) = WF ′(A)WF ′(Q) = I. Then,

WF (u) = WF (QAu) ⊂ WF ′(Q)WF (Au) ⊂ WF ′(Q)WF ′(A)WF (u) = WF (u)

so that all inclusions are equalities. It remains to apply WF ′(A) to obtain that

WF (Au) = WF ′(A)WF (u). (3.31)

For the Radon transform, we know that an inverse exists, and we can write it as a FIO
whose canonical relation is clearly the inverse of that of the Radon transform. The
above relation then holds. In the case of a generalized Radon transform considered in
the next chapter, we will construct such a parametrix Q and show that the canonical
relations are indeed inverse to each-other. In general, obtaining such a result is not
straightforward. The remainder of this chapter consider (relatively simple) situations
where such a statement can be made.
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3.7 Critical sets and Lagrangian manifolds

The critical set Cϕ plays an important role in the preceding propagation of singularities.
In order to propagate such singularities back to their original domain of definition, we
need to apply additional transforms to Au, for instance an adjoint transform. We then
would like the product of two FIO to be a FIO. We impose some constraints so that a
reasonable such calculus can be developed.

The first item is to understand the geometry of Cϕ better. Let g(x, θ) = {gj(x, θ)}
with gj = ∂θjϕ for 1 ≤ j ≤ N . Cϕ is thus defined as g−1(0). We would like it to be a

reasonable geometric object, i.e., a sub-manifold of X × ṘN . We know this to be the
case when dg, the derivative of g, is surjective onto its image space, which is equivalent
to the derivatives dgj to be linearly independent. We introduce

Definition 3.7.1 (Non-degenerate phase function) Let Γ be a cone in X × ṘN .
We say that ϕ(x, θ) is non-degenerate on Γ when(

d
∂ϕ

∂θj

)
1≤j≤N

are linearly independent on Cϕ ∩ Γ.

This implies that Cϕ restricted to Γ is a sub-manifold of Γ of co-dimension N and hence
of dimension n, the dimension of X. It turns out that the main player in the theory of
FIO is not quite Cϕ but rather, as is apparent in (3.27), the following manifold.

Definition 3.7.2 (Lagrangian manifold) Consider the map

Cϕ 3 (x, θ) 7→ Tϕ(x, θ) = (x, ϕ′x) ∈ T ∗X\{0}.

We call Λϕ = Tϕ(Cϕ) the Lagrangian manifold.

We know that ϕ′x cannot vanish on Cϕ since ϕ is a phase. We verify that when ϕ is
non-degenerate, then Λϕ is a submanifold in T ∗X\0 for exactly the same reasons that
Cϕ is a submanifold of X × ṘN (Exercise!).

Moreover, Λϕ is indeed Lagrangian, which means the following. Consider the one
form α = ξdx on T ∗X. On Cϕ, we have ϕ′θ = 0 so that by homogeneity ϕ = θ · ϕ′θ = 0.
Thus, restricted to Cϕ, dϕ = 0 = ϕ′xdx + ϕ′θdθ = ξdx = 0. Therefore, on Λϕ, we have
α = ξdx = 0 so that the symplectic form −ω = dα = dξ ∧ dx itself vanishes on Λϕ. A
submanifold of T ∗X of dimension n such that ω|Λϕ = 0 is called Lagrangian.

The following result, which we state without proof or even derivation, justifies the
introduction of the Lagrangian manifold. Let ϕ(x, θ) and ϕ̃(x, θ̃) be non-degenerate

phase functions in the vicinity of (x0, θ0) ∈ X × ṘN and (x0, θ̃0) ∈ X × ṘÑ . Note that
N and Ñ may differ. Let Cϕ and Cϕ̃ be the corresponding critical sets and Λϕ and
Λϕ̃ the corresponding Lagrangian, all manifolds of the same dimension n as X. Let
Λϕ = Λϕ̃, which means that the two phases generate the same sub-manifold of T ∗X.
Let now a(x, θ) be in Sµ(X × RN) with support close to (x0, θ0). Then there is an
amplitude ã(x, θ̃) supported in the vicinity of (x0, θ̃0) such that Ia,ϕ = Iã,ϕ̃. Moreover,

ã ∈ Sµ+ 1
2

(N−Ñ).
This result is based on an application of the stationary phase (and not the non-

stationary phase results we have obtained so far by introducing various operators Lt and
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integrations by parts). It has two consequences. First, it is the Lagrangian manifold
Λ ≡ Λϕ that is the main player in the propagation of singularities, something that was
already apparent in (3.27), which states that WF (Ia,ϕ) ⊂ Λ. Second, it is not the order
of the symbol a that directly indicates the smoothing properties of Ia,ϕ since the former
depends on N while the latter should only depend on ϕ via Λ.

3.8 Local theory of FIO

Let us now come back to the definition of FIO A with kernel in D′(X × Y ). More
precisely, let ϕ(x, y, θ) be a non-degenerate phase function in (a conic open subset of)
X × Y × RN and a(x, y, θ) an amplitude in (a corresponding conic open subset of)
Sµ(X × Y × RN). Let Λ = Tϕ(Cϕ) be the associated Lagrangian manifold, given by

Λ = {(x, ξ; y, ζ) ∈ T ∗X × T ∗Y \0, (x, y, θ) ∈ Cϕ, ξ = ϕ′x(x, y, θ), ζ = ϕ′y(x, y, θ)}

(or its restriction to an open conic subset Γ of T ∗X × T ∗Y \0). Both Cϕ and Λ are
manifolds of dimension nX + nY since ϕ is non-degenerate.

We denote by Λ′ the set of points (x, ξ; y, ζ) such that (x, ξ; y,−ζ) ∈ Λ. Note that Λ is
a Lagrange manifold in the sense that ωx⊗−ωy is a symplectic form in T ∗X×T ∗Y \0 that
vanishes when restricted to Λ (Exercice!); such an object is also called a homogeneous
canonical relation from T ∗Y to T ∗X. This relation is not necessarily a graph, in the
sense that (y, ζ) is not necessarily in relation with only one element (x, ξ).

We are now ready to define our classes of FIO.

Definition 3.8.1 (Classes of FIO) Let ϕ(x, y, θ) be a non-degenerate phase function
on X × Y × ṘN and a(x, y, θ) an amplitude in (a corresponding conic open subset of)
Sµ(X × Y × RN) with µ = m + nX+nY

4
− N

2
for m ∈ N. Let Λ be the associated

Lagrangian manifold. We define Im(X × Y ; Λ′) as the FIO from E ′(Y ) to D′(X) with
Schwartz kernel

Ia,ϕ =

∫
eiϕ(x,y,θ)a(x, y, θ)dθ.

Here, nX and nY are the dimensions of X and Y , respectively.

We have seen that the presence of m − N
2

in µ was dictated by the fact that a
Lagrangian may be represented by phases with different numbers of phase variables.
In the case of a ΨDO , where nX = nY = N , we observe that m = µ so that m
indeed represents the number of derivatives of the operator A. For Radon transforms,
nX = nY = n and N = 1 so that µ = m + n−1

2
. Since m = 1−n

2
corresponds to the

correct regularization by n−1
2

derivatives, we do obtain that µ = 0.
Now that we have our class of FIO, we can consider composing them, so that objects

such as A∗A may be identified as FIO (or better yet ΨDO possibly). A first issue is that
operators so far map compactly supported distributions to arbitrary distributions. We
thus assume that all operators are properly supported. What this means is that, up to
a modification in S−∞, our FIO maps compacty supported distributions to compactly
supported distributions. A necessary condition is that the phase be properly supported
in the following sense. For any compact K in X and x ∈ K, there is a compact K ′ such
that for all (x, y, θ) ∈ Cϕ, then y ∈ K ′. Assume the same reverting the roles of X and
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Y . Seeing Cϕ as a relation from X to Y or vice-versa, we essentially impose that C−1
ϕ

of a compact set is compact, or heuristically that infinity is mapped to infinity. These
notions of proper support allow us to assume that A and its adjoint A∗ are properly
supported, i.e. map arbitrary distributions to arbitrary distributions and compactly
supported distributions to compactly supported distributions. From now on, we assume
all operators to be properly supported.

We can now state the main result on the composition of FIO.

Theorem 3.8.2 (Local composition of FIO) Let Xj be open domains of dimension
nj for j = 1, 2, 3 and let Aj ∈ Imj(Xj, Xj+1,Λ

′
j) for j = 1, 2 properly supported. We see

Λ′j as homogeneous canonical relations from T ∗Xj+1 to T ∗Xj. The FIO Aj are defined

by non-degenerate phase functions ϕj in a cone Γj ⊂ Xj ×Xj+1 × ṘNj and amplitudes
aj ∈ Sµj(Xj ×Xj+1 × RNj) supported in Γj, where µj = mj + 1

4
(nj + nj+1 − 2Nj).

Let us define ϕ3(x1, x3;x2, θ1, θ2) = ϕ1(x1,
x2
|θ| , θ1) + ϕ2(x2|θ| , x3, θ2) where we have de-

fined |θ| =
√
|θ1|2 + |θ2|2.

We assume: (i) that ϕ3 is a phase, which is equivalent to the fact that Λ′1 ◦ Λ′2 ∈
T ∗(X1)× T ∗(X3)\0 (the \0 is what matters to show that dϕ3 6= 0).

We assume: (ii) that ϕ3 is a non-degenerate phase function, which means that the
differentials d(ϕ3)′y,θ,σ are of maximal rank N1 + N2 + n2 (i.e. linearly independent).
Geometrically, this is equivalent to proving that Λ′2×Λ′1 intersects the manifold T ∗X3×
(DiagT ∗(X2))× T ∗X1 transversally (in the very large T ∗X3 × T ∗X2 × T ∗X2 × T ∗X1).

Then, the operator A1 ◦ A2 is a FIO in Im1+m2(X1, X3,Λ
′
1 ◦ Λ′2) associated to the

phase ϕ3 for an amplitude a3 in Sµ1+µ2−n2(X1×X3×RN1+N2+n2). The latter amplitude
has a leading term (of maximal order) given by

a30(x1, x3, x2, θ1, θ2) = ca1(x1,
x2

|θ|
, θ1)a2(

x2

|θ|
, x3, θ2)|θ|−nY ,

with c = c(n1, n2, n3, N1, N2) a normalizing constant.

We say that two sub-manifolds M and N of a manifold P intersect transversally if at
each point x in M ∩N , the span of the tangent spaces TxM and TxN fills the whole of
TxP . Verifying this assumption in practice, i.e., that ϕ3 is a non-degenerate phase, is
often not straightforward. Luckily, this verification simplifies in a number of interesting
cases we will consider shortly.

Before doing so, let us make a few remarks. The normalization in x2/|θ| occurs
so that ϕ3 becomes homogeneous of degree 1 in (x2, θ1, θ2). That (x2, θ1, θ2) play the
role of phase variables is natural in the formal composition of two FIOs. However,
N1 +N2 + n2 is often not the smallest possible dimension of phase variables to describe
the canonical relation Λ′1 ◦Λ′2. Indeed, the composition of two ΨDO leads to a ΨDO as
we will indicate shortly. The form of the amplitude for a30 results from an application
of stationary phase; see a little more detail in the appendix.

We now consider cases where the verification of the above assumptions tremendously
simplifies.

Theorem 3.8.3 (Composition with ΨDO ) Let A1 and A2 be two FIO as described
above with one of them being a ΨDO . Note that a ΨDO is a FIO associated with a
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(x, y, θ) ∈ Cϕ

T ∗X\0 3 (x, ϕ′x) (y,−ϕ′y) ∈ T ∗Y \0

pϕ qϕ

Λ′ ≡ pϕ ◦ q−1
ϕ

Figure 3.1: Projections from the critical set Cϕ = {ϕ′θ = 0} to the cotangent spaces of
the homogeneous canonical relation Λ′ (with q−1

ϕ seen as a relation, not necessarily a
map unless (3.32) holds).

diagonal canonical relation Λ′ = {(x, ξ; y, ζ), y = x, ζ = ξ}. The above transversality
condition is then always satisfied and the canonical relation of the product A1A2 or A2A1

is always that of the FIO.

This is an important result, which may proved in an easier way than applying the above
composition essentially by means of stationary phase and appropriate Taylor expansions;
see appendix. We thus observe that the composition of ΨDO is a ΨDO as well. This
gives an example where the phase of the composition A1 ◦A2 is described by n variables
and not N1 +N2 +n2. When the symbols of FIOs do not depend on the middle variable
x2, it is then straightforward to see that 2n variables simplify since the integral of eix2·ξ2

in both variables x2 and ξ2 results in a constant. When the symbols depend on x2,
applying stationary phase becomes necessary.

The last type of results we wish to consider aim to form the product A∗A and prove
that the latter is a ΨDO for A ∈ Im(X, Y,Λ′). This is simply incorrect in general,
especially when the dimensions nX and nY do not agree. However, when nX = nY , we
may hope for the relation Λ′ mapping T ∗Y to T ∗X to be a bijection, at least locally. This
is again not always verified for arbitrary (non-degenerate) phases ϕ(x, y, θ). However,
it holds for phases such that appropriate mappings from Cϕ to T ∗X and T ∗Y are (at
least locally) bijective. Indeed, all manifolds are now of dimension 2n. That they are
locally bijective may then come from an application of the implicit function theorem.

More precisely, Let us come back to the definition of Cϕ as the set where ϕ′θ = 0.
Consider the map qϕ from Cϕ to T ∗Y associating the point (y, ζ = −ϕ′y). Defining g
as the map from (x, y, θ) to (y, ϕ′y, ϕ

′
θ), we wish to show that the equation g(x, y, θ) =

(y, 0, ζ) is uniquely solvable, which holds locally if the Jacobian of the transformation is

invertible, in other words if the determinant of the Jacobian
∂(ϕ′y ,ϕ

′
θ)

∂(x,θ)
has non-vanishing

determinant. This means

Det

ϕ′′xy ϕ
′′

xθ

ϕ
′′

yθ ϕ
′′

θθ

 6= 0. (3.32)

When the above constraint holds for all (x, y, θ) of interest, we thus obtain that qϕ is
locally invertible, or in other words that (y, ζ) may be used as coordinates on the 2n-
dimensional manifold Cϕ. The same contraint shows that the map pϕ from Cϕ to T ∗X
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mapping (x, y, θ) ∈ Cϕ to (x, ξ = ϕ′x) is invertible since the above determinant is also

that of the Jacobian
∂(ϕ′x,ϕ

′
θ)

∂(y,θ)
.

Note that the above diffeomorphisms are clearly local diffeomorphisms. Locally, they
imply that the canonical relation Λ′ from T ∗Y to T ∗X is given by the map pϕ ◦ q−1

ϕ .
We then say that the canonical relation is a canonical graph (see Fig. 3.1) and have the
following:

Theorem 3.8.4 (Composition with adjoints; canonical graphs) Let A = Ia,ϕ ∈
Im(X, Y,Λ′) properly supported with Λ′ given globally (after possibly shrinking X and Y )
by a canonical graph pϕ ◦ q−1

ϕ . Let Λ−
′
= (Λ−1)′ be the inverse canonical graph qϕ ◦ p−1

ϕ .
Then A∗ represented locally by the phase −ϕ(y, x, θ) and the amplitude a∗(y, x, θ) is a
FIO in Im(Y,X,Λ−

′
). Moreover, A∗A is a ΨDO in I2m(Y, Y, (N∗∆)′) where N∗∆ =

{(y, ζ; y,−ζ}. Moreover, A is continuous from Hs(Y ) to Hs−m(X) while the normal
operator A∗A is continuous from Hs(Y ) to Hs−2m(Y ).

To complete our analysis of the Radon transform or similar transforms, we need one
last result on the analysis of ΨDO and their approximate inverses.

3.9 Elliptic FIO and Elliptic ΨDO

The main results we need from the theory of Elliptic ΨDO is the following.
Recall that a ΨDO is given by

Au(x) =

∫
ei(x−y)·θa(x, y, θ)u(y)dydθ

for an amplitude a ∈ Sm(X × X × Rn). Let us still denote by Im(X) the space of
such operators. As before, we assume that the operators are properly supported so that
composition of such operators are well defined.

A first result allows one to simplify the symbol by eliminating the y− (or x−)
dependence.

Theorem. Let A ∈ Im(X) properly supported. Define b(x, ξ) = e−ix·ξA(eix·ξ),
the conjugation of A with the exponential function eix·ξ. Then b ∈ Sm(X), is given
asymptotically by

b(x, ξ) ∼
∑
α∈Nn

i−|α|

α!
(∂αξ ∂

α
y a(x, y, ξ))|y=x.

Moreover, A is a ΨDO with symbol b(x, ξ) (instead of a(x, y, ξ)).
Let now A and B be two ΨDO in Ip and Iq, respectively. Then AB is a ΨDO in

Ip+q and we have the following relation. Assume that the symbols of A and B are given
by a(x, ξ) and b(x, ξ), respectively. Then the symbol of AB is c(x, ξ) ∈ Sp+q(X) and we
have

c(x, ξ) ∼ (a#b)(x, ξ) ∼
∑
α∈Nn

i−|α|

α!
∂αξ a(x, ξ)∂αx b(x, ξ).

This is the definition of a#b, which we observe is a unique symbol in Sp+q(X) up to an
element in S−∞(X).

Let us now introduce the notion of ellipticity.
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Definition 3.9.1 (Elliptic ΨDO ) We say that a ΨDO A ∈ Sm(X) is elliptic if its
symbol a = a(x, ξ) verifies

|ξ|−m|a(x, ξ)| ≥ C > 0 uniformly in x and |ξ| > R

for some R ≥ 0.

Note that we can always modify a(x, ξ) on |ξ| < 2R such that a(x, ξ) remains in Sm(X)
and a(x, ξ) satisfies the above condition with R = 0. The modification involves a
correction in S−∞(X).

Then we have:
Theorem. Let A ∈ Im(X) be an elliptic ΨDO . Then there exists an elliptic ΨDO B
such that BA ∼ I, i.e., BA = I −R with an operator in I−∞(X).

The operator B is called a parametrix for A. It serves as an inverse for A as far as
singularities are concerned.

let us now return to general FIO. Let A ∈ Im(X, Y,Λ′) with symbol a(x, y, θ) and
let us assume again that A is elliptic, which means:

Definition 3.9.2 (Elliptic FIO) We say that a FIO A ∈ Im(X, Y,Λ′) is elliptic if its
symbol a = a(x, y, θ) ∈ Sµ(X, Y,RN for µ = m+ 1

4
(nX + nY − 2N) verifies

|θ|−µ|a(x, y, θ)| ≥ C > 0 uniformly in (x, y) ∈ X × Y and |θ| > R

for some R ≥ 0.

As for ΨDO , we may modify a so that the order of A does not change and a satisfies
the above constraint with R = 0.

Let us now assume that the canonical relation Λ′ is a graph, i.e., ϕ is a non-degenerate
phase in (x, θ) and (y, θ) and (3.32) holds.

The using the preceding results, we find that A∗A is well defined and is a ΨDO .
When a is elliptic, then the symbol of A∗A is also elliptic by application of the stationary
phase (this is a theorem).

We therefore obtain the existence of a parametrix Q such that QA∗A ∼ I. This pro-
vides an inversion for A∗ up to a smoothing term. As for the propagation of singularities,
we are finally in a position to answer the question of inclusions.

First, consider an elliptic ΨDO P with parametrix Q. Then

WF (u) = WF (QPu) ⊂ WF (Pu) ⊂ WF (u), so that WF (Pu) = WF (u).

Now, let A be an elliptic FIO with Λ′ as a (global) canonical graph. Then

WF (u) = WF (QA∗Au) = WF (A∗Au) ⊂ Λ−
′
WF (Au) ⊂ Λ−

′
Λ′WF (u) = WF (u).

This clearly implies that
WF (Au) = Λ′WF (u).

This is our final and most useful result. Let us assume that Λ′ is a global canonical
graph (which may always be achieved from the local result provided X and Y are appro-
priately restricted). Then for any elliptic FIO A, we have that the µlocal singularities
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WF (Au) are exactly the mapping of the µlocal singularities WF (u) propagated by the
canonical relation (a graph) Λ′.

The Radon transform is an example of such a transform, with a global canonical
graph (provided we quotient by the 2−1 maps appearing because of the double covering
of hyperplanes appearing naturally in the parametrization in (s, θ) (Exercise!)). The
singularities (x, ξ) of u are therefore exactly mapped to the singularities (s, θ, ds, dθ)
obtained from the canonical relation.

3.10 Local tomography and partial data

Let S be the square root of the Laplacian defined by

S = F−1|ξ|F . (3.33)

Then we observe that (cnR
∗R)−1 = Sn−1, or in other words,

I = Sn−1cnR
∗R, cn =

π

(2π)n
. (3.34)

This provides an alternative formula to the inversion of the Radon transform with the
inverse operator R−1 = cnS

n−1R∗.
Note that the application of the operator R∗ is local in this sense: to calculate R∗g at

x in (3.24), we need to know g(s, ϑ) for all (s, ϑ) corresponding to hyperplanes passing
through that specific point x. In odd dimensions n = 1+2k, the operator Sn−1 = (−∆)k

is also local as a differential operator. In even dimension, and in the practical case of
dimension n = 2, then Sn−1 is not local. However, Sn−2 and Sn are local operators.

Λ-tomography, or local tomography consists of reconstructing functions by applying
only local operators in the sense described above. Let us assume n = 2 for concreteness.
The two main functions that are reconstructed in practice in local tomography from
knowledge of Rf are

Sf = cnS
2R∗Rf, S−1f = cnR

∗Rf.

Since both S and S−1 are ΨDO (up to regularization in the vicinity of ξ = 0), we find
that

sing supp Sf = sing supp S−1f = sing supp f.

In other words, all the singularities of f are captured by both Sf and S−1f . Since S
is a ΨDO or order 1 (with its harmless singular amplitude at ξ = 0), they have been
amplified in Sf (by one derivative) and attenuated in S−1f = cnR

∗Rf (also by one
derivative).

When Rf(s, θ) is available on R×S1, then local tomography may not be very useful
as the exact f may be reconstructed by either (2.16) or (3.34). However, it becomes a
very powerful tool in the presence of limited data. Moreover, when Rf(s, θ) is available
for only a subset of lines (s, θ), then the explicit formulas may no longer be the most
desirable as they involve unknown information.

We now present some conditions under which the singular support of f may be re-
constructed. Let χ(s, θ) ∈ C∞0 (R×S1) be a function equal to 1 on the set of singularities
of Rf , in other words, from (3.23)

χ(s, θ) = 1 on {(s, θ) ∈ R× S1 s.t. s = x · ϑ for some x ∈ sing supp f}.
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We now have for all k ∈ Z,

SkcnR
∗χRf = SkcnR

∗Rf + SkcnR
∗(1− χ)Rf = Sk−1f + SkcnR

∗(1− χ)Rf

Since χ = 1 on the singular support of Rf , we deduce that (1− χ)Rf ∈ C∞(R× S1), in
other words, we have that

sing supp SkR∗χRf = sing supp f. (3.35)

Choosing k even provides a local reconstruction since SkR∗χ is a local operator using
only available data and providing the exact local for all the singularities of the original
function f .

The tools based on the propagation of singular support are not sufficiently precise
to address the following problems. Let us assume that f has a given singular support,
or even more precisely a given microlocal support. What are the minimal conditions
on the set of available data so that f may be reconstructed up to a smooth term? Let
us consider a similar problem. Assume that f = f1 + f2 with f1 and f2 having disjoint
microlocal support and that the set where Rf is measured captures the singularities
of Rf1 as prescribed by the above propagation of singularity results. Can we find an
algorithm that reconstructs the singularities of f1 and none of f2?

The answer to both problems can be satisfactorily obtained by the results on prop-
agation of wave front sets. Note that the notion of singular support is not sufficient
because the singular support of Rf1 and Rf2 may overlap even if those of f1 and f2 do
not: it is clear that there are lines (s, θ) such that s = x1 · ϑ and s = x2 · ϑ so that
singularities at disjoint places x1 and x2 will propagate to singularities at the same place
(s, θ).

Let us recall that the phase and amplitudes for the Radon transform are given by
ϕ = (s− x · ϑ)σ and a = (2π)−1. The WF of the kernel Ia,ϕ is thus given by

WF ′(Ia,ϕ) = {(x · ϑ, ϑ, σ,−Πϑxσ;x, σϑ)} (3.36)

using the parametrization of Cϕ in (ϑ, x;σ) knowing that s = x ·ϑ. Here, Πϑ represents
the projection onto the hyperplane orthogonal to ϑ.

Using the parametrization of Cϕ using the variables (x, ξ) ∈ T ∗R2, we find

WF ′(Ia,ϕ) = {(x · ξ̂, ξ̂, |ξ|,−Πξ̂x|ξ|;x, ξ)}.

We know that the canonical relation is a local graph. Identifying (s, ϑ) with (−s,−ϑ) on
Z, we obtain that the canonical relation is a global graph in the variables (x, ξ) (so that
the above reflects pϕ ◦ q−1

ϕ ). For completeness, let us look at qϕ ◦ p−1
ϕ ) and parametrize

the manifold by (s, ϑ;σ, ζ) to get (with σ > 0)

WF ′(Ia,ϕ) = {(s, ϑ, σ, ζ; sϑ− σ−1ζ, σϑ)}.

All the information about the propagation of micro-local support in the Radon trans-
form is encoded in the above relations. Now, let f be a given source with wavefront
set WF (f). Let Sf be an open set in Z that includes all points (x · ξ̂, ξ̂) such that
(x, ξ) ∈ WF (f), i.e., an open set including Π(s,ϑ)WF ′(Ia,ϕ)WF (f), the projection on Z
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of WF ′(Ia,ϕ)WF (f). Then we claim that the above set of measurements is essentially
optimal for a given WF (f). Indeed, assuming that Sf does not include all such points
(s, θ). Then the singularity of f at a point (x, ξ) is not visible in the available data set
and therefore cannot be reconstructed.

Now, for such Sf , we can construct an other open set S̃f still including the points
Π(s,ϑ)WF ′(Ia,ϕ)WF (f) and such that its closure belongs to Sf (by Urysohn’s lemma,
there is always room between an open set and a closed subset). Such gimmicks are
necessary to guarantee that we can introduce smooth cut-offs. More precisely, still by
Urysohn, we can construct a smooth function p(s, ϑ) such that equal to 1 on S̃f and
equal to 0 on the complement of Sf . Therefore, our data set allows us to construct
p(s, ϑ)Rf . Now

R−1p(s, ϑ)Rf = f + R−1(1− p(s, ϑ))Rf.

The latter term is clearly smooth since the singular support of Rf is included S̃f . So,
we have achieved our goal: find the smallest set of measurements (modulo the fact that
it needs to be open) cinlduing the projection onto Z of the propagation of singularities
in the micro-local support of f . All we have to do then is to apply the inverse Radon
transform. The reconstructed image f + g will be very different form f . However, all
singularities of f will be reconstructed procisely (both in location and in amplitude)
since g is smooth.

Note that we may combine local data and local tomography since

SkcnR
∗p(s, ϑ)Rf = Sk−1f + Skcn(1− p(s, ϑ))Rf,

with Sk local for appropriate values of k tand the second term on the right-hand side
still smooth. The mocro-local support of the singularities of f will be reconstructed,
though obviously not with the right amplitude.

Let us consider a refinement of the preceding ideas. Assume now that f = f1 + f2

and that WF (f1)∩WF (f2) = ∅. We wish to reconstruct the singularities of f1 and not
those of f2. We also assume that the available data set includes all singularities of f1.
We cannot introduce a local cut-off p(s, ϑ) since the singular supports of f1 and f2 may
intersect (think of fj as indicatrix functions of domains Ωj such that their boundaries
intersect transversally, i.e., at each point of intersection of the boundaries, the normal
unit vectors are not colinear).

However, such a separation exists in the phase space (cotangent bundle) by as-
sumption. Define Tj = WF ′(Ia,ϕ)WFfj the two propagated wavefront sets, which by
assumption do not meet. Let us parametrize T ∗Z by (y, ζ) (this can be done using
two charts for Sn−1 and a partition of unity). In these variables, we can now find an
amplitude a(y, ζ) ∈ S0 such that a = 1 in T1 and a = 0 in T2 (again by Urysohn). Let
P be the microlocal localization operator given by the ΨDO with kernel∫

Rn
ei(z−y)·ζa(y, ζ)dζ.

Let us now compute

cnS
kR∗PRf = Sk−1f1 + cnS

kR∗PRf2 + cnS
kR∗(I − P )Rf1
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The second and third terms are smooth since PRf2 and (I − P )Rf1 are smooth by
construction. WIth k = 1, we reconstruct f1 up to the addition of a smooth term. Note
that the singularities of f2 are entirely gone. We could make the game a little more
complex by choosing a(y, ζ) a more general function of ζ amplifiying or damping some
singularities at will.

Exercise 3.10.1 Show that provided that the singularites of f1 propagate to the set of
available measurements, we can achieve a reconstruction of Sk−1f1 up to smooth terms
by applying cnQS

lR∗p(s, ϑ) to the available data, for an appropriate ΨDO Q in the image
space (space of positions x).

It is a general result, called the Egorov theorem, that for A and FIO with canonical
relation a graph and P a ΨDO , we can find a ΨDO Q such that AP−QA is a smoothing
operator. Moreover, the symbols of P and Q are related to each-other by the canonical
relation associated to A; see [33, 36].



Chapter 4

Integral Geometry. Generalized Ray
Transform

This chapter focuses on the (weighted) integration of functions along a family of two
dimensional curves. This integral geometry problem, which may be seen as a gener-
alization of the Radon transform and the attenuated Radon transform is described in
section 4.1. Proving the injectivity of such integral transforms is a difficult problem. We
saw in Chapter 2 how the method of unique/analytic continuation was used to obtain
the injectivity of the Attenuated Radon transform. In that chapter, we mentioned Jan
Boman’s example of a weighted Radon transform that was not injective. In section
4.3 of this chapter, we present another method based on energy estimates and due to
Mukhometov [44] (see also [54]) that shows that the integral transform is injective for
a wide class of families of curves.

The integral transforms will be written in the language of the oscillatory integrals and
Fourier Integral Operators introduced in the preceding chapter. Because of the explicit
structure of the transforms, however, a lot of the theoretical difficulties presented in
the preceding chapter without proof can be bypassed. In particular, the composition
of FIO will turn out to be explicitly computable. We will also bypass the calculus of
elliptic ΨDO by developing the tools we need. We will also revisit the notions of local
tomography and partial data as we did for the Radon transform.

4.1 Generalized Ray Transform in two dimensions.

4.1.1 Family of curves.

We consider the following family of curves

R 3 t 7→ x = z(t, s, ϑ) ∈ R2, (s, ϑ) ∈ R× S1. (4.1)

We assume that curves are traveled along with unit speed so that |dz
dt
| = 1. We will

make several assumptions on the curves as we proceed.
Define y = (t, s) so that z = z(y, ϑ). We assume that the map y 7→ z(y, ϑ) is

globally invertible for all values of ϑ with inverse z̃ so that

z(z̃(x, ϑ), ϑ) = x, z̃(z(y, ϑ), ϑ) = y.

63
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We denote the inverse function

z̃(x, ϑ) = (t(x, ϑ), s(x, ϑ)). (4.2)

The function s(x, ϑ) provides the unique curve to which x belongs for a fixed ϑ, i.e.,
x ∈ z(R, s(x, ϑ), ϑ).

For the Radon transform corresponding to integration along straight lines, we have

z(t, s, ϑ) = sϑ⊥ + tϑ, s(x, ϑ) = x · ϑ⊥.

This corresponds to a parameterization of the set of lines where ϑ is the vector tangent

to the line and ϑ⊥ =

(
0 −1

1 0

)
ϑ is the vector ϑ rotated by π

2
. This notation generalizes

to the multi-dimensional cases, where ϑ still parameterizes the direction of the lines.

4.1.2 Generalized Ray Transform.

The generalized Ray transform (GRT) is then the integral of functions over curves
(s, ϑ) 7→ z(t, s, ϑ):

Rf(s, ϑ) =

∫
R
f(z(t, s, ϑ))dt =

∫
R2

f(z(t, s0, ϑ))δ(s− s0)ds0dt

=

∫
R2

f(x)δ(s− s(x, ϑ))J(x, ϑ)dx,

(4.3)

where J(x, ϑ) is the (uniformly positive) Jacobian of the transformation x→ z̃(x, ϑ) at
fixed ϑ:

J(x, ϑ) :=
∣∣∣dz̃
dx

∣∣∣(x, ϑ) =
∣∣∣ds0dt

dx

∣∣∣(x, ϑ). (4.4)

Exercise 4.1.1 Check the change of variables in detail.

More generally, we considered weighted GRT of the form

Rwf(s, ϑ) =

∫
R
f(z(t, s, ϑ))w(t, s, ϑ)dt, (4.5)

where w(y, ϑ) is a given, positive, weight. Such integrals are of the same form as before:

Rwf(s, ϑ) =

∫
R
f(z(t, s, ϑ))w(t, s, ϑ)dt =

∫
R2

f(z(t, s0, ϑ))δ(s− s0)w(t, s0, ϑ)ds0dt

=

∫
R2

f(x)δ(s− s(x, ϑ))Jw(x, ϑ)dx,

with a different expression for J(x, ϑ):

J(x, ϑ) ≡ Jw(x, ϑ) :=
∣∣∣dz̃
dx

∣∣∣(x, ϑ)w(z̃(x, ϑ), ϑ). (4.6)
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To simplify, we shall use the notation J(x, ϑ) rather than Jw(x, ϑ) and RJ rather than
Rw. Thus generally, we consider an operator of the form

RJf(s, ϑ) =

∫
R2

f(x)δ(s− s(x, ϑ))J(x, ϑ)dx, (4.7)

where J(x, ϑ) is a smooth, uniformly positive, and bounded weight.
The objective of this section is to obtain a parametrix for the weighted GRT RJ . A

(left) parametrix is an opeartor PJ such that PJRJ = I − TJ , where TJ is a compact
operator. Provided that +1 is not an eigenvalue of KJ , then the Fredholm alternatives
guarantees that (I − TJ) is invertible. This provides the inversion procedure

f = (I − TJ)−1PJ(RJf).

A complete characterization of when +1 is not an eigenvalue of TJ is not known in
general, and Boman’s counter-example mentioned in Chapter 2 shows that RJ , and
hence I − TJ , may not be injective in some situations.

4.1.3 Adjoint operator and rescaled Normal operator

When J ≡ 1 and s(x, ϑ) = x · ϑ⊥, then RJ is the standard Radon transform in two
dimensions. We have obtained in Chapter 2 the inversion formula:

I =
1

4π
R∗JΛRJ , Λ = H

∂

∂s
.

We thus see the need to introduce the Riesz operator Λ and the adjoint operator R∗J .
In curved geometries, however, no explicit formula such as the one given above can be
obtained in general. We no longer have access to the Fourier slice theorem, which uses
the invariance by translation of the geometry in the standard Radon transform.

The adjoint operator (AGRT) for the L2 inner product on R× S1 is defined as

R∗Kg(x) =

∫
S1
g(s(x, ϑ), ϑ)K(x, ϑ)dϑ =

∫
R×S1

g(s, ϑ)K(x, ϑ)δ(s− s(x, ϑ))dϑds. (4.8)

The “normal” operator is thus given by

R∗KRJf(x) =

∫
R2×S1

f(y)K(x, ϑ)J(y, ϑ)δ(s(x, ϑ)− s(y, ϑ))dydϑ. (4.9)

Exercise 4.1.2 Check this.

We need to introduce H∂s to make the operator invertible from L2 to L2 as in the
case of the standard Radon transform. A simple way to do so is to recast the operators
as Fourier integral operators (FIOs) as follows. We formally recast the GRT and AGRT
as the following oscillatory integrals

RJf(s, ϑ) =

∫
R2×R

f(x)ei(s−s(x,ϑ))σJ(x, ϑ)
dxdσ

2π

R∗Kg(x) =

∫
R×S1×R

g(s, ϑ)e−i(s−s(x,ϑ))σK(x, ϑ)
dsdϑdσ

2π
.

(4.10)
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We then introduce the Riesz operator Λ = H∂s given by the Fourier multiplier |σ| in
the Fourier domain:

Λf(s) = H∂sf(s) = F−1
σ→s|σ|Fs→σf(s).

We thus have

ΛRJf(s, ϑ) =

∫
R2×R

f(x)|σ|ei(s−s(x,ϑ))σJ(x, ϑ)
dxdσ

2π
.

Exercise 4.1.3 Check this.

The “normal” operator for the weights J and K is then defined as

Ff(x) := R∗KΛRJf(x) =

∫
R2×S1×R

f(y)|σ|ei(s(y,ϑ)−s(x,ϑ))σK(x, ϑ)J(y, ϑ)
dydσdϑ

2π
. (4.11)

It remains to analyze such an operator. We shall have two main objectives: (i) find the
appropriate value for K(x, ϑ) that makes F an approximation of identity; and (ii) see
how RJ can be inverted in some specific cases.

We first observe that Ff(x) is real valued if we choose J and K to be real-valued.
The contribution from σ > 0 is the same as that from σ < 0 by complex-conjugating
(4.11). Thus,

Ff(x) =

∫
R2×S1×R+

f(y)ei(s(y,ϑ)−s(x,ϑ))σK(x, ϑ)J(y, ϑ)
dy σdσdϑ

π
. (4.12)

The variables (ϑ, σ) may be recast as ζ = σϑ in R2 so that ζ̂ = ϑ and |ζ| = σ. We
then recast the above operator as

Ff(x) =

∫
R2×R2

f(y)ei(s(y,ζ̂)−s(x,ζ̂))|ζ|K(x, ζ̂)J(y, ζ̂)
dydζ

π
. (4.13)

The phase and the amplitude are then defined as

ϕ(x, y, ζ) =
(
s(x, ζ̂)− s(y, ζ̂)

)
|ζ|, a(x, y, ζ̂) =

1

π
K(x, ζ̂)J(y, ζ̂). (4.14)

The phase is homogeneous of degree 1 in ζ since φ(x, y, tζ) = tφ(x, y, ζ) for t > 0.
The amplitude is here homogeneous of degree 0. Let us assume that f(y) is compactly
supported in the open domain X ⊂ Rn for n = 2 and without loss of generality that
Ff(x) is also reconstructed on X

We may thus recast the above operator as

Ff(x) =

∫
X×Rn

eiϕ(x,y,ζ)a(x, y, ζ)f(y)dydζ, ϕ(x, y, ζ) = φ(x, ζ)− φ(y, ζ) (4.15)

for φ(x, ζ) a phase function and a(x, y, ζ) ∈ Sm(X × X × Rn) with m = 0 in the
application to GRT.



4.2. PSEUDO-DIFFERENTIAL OPERATORS AND GRT 67

Our first objective is to prove that for an appropriate choice of K(x, ϑ), then F
may be decomposed as F = I − T where T is a compact, smoothing, operator. This
provides an approximate inversion to the generalized Radon transform and an iterative
exact reconstruction procedure in some cases. In general, however, it is difficult to show
that T does not admit 1 as an eigenvalue. This property is expected to hold generically.
But it may not hold or it may not be known how to prove it for specific transforms of
interest.

A second objective is therefore to look at the operator N = R∗JΛRJ , which is a self-
adjoint (normal) operator. We shall show that N is injective in some cases of interest
(using the Mukhometov technique) and that QN = I − T for some operator Q and
compact operator T . This will allow us to prove that N is an invertible operator in L2.
The generalized transform can then be inverted by means of, e.g., a conjugate gradient
algorithm. This provides an explicit reconstruction procedure that is guaranteed to
provide the correct inverse.

4.2 Pseudo-differential operators and GRT

We now analyze the operator F appearing in the analysis of the GRT. Note that the
operator is defined by means of the oscillatory integrals studied in section 3.1. We
will use the machinery developed in that section and expand it as necessary. The first
objective is to show that F is in fact a ΨDO up to a smooth perturbation for the specific
phase ϕ given in (4.14).

4.2.1 Change of phase (x− y) · ξ
We start by showing that singularities of f(x) at a point x0 do not propagate to singu-
larities in Ff(x) at any other point than x0 under general assumptions on the phase.

More specifically, let us assume that

ϕ′ζ(x, y, ζ) = 0 implies that x = y. (4.16)

Exercise 4.2.1 Show that the above constraint is satisfied for the Radon transform.
Show that this constraint is still satisfied for curves z sufficiently close to the straight
lines and for weights w sufficiently close to 1.

Let then χ0(x, y) = 1 when x = y and supported in the vicinity of x = y in the sense
that χ0(x, y) = 0 when |x− y| > δ for δ to be chosen arbitrarily small. Also we assume
that χ0 ∈ C∞(X × Y ). We define

F0f(x) =

∫
X×Rn

f(y)eiϕ(x,y,ζ)a(x, y, ζ)χ0(x, y)dydζ, F1 := F − F0. (4.17)

Since the critical set of φ is the diagonal {x = y}, we deduce from (3.20) in Theorem
3.4.3 that F1 maps C∞0 (X) to C∞(X).
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We now want to show that F0 is a pseudo-differential operator, namely that after an
appropriate change of variables, the phase ϕ(x, y, ζ) can in fact be recast as (x− y) · ξ.
Let us consider the identity

φ(x, ζ)− φ(y, ζ) = (x− y) ·
∫ 1

0

φ′x
(
tx+ (1− t)y, ζ

)
dt.

For x ∈ X given and y ∈ X sufficiently close to x, we thus wish to define the change of
variables

ξ = ξ(ζ;x, y) =

∫ 1

0

φ′x
(
tx+ (1− t)y, ζ

)
dt defined from Ṙn to Ṙn. (4.18)

We assume that ∣∣∣det
∂2φ

∂x∂ζ
(x, x, ζ)

∣∣∣ > 0 for all ζ ∈ Ṙn and x ∈ X. (4.19)

Exercise 4.2.2 For φ(x, ζ) = s(x, ζ̂)|ζ|, show that the above assumption is verified
when the family of lines z is sufficiently close to the straight lines.

Then by continuity and for y sufficiently close to x, we also obtain that

L(x, y, ζ) :=
∣∣∣det

∂ξ(ζ;x, y)

∂ζ

∣∣∣ > 0 for all ζ ∈ Ṙn. (4.20)

This implies that ζ 7→ ξ(ζ) is a diffeomorphism (global change of variables with con-
tinuous inverse) on Ṙn with inverse ξ 7→ ζ(ξ). By construction, ξ(ζ) is homogeneous of
degree one so that L(x, y, ζ) is homogeneous of degree 0 in ζ.

Exercise 4.2.3 Check that ξ = ζ⊥ and that L(x, y, ζ) = 1 when z(t, x, ϑ) = sϑ⊥ + tϑ.

With this we recast the operator F0 as

F0f(x) =

∫
X×Rn

f(y)ei(x−y)·ξM(x, y, ξ)dydξ, (4.21)

with
M(x, y, ξ) = a(x, y, ζ(ξ))L(x, y, ζ(ξ))χ0(x, y).

Note that M(x, y, ξ) is a symbol of class Sm(X ×X × Rn) when a is. We thus obtain
that F0 is a ΨDO and that F may be written as a ΨDO modulo a smooth operator.

4.2.2 Choice of a parametrix.

Let us come back to the operator F0 as it appear in GRT. We then find that

M(x, y, ξ) =
1

π
K(x, ζ̂(ξ))J(y, ζ̂(ξ))L(x, y, ζ(ξ)),

which is a symbol homogeneous of degree 0 in ξ. Recall that J(x, ϑ) is given by the
problem of interest while K = K(x, ϑ) is a kernel that we can choose. A natural way to
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address the inversion of RJ is to choose K(x, ϑ) so that the above operator is as close
to the identity operator as possible.

We have already shown that all singularities of the kernel of the above oscillatory
integral were located on the diagonal x = y. Since K depends only on x and not on
(x, y), we thus define

K(x, ζ̂) =
1

4πJ(x, ζ̂)L(x, x, ζ̂)
, (4.22)

since L(x, x, ζ) is homogeneous of degree 0 in ζ. With this definition, we obtain that
M(x, x, ξ̂) = (2π)−2. In other words, we have

F0f(x) = f(x)− T0f(x),

T0f(x) :=

∫
X×R2

f(y)ei(x−y)·ξ(M(x, x, ξ̂)−M(x, y, ξ̂)
)
dydξ.

(4.23)

We will prove in detail in the next section that T0 is a compact operator. This will show
that R∗KΛ is an inverse of RJ up to a remainder that is a compact operator, in other
words that R∗KΛRJ = I − T where T is a compact operator since we already know that
F1 is a compact operator. This means that R∗KΛ is a left-parametrix for the generalized
Radon transform RJ .

4.2.3 Change of symbol, smoothing and composition

We will prove that T0 is a compact operator in L2, and in fact an operator mapping
L2(X) to H1(X). This will be proved by showing that T0 and ∂xjT0 for j = 1, 2 are
bounded operators from L2(X) to L2(X).

Such results hold in fact for arbitrary ΨDO and we consider these results in detail
now. Let

Pf(x) =

∫
X×Rn

ei(x−y)·ξa(x, y, ξ)f(y)dydξ, (4.24)

with a ∈ Sm(X ×X × Rn). Define Px as

Pxf(x) =

∫
X×Rn

ei(x−y)·ξa(x, x, ξ)f(y)dydξ. (4.25)

Then we have the following result

Lemma 4.2.1 Let P and Px be the ΨDO defined above for a ∈ Sm(X×X×Rn). Then
P − Px is a ΨDO with a symbol of order m− 1.

Proof. We write

(P − Px)f(x) =
n∑
j=1

∫
ei(x−y)·ξ(−i(x− y)j)

(
i

∫ 1

0

∂yja(x, tx+ (1− t)y, ξ)dt
)
f(y)dydξ

=
n∑
j=1

∫
ei(x−y)·ξ

(
i

∫ 1

0

∂2
yjξj

a(x, tx+ (1− t)y, ξ)dt
)
f(y)dydξ
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Define α(x, y, ξ) =
(
i
∫ 1

0
∂2
yjξj

a(x, tx+ (1− t)y, ξ)dt
)

. We observe that it is a symbol of

degree m− 1, which proves our result.
The definition of Px may be replaced by that of Py with a symbol a(y, y, ξ) indepen-

dent of x. The same proof as above shows that P − Py is also a ΨDO of order m − 1.
Iterating the process k times, we obtain the following result:

Corollary 4.2.2 Let P be a ΨDO with a ∈ Sm(X × X × Rn) for a bounded domain
X ⊂ Rn. Then for each k ∈ N, there exist ΨDO PX and PY of order m with symbols
bX , bY ∈ Sm(X ×X ×Rn) with bX independent of the variable y and bY independent of
the variable x, such that P − PX and P − PY are of order m− k.

When m − k < −n − j, then we observe that Pf maps C0
0(X) to Cj(X), or L2(X) to

Hj
0(X), the completion of C∞0 (X) for the Hj norm. By duality Pf also maps E ′j(X) to
D′0(X) and H−j(X) to L2(X). This proves the

Corollary 4.2.3 Let P be a ΨDO with a ∈ Sm(X × X × Rn) for a bounded domain
X ⊂ Rn. Then for each j ∈ N, there exist ΨDO PX and PY of order m with symbols
bX , bY ∈ Sm(X × X × Rn) with bX = bX(x, θ) independent of the variable y and bY =
bY (y, θ) independent of the variable x, such that P − PX and P − PY map C0

0(X) to
Cj(X) and E ′j(X) to D′0(X).

Exercise 4.2.4 Let P and PX be defined as in (4.24) with a ∈ Sm(X ×X × Rn) and
(4.25). Using Remark 3.2.4 and Exercise 3.3.1, show that the operator ∂xj(P − PX) is
a ΨDO of order m.

Prove this result directly by modifying the proof of Lemma 4.2.1.

We now come to the notion of composition of operators, here principally of pseudo-
differential operators. This obviously requires that the range of the first operator be in
the domain of definition of the second operator. One way to ensure this is to require
that all operators but one in a chain of composition be properly supported.

Definition 4.2.4 (Properly supported operator) An operator A : C∞0 (Y )→ D′(X)
is properly supported if the support of its Schwartz kernel supp KA is proper. A closed
set in X×Y is proper if the two projections (x, y) 7→ x and (x, y) 7→ y are proper maps.
A map is proper if the inverse image of every compact subset is compact.

Heuristically, a map A is proper if for a function u with compact support in Y , there is a
vicinity of the boundary of ∂X not in the support of Au. In that case, the operator A :
C∞0 (Y ) → E ′(X) is then continuous. Similarly, a properly supported map continuous
from Ck

0 (Y )→ Cj(X) can be extended as a continuous operator from Ck
0 (Y )→ Cj

0(X)
and Ck(Y ) → Cj(X); a properly supported map continuous from E ′(Y ) → D′(X) can
be extended as a continuous operator from E ′(Y )→ E ′(X) and D′(Y )→ D′(X).

If a ΨDO is properly supported, then it is continuous as an operator from C∞0 (X)→
C∞0 (X), from C∞(X) → C∞(X), from E ′(X) → E ′(X), and from D′(X) → D′(X). If
A and B are two ΨDO and one is properly supported, then the compositions AB and
BA are well-defined continuous operators from C∞0 (X)→ C∞(X) and E ′(X)→ D′(X).
The main question is whether AB and BA are ΨDO . It turns out that they are modulo
a smooth perturbation [33]. What we show is a slightly weaker statement, which is
however sufficient in most practical situations.
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Theorem 4.2.5 (Composition of ΨDO ) Let A and B be two ΨDO of order mA

and mB, respectively, with one of them properly supported. Then for each (j, k) ∈ N2,
there are operators R,R′ continuous from E ′j(X) to Ck(X) such that AB = C +R and
BA = C ′ +R′ with C and C ′ ΨDO of order mA +mB.

Proof. We consider the case AB for concreteness with B properly supported. Ac-
cording to Corollary 4.2.2, there are ΨDO AX and BY such that A− AX and B − BY

are ΨDO with order nA and nB as negative as we want. Following the results of Remark
3.3.2, we thus obtain for nA, nB < −N − l that A − AX and B − BY map E ′l(X) to
C l(X). Moreover AX has a symbol aX(x, ξ) independent of y and BY has a symbol
bY (y, ξ) independent of x. Thus AX and BY are properly supported. We write

AB = AXBY + (A− AX)B + AX(B −BY ) = AXBY + A(B −BY ) + (A− AX)BY ,

and use the first equality for B properly supported, where all products are defined in
appropriate spaces. Both AX and B are ΨDO mapping E ′p(X) to E ′q(X) according to
Theorem 3.3.1 for q > sup(mA,mB) + N + p since they are properly supported. As a
consequence, choosing l large enough, we obtain that R = (A − AX)B + AX(B − BY )
is continuous from E ′j(X) to Ck(X).

It remains to show that C = AXBY is a ΨDO of order mA + mB. Since aX is
independent of y, we have

AXu(x) =

∫
eix·ξaX(x, ξ)û(ξ)dξ, B̂Y u(ξ) =

∫
e−iy·ξbY (y, ξ)u(y)dy.

As a consequence,

AXBY u(x) =

∫
ei(x−y)·ξaX(x, ξ)bY (y, ξ)u(y)dydξ. (4.26)

This shows that C is a ΨDO with a symbol aX(x, ξ) bY (y, ξ) of order mA +mB.

4.2.4 Continuity of ΨDO in the spaces Hs(X)

Consider a ΨDO with symbol of order 0. We prove the continuity result:

Theorem 4.2.6 Let P be the ΨDO defined in (4.24) with a(x, y, ξ̂) ∈ S0(X ×X ×Rn)
with X bounded. Then P is continuous from L2(X) to L2(X) with a constant C such
that

‖Pf‖L2(X) ≤ C‖f‖L2(X). (4.27)

Proof. We first note that P − PX is an operator with a smooth kernel on the
bounded domain X and is therefore bounded in L2(X). We may therefore consider that
the symbol a = a(x, ξ). Let us extend f by 0 outside of X. Then we may write

Pf(x) =

∫
Rn
eix·ξa(x, ξ)f̂(ξ)dξ.

The objective is now to replace a by functions that are independent of x following [55].
Consider the case n = 2, with obvious generalizations to higher dimensions. Then we
write

a(x, ξ) = a(0, ξ)+

∫ x1

0

∂x1a(t1, 0, ξ)dt1 +

∫ x2

0

∂x2a(0, t2, ξ)dt2 +

∫ x1

0

∫ x2

0

∂2
x1x2

a(t1, t2, ξ)dt1dt2.
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Consider the operator

P1f(x) =

∫
Rn
eix·ξ

∫ x1

0

∂x1a(t1, 0, ξ)dt1f̂(ξ)dξ =

∫ x1

0

∫
Rn
eix·ξ∂x1a(t1, 0, ξ)f̂(ξ)dξdt1,

by Fubini and (3.10). Then by the Minkowski inequality, we find

‖P1f‖ ≤
∫ x1

0

∥∥∥∫
Rn
eix·ξ∂x1a(t1, 0, ξ)f̂(ξ)dξ

∥∥∥dt1.
With Q(ξ) = ∂x1a(t1, 0, ξ) or any other term appearing in the expansion of a(x, ξ) above,
which are all symbols of order 0, it thus remains to show that∥∥∥∫

Rn
eix·ξQ(ξ)f̂(ξ)dξ

∥∥∥
L2
x(Rn)

≤ C‖f̂‖L2
ξ(Rn) = C(2π)n‖f‖L2(X).

By Plancherel and the uniform bound of Q(ξ) ∈ S0(Rn), we find∥∥∥∫
Rn
eix·ξQ(ξ)f̂(ξ)dξ

∥∥∥
L2
x(Rn)

= ‖Q(ξ)f̂(ξ)‖L2
ξ(Rn) ≤ C‖f̂(ξ)‖L2

ξ(Rn),

which concludes the proof.

Corollary 4.2.7 Let P be the ΨDO defined in (4.24) with a(x, y, ξ̂) ∈ Sm(X × X ×
Rn). We assume that P is properly supported. Then P is continuous from Hs

loc(X) →
Hs+m

loc (X) and from Hs
comp(X)→ Hs+m

comp(X) for all s ∈ R.

Proof. We follow [33]. We prove the continuity from Hs
loc(X) → Hs+m

loc (X). The
continuity from Hs

comp(X)→ Hs+m
comp(X) follows since P is properly supported. We thus

have to prove that for ϕ ∈ C∞0 (X), then ϕP is continuous from Hs
loc(X)→ Hs+m

loc (Rn).
Let now ψ ∈ C∞0 (X) be such that ψ = 1 in the vicinity of the points x such that there
is a y ∈ supp ϕ and (x, y) ∈ supp K(x, y), the Schwartz kernel of P . Then ϕP = ϕPψ
and it suffices to prove that the latter operator is bounded from Hs(Rn)→ Hs+m(Rn).

Treating then R = ϕPψ as in the proof of Theorem 4.2.6, we replace it by RX with
R − RX bounded from Hs(Rn) → Hs+m(Rn) since its Schwartz kernel is smooth and
compactly supported. Next, the symbol of RX is decomposed as a(x, ξ) is in that proof,
and the result then follows from estimates of the form

BQ =
∥∥∥∫

Rn
eix·ξQ(ξ)f̂(ξ)dξ

∥∥∥2

Hs(Rn)
≤ C‖f‖2

Hs+m(Rn), (4.28)

for a symbol Q(ξ) ∈ Sm(Rn) and hence so that |Q(ξ)| ≤ C(1 + |ξ|2)
m
2 . We find

BQ =
1

(2π)n

∫
Rn
(1+|ξ|2)s|Q(ξ)f̂(ξ)|2dξ ≤ C

(2π)n

∫
Rn
(1+|ξ|2)s+m|f̂(ξ)|2dξ = C‖f‖2

Hs+m(Rn).

This proves the result.
Coming back to the generalized Radon transform, we have shown that T0 was

bounded from L2(X) to H1(X) since T 0 is a ΨDO with symbol in S−1(X × X × Rn)
according to Lemma 4.2.1 and ∂xjT

0 is a ΨDO with symbol in S0(X×X×Rn) according
to Exercise 3.3.1 so that Theorem 4.2.6 applies. This also shows that F = I − T0 + F1,
with F1 a smoothing operator, is bounded from L2(X) to L2(X). We summarize these
results as follows:

‖T0f(x)‖H1(X) + ‖Ff(x)‖L2(X) ≤ C‖f(x)‖L2(X). (4.29)
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4.2.5 Left-parametrices and injectivity

The above result states that F = I−T with T compact from L2(X) to L2(X) since the
injection i : H1(X)→ L2(X) is compact. We may therefore regard R∗KΛ in (4.11) as a
left-parametrix, i.e., an inversion of RJ up to a compact perturbation.

We are in fact in a position to obtain a left-parametrix up to a compact perturbation
that is as regularizing as we wish. For this, we introduce the notion of elliptic ΨDO .

Definition 4.2.8 We say that a ΨDO P with symbol a(x, y, ξ) ∈ Sm(X ×X × Rn) is
elliptic if there exist two positive constants C1 and C2 such that |a(x, y, ξ)| ≥ C1|ξ|m
uniformly in (x, y) ∈ X ×X for |ξ| > C2.

Then we have the following result:

Theorem 4.2.9 (Parametrix for ΨDO) Let A be an elliptic properly supported ΨDO
of order m. Then for all (j, k) ∈ N2, there is a properly supported ΨDO B of order −m
such that BA = I + R with R bounded from E ′j(X) to Ck(X). In fact, AB = I + R′

with R′ bounded from E ′j(X) to Ck(X) so that B is a parametrix of A.

Proof. Since A is elliptic, up to a smooth perturbation, we may assume that
|a(x, y, ξ)| ≥ C1|ξ|m (x, y, ξ) ∈ X ×X × Rn. We still call A the resulting operator. We
then define the properly supported operator B with symbol b(x, y, ξ) = (aY (y, ξ))−1 ∈
S−m(X ×X ×Rn), where aY (y, ξ) = a(y, y, ξ) is the symbol of the operator AY defined
as in the proof of Theorem 4.2.5 so that A−AX maps E ′l(X) to C l(X) for l sufficiently
large. We obtain that BAX = I and that R = B(A−AX) is as smooth as indicated for
l chosen large enough.

For the GRT, the operator F defined in (4.11) is an elliptic ΨDO of degree 0 so long
as K(x, θ)J(y, θ) ≥ C uniformly on X ×X ×R2. This is the case for the specific choice
of K in (4.22), in which case we have seen that F = I − T with T a compact operator.
The result in Theorem 4.2.9 is more precise as it implies the existence of a ΨDO Q such
that QF = I − R with R a compact perturbation mapping L2(X) to any Hs(X) for
s ≥ 0.

Other choices for K may also be possible. An interesting choice is K(x, ζ̂) = J(x, ζ̂),

in which case the operator N = R∗JΛRJ is self-adjoint since Λ = Λ
1
2 Λ

1
2 with Λ

1
2 a self-

adjoint operator. Theorem 4.2.9 again guarantees the existence of a left-parametrix M ,
again a ΨDO of order 0, so that MN = I−S with S a smoothing compact perturbation.

However, what these results do not provide is an injectivity result, namely a result
stating that RJf uniquely characterizes f . All we get is the existence of (many) left-
parametrices QJ so that QJRJ = I−TJ with TJ a compact perturbation that obviously
depends on the choice of QJ . All we know is that F is injective if 1 is not an eigenvalue of
T . Even if 1 is an eigenvalue of T , the operator F can be inverted on the complement of
a finite dimensional linear space corresponding to the singular value 1 (the eigenvectors
associated to 1 of the operator Tm for m sufficiently large).

It is not know how to prove that F is invertible for all (reasonable) choices of
z(t, s, ϑ). Of course, we know that TJ = 0 for the Radon transform for the right
choice of QJ . Therefore, when z(t, s, ϑ) is close to sϑ⊥ + tϑ, then by continuity of all
involved parameters with respect to changes in z(t, s, ϑ), TJ is of norm less than 1 and
then (I − TJ)−1QJ is a bounded left-inverse for RJ (we do not need TJ to be compact).
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It is in fact known that for J(x, θ) (real) analytic in its variables, as is the case for
z(t, s, ϑ) = sϑ⊥ + tϑ, then RJ is indeed injective [56].

4.3 Kinematic Inverse Source Problem

We now present an entirely different technique of energy estimates developed by Mukhome-
tov showing that R = RJ defined above is injective in the case where the weight w ≡ 1
and the curves are parameterized so that |ż| = 1, i.e., curves are traveled along with
speed equal to 1.

4.3.1 Transport equation

We consider a bounded domain X ⊂ R2 with smooth surface ∂X parameterized by
0 ≤ τ ≤ T and points x = S(τ) with S(0) = S(T ) and |Ṡ(τ)| = 1.

For a point x in X̄ and 0 ≤ τ ≤ T , we denote by z̃(x, τ) the unique curve joining x
and S(τ). For a function f supported in X, we define the curve integrals

g(τ1, τ2) =

∫
z̃(S(τ1),τ2)

fdt, (4.30)

where dt =
√
dx2 + dy2 is the Lebesgue distance measure along the curve. We thus

travel along the curve with speed equal to 1.
We assume g(τ1, τ2) known for all 0 ≤ τ1, τ2 ≤ T , which corresponds to the curve

integrals of f for all possible curves in the family passing through X. We then have the
following result:

Theorem 4.3.1 Under the above hypotheses for the family of curves z, a function
f ∈ C2(X) is uniquely determined by its integrals g(τ1, τ2) given by (4.30) along the
curves of z. Moreover we have the stability estimate

‖f‖L2(X) ≤ C‖∂g(τ1, τ2)

∂τ1

‖L2((0,T )×(0,T )). (4.31)

The rest of the section is devoted to the proof of this theorem. The proof of injectivity of
the reconstruction of f from knowledge of g is based on analyzing the following transport
equation. We introduce the function

u(x, τ) =

∫
z̃(x,τ)

fdt (4.32)

for x ∈ X̄. We denote by ϑ(x, τ) the unit tangent vector to the curve z̃(x, τ) at x and
orientated such that

ϑ(x, τ) · ∇u(x, τ) = f(x), ϑ(x, τ) =

cosφ(x, τ)

sinφ(x, τ)

 . (4.33)

The latter relation is obtained by differentiating (4.32) with respect to arc length.

Exercise 4.3.1 Check this.
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4.3.2 Variational form and energy estimates

We now differentiate the above with respect to τ and obtain

∂

∂τ

(
ϑ · ∇u

)
= 0. (4.34)

We find that

∂

∂τ
ϑ = φτJϑ, J =

0 −1

1 0

 , φτ := ∂τφ.

We calculate

Jϑ · ∇u ∂
∂τ
ϑ · ∇u = φτ (Jϑ · ∇u)2 + Jϑ · ∇uϑ · ∇uτ

with uτ = ∂τu. Similarly, we have

−ϑ · ∇u ∂
∂τ
Jϑ · ∇u = φτ (ϑ · ∇u)2 − ϑ · ∇u Jϑ · ∇uτ .

Upon adding these two identities and using (4.34), we obtain

− ∂

∂τ

(
Jϑ · ∇uϑ · ∇u

)
= φτ |∇u|2 + Jϑ · ∇uϑ · ∇uτ − ϑ · ∇u Jϑ · ∇uτ

= φτ |∇u|2 +∇ · (J∇uuτ ).

Indeed, denoting by R = (ϑ|Jϑ) the rotation matrix and T = (∇u|∇uτ ) := (a|b), we
find that

ϑ · aJϑ · b− Jϑ · aϑ · b = det(RtT ) = det(R)detT = detT = Ja · b,

independent of ϑ. This little miracle occurs in dimension n = 2. For a = ∇u and
b = ∇uτ , this gives J∇u ·∇uτ = ∇· (J∇uuτ ) since ∇· J∇ = 0. It remains to integrate
over X × (0, T ) and use the fact that S(0) = S(T ) on the surface of X to obtain that∫ T

0

∫
X

φτ |∇u|2dxdτ =

∫ T

0

∫
∂X

∇u · Jn(x, τ)uτ (x, τ)dΣ(x)dτ, (4.35)

where n is the outward unit normal to X at x ∈ ∂X and dΣ(x) the surface (length)
measure on ∂X. Now, S(τ ′) at the surface has tangent vector Ṡ(τ ′)dτ ′ = −Jn(τ ′)dΣ(x)
assuming the parameterization S(τ) counter-clock-wise. Since u(S(τ ′), τ) = g(τ ′, τ), we
find that ∇u · Ṡ(τ ′) = ∂τ ′g(τ ′, τ) and uτ (x, τ) = ∂τg(τ ′, τ) so that eventually,∫ T

0

∫
X

φτ (x, τ)|∇u|2(x, τ)dxdτ = −
∫ T

0

∫ T

0

∂

∂τ1

g(τ1, τ2)
∂

∂τ2

g(τ1, τ2)dτ1dτ2. (4.36)

From the definition of τ and φτ , we observe that

det(ϑ|∂τϑ) = φτdet(ϑ|Jϑ) = φτ .

The assumption we make on the family of curves is such that the vector ∂τϑ cannot
vanish and cannot be parallel to ϑ. In the choice of orientation of S, we find that

φτ > 0. (4.37)

Note that this is a non-local assumption on the curves. It states that the curves passing
by a point x separate sufficiently rapidly in the sense that φ increases sufficiently rapidly
as the boundary parameter τ increases.
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4.3.3 Injectivity result

Since |f(x)| ≤ |∇u(x, τ)| from the definition of the transport equation and φτ integrates
to 2π in τ , we find that

2π

∫
X

|f(x)|2dx =

∫ T

0

∫
X

φτ |f(x)|2dxdτ ≤ −
∫ T

0

∫ T

0

∂

∂τ1

g(τ1, τ2)
∂

∂τ2

g(τ1, τ2)dτ1dτ2.

(4.38)
Since g(τ, τ ′) = g(τ ′, τ), this shows that

‖f‖L2(X) ≤
1√
2π

∥∥∂τg∥∥L2((0,T )×(0,T ))
. (4.39)

This concludes the proof of Theorem 4.3.1.
When two measurements g are equal so that their difference and hence the difference

of their differentials vanishes, then the difference of sources f also vanishes. This pro-
vides the injectivity of the transform RJf(s, ϑ) for f supported on a compact domain.
Indeed, if g = 0, the ∂τg = 0 and hence f = 0. This also provides an injectivity result
for N = R∗JΛRJ = (Λ

1
2RJ)∗Λ

1
2RJ . Indeed Nf = 0 implies (Nf, f) = 0 = ‖Λ 1

2RJf‖ so

that Λ
1
2RJf = 0 and hence f = 0 since RJ is injective.

4.4 Summary on GRT.

What have we done so far? We have defined a generalized ray transform RJf(s, ϑ). We
have then quickly brought our functions back into the space of positions by applying a
rescaled adjoint operator R∗KΛ. This lead to the definition of the operators F = R∗KΛRJ

and N = R∗JΛRJ . We have seen that by an appropriate choice of K, then F = I − T
where T is a compact operator mapping L2(X) to H1(X). However, we do not know
that F is invertible in general although by continuity we know that it is so when the
curves are close to the straight lines and the weight w is close to 1. Since T is compact,
we know that the space of functions such that Tψ = ψ is finite dimensional. But we do
not know whether it is trivial.

We have then changed gears slightly and have looked at the normal operator N =
R∗JΛRJ . Such an operator, like F , is a pseudo-differential operator. Moreover, it is
invertible up to compact perturbations in the sense that QN = I − T for T compact
and Q another pseudo-differential operator of order 0. Here again, we do not know that
1 is not an eigenvalue of T nor that Q is invertible. However, we have seen that in some
situations, RJ , and hence N , was injective by using a transport equation. This allowed
us to show that N was in fact an invertible operator in L2(X).

This provides a reasonable theory for the reconstruction of functions from full data,
i.e., from knowledge of RJf(s, ϑ) for all (s, ϑ) ∈ R × S1. In many practical problems,
such data are not available. It then remains a very difficult problem to prove injectivity
of the transform. In the case of the Radon transform, the Fourier slice theorem shows
that the Radon transform is injective as soon as an open set of values of ϑ is available
(and all values of s). This is because the Fourier transform of a compactly supported
function is an analytic function in the Fourier variable and that an analytic function
known on an arbitrarily small open set is known everywhere. For the generalized ray
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transform, no such results are available. However, it is interesting to understand which
singularities of the function f(x) may be reconstructed from available measurements.
This requires that we understand how singularities propagate when we apply the Radon
transform and the adjoint of the Radon transform. We can apply the propagation of
singularity theory to the GRT as we now do.

4.5 Application to generalized Radon transforms

We revisit the propagation of singularities that we considered in the preceding chap-
ter for the Radon transform. We now consider the GRT and observe that there are
essentially no differences between the two.

Consider the operator RJ defined earlier in the chapter. Then we have the phase
φ(s, ϑ, x, σ) = (s− s(x, ϑ))σ and the distribution kernel

KJ(s, ϑ, x) =

∫
R
ei(s−s(x,ϑ))σ J(x, ϑ)

2π
dσ.

The phase stations at s = s(x, ϑ), the set where φ′σ = 0. Away from that set, the
distribution kernel is smooth. So all the action takes place on the set

WF (KJ) =
{(
s, ϑ, σ,−σ∂ϑs(x, ϑ);x,−σ∇xs(x, ϑ)

)
, s = s(x, ϑ)

}
.

This implies that

WF ′(KJ) =
{(
s, ϑ, σ,−σ∂ϑs(x, ϑ);x, σ∇xs(x, ϑ)

)
, s = s(x, ϑ)

}
.

Since φ is a phase in the (s, θ, σ) as well as the (x, σ) variables, we deduce that
WF ′Y (KJ) = ∅ and WFX(KJ) = ∅.

Let us assume that (x, ξ) ∈ T ∗R2 is known and let us look at the points (s, ϑ, ξs, ξθ)
in correspondence with (x, ξ) through WF ′(KJ), i.e., the points (s, ϑ, ξs, ξθ) such that
(s, ϑ, ξs, ξθ;x, ξ) ∈ WF ′(KJ).

When s(x, θ) = x · ϑ⊥, we obtain that ξ = σ∇xs provides θ up to ±nπ and then
σ = ±|ξ|. For the family of curve z, we assume that knowledge of ξ = σ∇xs determines
two angles θ1,2. Once θj is chosen, then σ is defined uniquely. Then s = s(x, ϑ) and
ξθ = −σ∂ϑs(x, ϑ) are also uniquely defined. The relation WF ′(KJ) is therefore a 1-to-2
relation.

Let us now consider the adjoint operator with kernel

K∗J(x, s, ϑ) =

∫
R
e−i(s−s(x,ϑ))σ J(x, ϑ)

2π
dσ.

We obtain that

WF ′(K∗J) =
{(
x, σ∇xs(x, ϑ); s, ϑ, σ,−σ∂ϑs(x, ϑ)

)
, s = s(x, ϑ)

}
.

This is a 2-to-1 relation, which to the points (sj, ϑj, ξs,j, ξθ,j) associates back the unique
corresponding point (x, ξ).
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From these correspondences, it is clear that

WF ′(K∗J)(WF ′(KJ)) = I,

is the identity on T ∗X. In other words, we obtain that

WF (R∗JRJu) ⊂ WF ′(K∗J)(WF ′(KJ)(WF (u))) = WF (u).

We have obtained that R∗JRJ was a ΨDO , for which the above result holds. We thus
observe that the notion of wavefront set and propagation of wavefront sets by FIO
provides an optimal description of the propagation of (microlocal) singularities for the
GRT, unlike what we observed for the propagation of singular supports in Remark 3.5.1.

The notion of wavefront set also provides a very precise description of what singu-
larities can or cannot be reconstructed in the presence of partial data. If RJf(s, θ) is
available only for a subset of point (s, θ), then the correspondence WF ′(KJ) precisely
describes which singularities in WF (f) may be reconstructed.

More precisely, assume that f1 and f2 are two sources with WF (f1) ∩WF (f2) = ∅.
We wish to reconstruct the singularities of f1 but not those of f2 from knowledge of RJf
with f = f1 + f2. Let Γj = WF ′(KJ)(WF (fj)) ⊂ T ∗Z for j = 1, 2 and Z = (R × S1).
We then define a symbol p(z, ξ) ∈ C∞(T ∗Z) for z = (s, θ) such that p = 1 on Γ1 and
p = 0 on Γ2. We then define the ΨDO P

Pg(z) =

∫
Z×R2

ei(z−z
′)·ξp(z, ξ)g(z′)dξdz′.

Remark 4.5.1 The expression of P above is somewhat imprecise since Z = R × S1

is not a subset of R2 and the Fourier transform on Z is not defined. We could define
functions on S1 as 2π−periodic functions defined on R, in which case ξθ would be the
discrete index in Fourier series. Rather, it is more convenient to write a partition of
unity φ1 +φ2 = 1 on S1 with φ1 compactly supported in (0, 2π). For a function u on S1,
we may then write uj = φju as compactly supported functions in R, where the Fourier
transform is defined. The Fourier transform then depends on the choice of the partition
of unity. However, the singularities, which are local notions, do not. We therefore define
wavefront set of u as the union of those of the uj. Similarly, the above operator P is
really defined by applying the operator to gj = φjg and then sum to get the application
of the operator on g = g1 + g2. The operator P thus also depends on the choice of the
partition of unity, although its properties of propagation of singularities do not. In the
rest of the section, we will write expressions as if Z was a subset of R2.

The role of the operator P is to capture the singularities of RJf1 and not those of
RJf2. Using the results obtained earlier in this section, we obtain that

WF (PRJf2) = ∅, WF (PRJf1) = WF (RJf1) ⊂ WF ′(RJ)(WF (f1)).

We recall that RJ admits a left parametrix given for instance by

QJR
∗
JRJ = I − T,

where QJ is a ΨDO of order 1 and T is arbitrarily smooth.
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We write

QJR
∗
JPRJf = QJR

∗
JRJf1 +QJR

∗
J(I − P )RJf1 +QJR

∗
JPRFf2

= f1 − Tf1 +QJR
∗
J(I − P )RJf1 +QJR

∗
JPRFf2.

Since I − P is a ΨDO with symbol vanishing on the wavefront set of RJf1 and P is a
ΨDO with symbol vanishing on the wavefront set of RJf2, we deduce that the above
expression is equal to f1 plus a smooth function.

We thus obtain a very precise description of the propagation of singularities in the
application ofRJ andR∗J : based on available data, we know exactly which singularities of
a given source may be reconstructed or not. Moreover, by application of an appropriate
ΨDO , we are able to select which singularities we want to reconstruct and which ones
we prefer to smooth out.

Note that such a result cannot be obtained by replacing P by the multiplication by a
cut-off function χ(z). Indeed, consider two delta sources located at two different points.
The line passing through these two points is necessary to reconstruct the first delta
source and clearly involves the singularities of the second delta source. The separation
of the singularities has to be done microlocally.

Exercise 4.5.1 Generalize the above construction to the n−dimensional Radon trans-
form Rf(x, ϑ).

4.6 Composition and continuity of FIO

Let us consider the operator RJ defined above. Let Λ
1
2 be the ΨDO from L2(R2) to

H−
1
2 (R2) given by the symbol 〈ξ〉 12 (this may be seen as the 1

4
th power of (I −∆)). We

consider the operator RJΛ
1
2 , which is well defined on D′(X).

The adjoint operator is Λ
1
2R∗J . The normal operator is

N = Λ
1
2R∗JRJΛ

1
2 .

The theory developed above shows that N is a ΨDO given by Λ−
1
2QJΛ−

1
2 and is therefore

bounded in L2(X). This implies that

‖RJΛ
1
2u‖2

L2(Z) = (RJΛ
1
2u,RJΛ

1
2u)Z = (N2u, u)X ≤ C‖u‖2

L2(X)

In other words, RJΛ
1
2 is bounded from L2(X) to L2(Z), or in other words RJ is bounded

from H−
1
2 (X) to L2(Z), or more generally, using standard ΨDO calculus, from Hs(X)

to Hs+ 1
2 (Z), where the latter space is the space of functions with s + 1

2
derivatives

bounded in the variables (s, θ) (and not only in the variable s as in the definition of
Hs(Z)). We summarize this as

Theorem 4.6.1 (Continuity of the GRT) Let RJ as defined above. Then there is a
constant Cs such that for all s ∈ R and u ∈ Hs(X), we have

‖RJu‖Hs+1
2 (Z)
≤ Cs‖u‖Hs(X). (4.40)

Such continuity results do not apply to all FIO defined in (3.12). However, they
apply for a reasonably large class where the relation WF ′(Ia,ϕ) is a bijection as we saw
in the preceding chapter.
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Appendix A

Remarks on composition of FIOs
and Stationary phase

A.1 Remarks on composition of FIOs

FIO and canonical relations. The FIO defined in (3.12) defines a map from E ′(Y )
to D′(X) when ϕ is a phase in the (y, θ) variables. Assuming it is a phase in the (x, θ)
variables as well, we associate the Schwartz kernel Ia,ϕ(x, y) to the canonical relation C
defined earlier. We recall the definition of the homogeneous canonical relation Λ′ given
by

Cϕ 3 (x, y, θ) 7→ (x, ϕ′x; y,−ϕ′y).

Definition A.1.1 (Class of FIO Im(X × Y ;C ′)) For ϕ ∈ C∞(X ×Y × ṘN) a phase
function with singular set Cϕ and the above definition of Λ′, we define the class of FIO
Im(X × Y ; Λ′) as the operators from E ′(Y ) to D′(X) with a Schwartz kernel given by

Ia,ϕ(x, y) =

∫
eiϕ(x,y,θ)a(x, y, θ)dθ,

for a(x, y, θ) ∈ Sm+
nX+nY

4
−N

2 (X × Y × RN).

What appears as a strange normalization of the order of the symbol a above is
explained by the fact that we wish A ∈ Im to be corresponding to an operator that
differentiates m times, as a ΨDO with symbol in Sm. In explaining this normalization,
we also partially explain why the class of operators is parameterized by C ′ and not by
ϕ. It turns out that Im is indeed not modified, modulo operators in S−∞, by a change
of phase that preserves the manifold Λ (or equivalently the relation Λ′).

We first observe how we can increase the number of phase variables without changing
the Schwartz kernel. Let us define

φ(x, y, θ, ψ) = ϕ(x, y, θ) +
|ψ|2

2|θ|
,

where ψ ∈ RN ′ . We observe that φ′x,y = ϕ′x,y, φ
′
θ = ϕ′θ −

|ψ|2
2|θ|2 θ, and φ′ψ = ψ

|θ| . It is clear

that φ is a phase when ϕ is. Moreover, φ′θ,ψ = 0 implies that ψ = 0 so that Λϕ = Λψ.
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The singular sets agree. The canonical relations for ϕ and ψ are therefore the same.
Now consider the distribution

Ib,φ(x, y) =

∫
eiφ(x,y,θ,ψ)b(x, y, θ)dθdψ =

∫
eiϕ(x,y,θ,ψ)b(x, y, θ)dθei

|ψ|2
2|θ| dψ.

We obtain that ∫
RN′

ei
|ψ|2
2|θ| dψ = (i|θ|)

N′
2 .

We thus define

b(x, y, θ) =
1− χ(θ)

(i|θ|)N
′

2

a(x, y, θ),

with χ(θ) a compactly supported function with χ(0) = 1 which is introduced to remove
the singularity at θ = 0. Therefore, up to a C∞(X×Y ) Schwartz kernel, we obtain that

Ib,φ = Ia,ϕ. Moreover, we clearly have that b ∈ Sm+
nX+nY

4
−N+N′

2 (X × Y × RN+N ′). It
shows that the order of the symbol has to be the above functional of the phase dimension
N . Now, for ΨDO the order m of regularity of the operator A and that of the symbol
S is the same. As a consequence, when nX = nY = N , this justifies the presence of the
term nX+nY

4
in the definition, at least in the case nX = nY , which is the case of interest

here.

As we may increase the number of phase variables, in some cases, we can also reduce
it, for instance to go back from φ to ϕ. The procedure to obtain a phase with the smallest
dimension is as follows; see [33, 36] for derivations. Let us consider the phase ϕ(x, y, θ)
and the rank k of the Hessian ϕ

′′

θθ(x, y, θ). Up to relabeling of the phase variables, we may
call θ′ = (θ1, . . . θN−k) and θ

′′
= (θN−k+1, . . . , θN) the variables so that det ϕ

′′

θ′′θ′′
6= 0.

On the singular set ϕ′θ = 0, the latter property implies that θ” is implicitly determined
by a C∞ function ψ(x, y, θ′). The ϕ1(x, y, θ) = ϕ(x, y, θ′, ψ(x, y, θ′)) happens to be a
phase function of dimension N − k, which has the same critical set Cϕ as ϕ.

A rather involved proof not reproduced here [36, Sections 3.1 & 3.2] implies that

ϕ(x, θ) is equivalent to a phase of the form ϕ1(x, θ) = ϕ(x, θ′, 0)+ Q(θ”,θ”)
2|θ′| for a quadratic

form Q. Here “equivalent” phases ϕ and ϕ1 means that Ia,ϕ = Ia1,ϕ1 up to a C∞ function
for an appropriate choice of a1 for a given a with a and a1 symbols of the same order.

Then we have∫
RN−k

eiϕ(x,θ′,0)
(∫

Rk
e
i
Q(θ”,θ”)

2|θ′| a(x, y, θ′, θ”)dθ”
)
dθ′ =:

∫
RN−k

eiϕ(x,θ′,0)b(x, y, θ′)dθ′.

This defines b(x, y, θ′) and by the method of stationary phase recalled in Appendix A.2,
we obtain that the order of the latter symbol is that of a plus k

2
.

The above procedure thus allows us to replace a phase of order N by a phase of
order N − k, where k is the rank of the Hessian ϕ

′′

θθ(x, y, θ). Note that for the Radon
transform, N = 1 and the phase being linear in σ, the rank of the Hessian is 0. The
number of phase variables to describe {s = x · ϑ} thus cannot be reduced. For the case
ϕ(x, yξ) = (x − y) · ξ, we similarly obtain that the Hessian vanishes so that N = n is
the smallest dimension for a phase corresponding to the canonical relation {x = y}.
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Composition of a ΨDO with a FIO. We consider the composition of a properly
supported FIO A with phase ϕ(x, y, θ) and symbol a(x, y, θ) for (x, y) ∈ X × Y with a
ΨDO B with amplitude b(z, x, ξ) for z, x ∈ X, with X and Y both subsets of Rn. The
composition is the operator, which we know to be well defined from E ′(Y ) to E ′(X), is
the operator defined by

BAf(z) =

∫
ei(z−x)·ξb(z, x, ξ)eiϕ(x,y,θ)a(x, y, θ)f(y)dθdξdxdy.

Consider the phase

ψ(z, y;x, ξ, θ) = (z − x) · ξ + ϕ(x, y, θ) = (z − x) · ξ + ϕ(x, y, θ)− ϕ(z, y, θ) + ϕ(z, y, θ),

so that

ψ(z, y;x, ξ, θ) =
ζ · ξ′

|θ|
+ϕ(z, y, θ), ζ = (z−x)|θ|, ξ′ = ξ−

∫ 1

0

ϕ′x(tx+(1−t)z, y, θ)dt.

It is straightforward to verify that the determinant of the change of variables (x, ξ) →
(ζ, ξ′) is |θ|n. Moreover, the stationary points of ψ are the same as those of ϕ in θ and
the stationary points in ζ and ξ′ are ζ = ξ′ = 0, which implies x = z and ξ = ϕ′x(z, y, θ)
on Cψ. We obtain∫

ei
ζ·ξ′
|θ| eiϕ(z,y,θ)b(z, x, ξ(ξ′, ζ, x, y, θ))a(x, y, θ)|θ|−nf(y)dθdξ′dζdy.

Up to a smoother term which is also a FIO with a lower-order symbol, we thus have
to analyze the operator∫

ei
ζ·ξ′
|θ| eiϕ(z,y,θ)b(z, z, ϕ′x(z, y, θ))a(z, y, θ)|θ|−nf(y)dθdξ′dζdy.

Using the stationary phase recalled in the appendix with the zero-signature Q such that
((ζ, ξ′), Q(ζ, ξ′)) = ζ · ξ′, we find∫

ei
ζ·ξ′
|θ| |θ|−ndξ′dζ = (2π)n.

Thus the above operator is a FIO with phase ϕ(x, y, θ) and amplitude

c(z, y, θ) = (2π)nb(z, z, ϕ′x(z, y, θ))a(z, y, θ).

These calculations show that the FIO PA is a FIO with the same phase as A and
with a symbol of order equal to the sum of the orders of the symbols of P and A. We
can similarly show that AP is a FIO with phase ϕ and amplitude given by

d(z, y, θ) = (2π)na(z, y, θ)b(y, y, ϕ′y(z, y, θ)).

Note that when ϕ generates a canonical relation C, we find that (z, ϕ′x(z, y, θ)) =
χ(y, ϕ′(z, y, θ)) on Cϕ. Let us consider ΨDO P and Q such that PA−AQ is a smooth
operator. Then we have found that (at least at the level of the principal symbol) that
the symbols p of P and q of Q satisfy that p = q ◦ χ. This is Egorov’s theorem, at least
written for the principal symbol. The rest of the symbol can be shown to follow the
same rule.
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Composition of a FIO with its adjoint. We now consider the composition of a
properly supported FIO A with phase ϕ(x, y, θ) and symbol a(x, y, θ) for (x, y) ∈ X×Y
with its adjoint A∗ with phase −ϕ(y, x, θ) and symbol a∗(y, x, θ). We assume that the
canonical relation C ′ is a canonical graph.

As we did in the composition of a ΨDO with a FIO, we have

A∗Au(z) =

∫
eiψ(z,y;x,θ,θ′)a∗(x, z, θ′)a(x, y, θ)u(y)dy(dxdθdθ′),

with ψ(z, y;x, θ, θ′) = ϕ(x, y, θ)− ϕ(x, z, θ′). We then introduce

ψ(z, y;x, θ, θ′) = ϕ(x, y, θ)− ϕ(x, z, θ) + ϕ(x, z, θ)− ϕ(x, z, θ′)

= (z − y) · ξ + (θ − θ′) · τ
|ξ|

ξ = −
∫ 1

0

ϕ′y(x, ty + (1− t)z, θ)dt

τ = |ξ|
∫ 1

0

ϕ′θ(x, z, tθ + (1− t)θ′)dt.

We observe that the phase ψ (seen as a phase in the (x, θ, θ′) variables) is critical when
y = z and θ = θ′. To do so, we have to analyze the critical set of ψ given by

Cψ = {ϕ′θ(x, y, θ) = 0, ϕ′θ(x, z, θ
′) = 0, ϕ′x(x, y, θ) = ϕ′x(x, z, θ

′)}.

We first have to deal with the fact that the phase ψ is not homogeneous of degree 1 in
x. We therefore introduce the variable ω =

√
|θ|2 + |θ′|2x, and observe that the critical

set of Cψ in the new variables (ω, θ, θ′) is not modified and that ψ in these variables is
homogeneous of degree 1. Moreover, we can up to a smooth modification assume that
a(x, z, θ) vanishes for |θ| < 1 so that the change of variables from (x, θ, θ′) to (ω, θ, θ′)
is smooth. Up to a smooth perturbation, we obtain that A∗A is not modified if the
integration in the variables (x, θ, θ′) is performed in the vicinity of the above critical set
Cψ.

Let us denote ξ = ϕ′x(x, y, θ). Since ϕ′θ(x, y, θ) = 0, on the critical set of ϕ, knowledge
of (x, ξ) uniquely characterizes y since the canonical graph χ introduced earlier is a
bijection. But z satisfies the same constraints and as a consequence, we obtain that
y = z. But there is also a bijection between Cϕ 3 (x, y, θ) and (x, ξ = ϕ′x) so that θ is
uniquely determined. Since θ and θ′ satisfy that same constraint, we deduce that θ = θ′

as announced. We can therefore assume that y− z and θ− θ′ are small in the definition
of Au modulo a smooth term.

We now consider the change of variables (x, θ, θ′) 7→ (ξ, τ, θ − θ′). We find that the
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Jacobian of the transformation is given by

∣∣∣∂(ξ, τ, θ − θ′)
∂(θ, θ′, x)

∣∣∣ = |ξ|Ndet



∫ 1

0

ϕ
′′

θy(vyz)dt 0

∫ 1

0

ϕ
′′

yx(vyz)dt∫ 1

0

ϕ
′′

θθ(vθθ′)tdt

∫ 1

0

ϕ
′′

θθ(vθθ′)(1− t)dt
∫ 1

0

ϕ
′′

θx(vθθ′)dt

1 −1 0


= |ξ|Ndet


∫ 1

0

ϕ
′′

θy(vyz)dt

∫ 1

0

ϕ
′′

yx(vyz)dt∫ 1

0

ϕ
′′

θθ(vθθ′)dt

∫ 1

0

ϕ
′′

θx(vθθ′)dt


with vyz = (x, ty + (1− t)z, θ) and vθθ′ = (x, z, tθ + (1− t)θ′).

At y = z and θ = θ′, the above determinant is given by

∣∣∣∂(ξ, τ, θ − θ′)
∂(θ, θ′, y)

∣∣∣(y, y;x, θ, θ) = |ξ|Ndet

ϕ′′θy(x, y, θ) ϕ
′′
yx(x, y, θ)

ϕ
′′

θθ(x, y, θ) ϕ
′′

θx(x, y, θ)

 =: |ξ|ND(y, x, θ)

That the latter determinant does not vanish is equivalent to the fact that the canonical
relation is a canonical graph [36, Prop. 4.1.3]. The latter determinant remains positive
for y − z and θ − θ′ small, i.e., in the (conical) vicinity of Cψ. We thus recast A∗A, up
to a smoothing perturbation, as

A∗Au(z) ≡
∫
ei(z−y)·ξb(y, z, ξ)u(y)dydξ

b(y, z, ξ) =

∫
a∗(x, z, θ′)a(x, y, θ)ei

(θ−θ′)·τ
|ξ| |ξ|−ND−1(y, x, θ)d(θ − θ′)dτ

Here, (x, θ, θ′) are explicit expressions of (ξ, τ, θ − θ′). Moreover the homogeneity of
D−1 in ξ seems to be ξN−n (has to be checked in detail; this comes from changing x
to ω =

√
|θ|2 + |θ′|2x. We get ξ−n from the change of measure and then ξN from the

derivatives in x in the above determinant. Notation has to be modified). In other words,
A∗A is a ΨDO and the symbol b given above is in S2m(X × X × Rn). Indeed, from

the method of stationary phase recalled in the appendix, we obtain as earlier that ei
θ·τ
|ξ|

increases the the order of the symbol by |ξ|N . As a consequence, the order of the symbol
b is given by

m+
n−N

2
+m+

n−N
2
− n+N = 2m.

Stability estimates for FIO Now let us consider the operator AΛ−m. The above cal-
culation shows thatAΛ−m is a FIO of order n−N

2
and that Λ−mA∗AΛ−m = (AΛ−m)∗AΛ−m

is a ΨDO of order 0. As a consequence, we obtain at long last that

‖AΛ−mu‖2
L2(X) = ((AΛ−m)∗AΛ−mu, u)Y ≤ C‖u‖2

L2(Y ).

This shows that A is an operator of order m in the sense that for all s ∈ R, we have

‖Au‖Hs(X) ≤ C‖u‖Hs+m(Y ). (A.1)

This estimate generalizes the one obtained for the Radon transform where m = −1
2
.
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A.2 Method of stationary phase

We collect here some results on the method of stationary phase following [33].
Let X ⊂ Rn be an open set and ϕ ∈ C∞(X) a real-valued function such that

dϕ =
∑

j

∂ϕ

∂xj
dxj = ϕ′dx 6= 0. We define the integral for u ∈ C∞0 (X):

I(λ) =

∫
eiλϕ(x)u(x)dx. (A.2)

Non-stationary phase. Define the first-order operator

Ltu =
1

λ

1

i|ϕ′|2
ϕ′∂xu, Lu(x) =

1

λ
∂x

( 1

i|ϕ′|2
ϕ′u
)

=
1

λ

∑
j

∂

∂xj

( 1

i|ϕ′|2
∂ϕ

∂xj
u
)

Then we observe that Lteiλϕ = eiλϕ so that

I(λ) =

∫
Lt
(
eiλϕ(x)

)
u(x)dx =

∫
eiλϕ(x)Lu(x)dx =

∫
eiλϕ(x)Lku(x)dx.

This shows that for all compact K ⊂ X and every k ∈ N, we have

|I(λ)| ≤ Ck,K
λk
‖u‖Ck(K), (A.3)

for all u ∈ C∞0 (X) with supp u ⊂ K and for all λ > 1. The above estimate is a result of
non-stationary phase, and applies for phases ϕ(x) with no critical point.

The main objective of stationary phase is to obtain and expression for I(λ) as |λ| →
∞ when ϕ has non-degenerate critical points. This means that there are points x0 such
that ϕ′(x0) = 0 with det ϕ”(x0) 6= 0 with ϕ”(x) the Hessian of ϕ at x. This non-
degeneracy condition implies that ϕ′(x) 6= 0 for |x − x0| sufficiently small and x 6= x0.
We call x0 a non-degenerate critical point.

Morse Lemma. The Morse lemma shows that in the vicinity of x0, a change of
variables makes the phase a quadratic function.

Lemma A.2.1 (Morse Lemma) Let ϕ ∈ C∞(X) a real-valued, non-degenerate func-
tion in the vicinity of x0, where ϕ′(x0) = 0. Then there are neighborhoods U of 0 ∈ Rn

and V of x0 and a diffeomorphism H : V → U such that

H∗ϕ(y) := ϕ ◦ H−1(y) = ϕ(x0) +
1

2

(
y2

1 + . . . y2
r − y2

r+1 − . . .− y2
n

)
, (A.4)

where (r, n − r) is the signature of the Hessian ϕ”(x0) (which has r and n− r positive
and negative eigenvalues, respectively).

After such a change of variables, it remains to integrate terms of the form (A.2)
with ϕ a non-degenerate quadratic form. In one variable of space, we have the following
Fourier transforms

Fx→ξe−
1
2
αx2(ξ) =

(2π

α

) 1
2
e−

1
2α
ξ2 , Fx→ξe

±i
2
x2(ξ) = (2π)

1
2 e±

1
4
iπe∓

i
2
ξ2 ,
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from which we deduce in n dimensions of space:

Fx→ξe
i
2
λ(x,Qx)(ξ) =

(2π

λ

)n
2 1

|detQ| 12
ei
π
4

sgn Qe−i
1
2λ

(ξ,Q−1ξ),

where sgn Q is the signature of Q equal to the number of positive eigenvalues of Q
(counting multiplicities) minus the number of negative eigenvalues, i.e., r − (n − r) =
2r − n for the matrix in Lemma A.2.1. For u ∈ C∞0 (Rn), we deduce from the Parseval
relation that∫

e
i
2
λ(x,Qx)u(x)dx =

( 1

2πλ

)n
2 1

|detQ| 12
ei
π
4

sgn Q

∫
e−i

1
2λ

(ξ,Q−1ξ)û(ξ)dξ.

From the Taylor expansion of eit, we obtain that

e−i
1
2λ

(ξ,Q−1ξ) =
N−1∑
k=0

1

k!

( 1

2iλ
(ξ,Q−1ξ)

)k
+RN(ξ, λ), |RN(ξ, λ)| ≤ CN |ξ|2N

λNN !
.

From the expression of differential operators in the Fourier domain, we deduce that∫
(ξ,Q−1ξ)kû(ξ)dξ = (2π)n

(
(Dx, Q

−1Dx)
ku
)
(0),

with Dxu = (∂x1u, . . . , ∂xnu)t. From this, we deduce that∫
e
i
2
λ(x,Qx)u(x)dx =

N−1∑
k=0

(2π)
n
2 ei

π
4

sgn Q

k!|detQ| 12λk+n
2

( 1

2i
(Dx, Q

−1Dx)
)k
u (0) + SN(u, λ), (A.5)

with

|SN(u, λ)| ≤ C̃
1

N !λN+n
2

∫ ∣∣∣1
2

(ξ,Q−1ξ)N û(ξ)
∣∣∣dξ,

so that we have the estimates:

|SN(u, λ)| ≤ C
1

N !λN+n
2

‖u‖W 2N+n+1,1(Rn) ∧ Cε
1

N !λN+n
2

‖u‖
H2N+n2 +ε(Rn)

, (A.6)

for any ε > 0. The first norm above means that all derivatives of order less than or equal
to 2N + n+ 1 are bounded in L1(Rn). The second norm implies that all derivatives of
order less than or equal to 2N + n

2
+ ε are bounded in L2(Rn).

Stationary phase expansion. Let us now define

ũ = H∗u := u ◦ H−1. (A.7)

Using the change of variables y = H(x), we find for u ∈ C∞0 (V ) with V defined in the
above lemma that

I(λ) = eiλϕ(x0)

∫
U

eiλ
1
2

(y,Q(y))ũ(y)|det H−1(y)|dy,
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where Q is the diagonal matrix with the r first diagonal elements equal to 1 and the
last n− r elements equal to −1. An application of (A.5) thus shows that

I(λ) = eiλϕ(x0)

N−1∑
k=0

(2π)
n
2 ei

π
4

sgn Q

k!λk+n
2

( 1

2i
(Dy, Q

−1Dy)
)k

(ũ|det H−1|) (0) + SN(u, λ),

with SN(u, λ) bounded as in (A.6). Writing the above expression in the original x
coordinates and using (A.6), we prove the

Proposition A.2.2 Let ϕ ∈ C∞(X) a real-valued function with a non-degenerate crit-
ical point at x0 and such that ϕ′(x) 6= 0 for x 6= x0. Then there are differential operators
A2k(D) of order 2k such that for every compact K ⊂ X and u ∈ C∞0 (X) with support
in K, we have

∣∣∣I(λ)− eiλϕ(x0)

N−1∑
k=0

1

λk+n
2

(
A2k(D)u

)
(x0)

∣∣∣ ≤ C

λN+n
2

‖u‖C2N+n+1(K). (A.8)

Moreover, the leading term in the expansion is

eiλϕ(x0) 1

λ
n
2

(2π)
n
2 ei

π
4

sgn ϕ”(x0)

|det ϕ”(x0)| 12
u(0). (A.9)

The only term that requires justification is the presence of |det ϕ”(x0)| 12 in the last
expression. In the vicinity of x0, we have that ϕ(x) = ϕ(x0) + ((x − x0), ϕ”(x0)(x −
x0)) +O(‖x0‖3) so that |det H|(0) = |det ϕ”(x0)| 12 and (A.9) follows.



Chapter 5

Inverse wave problems

In the preceding two chapters, the probing mechanisms were based on particles: prop-
agation of X-rays in CT and propagation of particles in media with varying indices of
refraction in the generalized Radon transform. All these inverse problems were seen to
display good stability properties. We have seen that reconstructions based on M.R.I.
also enjoyed good stability properties. The third major way of probing unknown do-
mains with good stability reconstructions is to use waves. In some sense, particles may
be seen as high frequency wave packets with a frequency that is much larger than any
other scale in the problem. There is also considerable interest in considering waves with
lower, but still large, frequencies. Unsurprisingly, the propagation of such waves is mod-
eled by wave equations. Three typical partial differential equations are then used. A
scalar wave equation models the propagation of acoustic waves, the system of Maxwell’s
equations models the propagation of electromagnetic waves, and the system of elastic-
ity models the propagation of elastic waves. In this chapter, we restrict ourselves to
simplified scalar models for the three types of waves.

As waves propagate, they interact with the medium of interest because of variations
in a spatially varying parameter called the sound speed (or light speed, or speed of elastic
waves; but since we restrict ourselves to a scalar model, we call such a “speed” sound
speed). The objective of inverse wave problems is therefore typically the reconstruction
of such a sound speed from available measurements at the boundary of the domain. This
reconstruction can be performed from time-dependent measurements or from frequency
measurements. The theories of reconstructions of sound speeds, called inverse scattering
theories, can be fairly involved mathematically. In this chapter, we consider several
relatively simple, but still representative, inverse wave problems.

The first problem is a linearization of the inverse scattering problem in one dimension
of space with time-dependent measurements. The second inverse problem is a lineariza-
tion of the inverse scattering problem with measurements at the domain’s boundary for
one (sufficiently high) frequency. The third problem is an inverse source problem con-
sisting of reconstructing the initial condition in a wave equation from spatio-temporal
measurements of wave fields at the boundary of a domain enclosing the support of the
initial condition. This inverse source problem finds applications in the medical imaging
modality Photo-acoustic Tomography, which will be further analyzed in a later chapter.
The fourth and final problem is a nonlinear inverse coefficient problem in one dimension
of space.

91
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This selection of inverse problems aims to demonstrate the following statement: In-
verse problems based on (sufficiently high-frequency) waves that propagate in not-too-
scattering environments involve measurement operators with good stability properties.
Reconstructions for such inverse problems are therefore typically high resolution. Al-
though such features remain true in higher spatial dimensions and for more general
non-linear inverse problems, the geometric descriptions and mathematical analyses can
become extremely complex. For general references on inverse scattering and related
inverse problems, we refer the reader to, e.g., [26, 28, 38].

5.1 One dimensional inverse scattering problem

In this section, we consider an example of a well-posed inverse problem, i.e., an inverse
problem with a Lipschitz stability in the L2 sense. Inverse problems related to the wave
equation are often of this nature. Indeed, the wave equation “propagates” singularities
without dampening them, as does the Fourier transform for instance. Here, we consider
a simple one dimensional wave equation and a linearization of the inverse scattering
problem.

Let us consider the one dimensional wave equation

1

c2
s(x)

∂2p

∂t2
− ∂2p

∂x2
= δ(t)δ(x− xs), t ∈ R, x ∈ R, (5.1)

with delta source term at time t = 0 and position x = xs. Here, cs is the unknown
sound speed, which takes a constant value c = cs for |x| ≥ R > 0. We assume causality
so that p(x, t;xs) = 0 for t < 0 and assume that p is bounded. We measure p(xs, t;xs)
as the domain’s boundary as a function of time and want to reconstruct the unknown
profile cs(x).

It is convenient to analyze the problem in the frequency domain. Let us define
u(x, ω;xs) the causal Fourier transform of p(x, t;xs) in the time variable

u(x, ω;xs) =

∫ ∞
0

p(x, t;xs)e
iωtdt. (5.2)

This transform can be inverted as follows:

p(x, t;xs) =
1

2π

∫ ∞
−∞

u(x, ω;xs)e
−iωtdω. (5.3)

The equation for u(x, ω;xs) is the well-known Helmholtz equation

d2u

dx2
+

ω2

c2
s(x)

u = −δ(x− xs), ω ∈ R, x ∈ R, (5.4)

augmented with the following radiation conditions

du

dx
∓ iω

c
u → 0, as x → ±∞. (5.5)

Since p(xs, t;xs) is measured, then u(xs, ω;xs) is known by taking the Fourier transform
of the available data.
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Let us make a few assumptions. We assume that cs(x) is known on (−∞, xs) (in
Earth profile reconstructions, one is interested in positive depths only) and that cs(x)
is close to the background sound speed c on (xs,∞) in the sense that

1

c2
s(x)

=
1

c2

(
1− α(x)

)
, (5.6)

where α(x) is small compared to 1. In effect we linearize the problem of the reconstruc-
tion of cs(x) from the scattering measurements u(xs, ω;xs).

The advantage is that the resulting problem is linear, relatively straightforward to
invert and admits an explicit solution for small α(x). Let us define by ui (i for incident)
the solution of the unperturbed problem

d2ui
dx2

+
ω2

c2
ui = δ(x− xs),

dui
dx
∓ iω

c
ui → 0, as x → ±∞. (5.7)

The solution to the above problem is nothing but the Green’s function of the Helmholtz
equation with constant coefficients. It is given explicitly by

ui(x, ω;xs) = g(x− xs, ω) =
cei

ω
c
|x−xs|

2iω
. (5.8)

Exercise 5.1.1 Verify the above formula for the Green’s function (and verify that the
radiation condition is satisfied).

Let us now decompose the Helmholtz solution as the superposition of the incident
field and the scattered field:

u(x, ω;xs) = ui(x, ω;xs) + us(x, ω;xs).

From the equations for u and ui, we verify that us satisfies the following equation

d2us
dx2

+
ω2

c2
us =

ω2

c2
α(x)(ui + us), (5.9)

with appropriate radiation conditions. By the principle of superposition, this implies
that

us(x, ω;xs) = ω2

∫ ∞
xs

α(y)

c2
(us + ui)(y, ω;xs)g(x− y, ω)dy. (5.10)

So far, we have not used the assumption that α(x) was small. This approximation,
called the Born approximation, allows us to deduce from the above equation that us is
also of order α. This implies that αus is of order α2, hence much smaller than the other
contributions in (5.10). So neglecting us on the right hand side of (5.10) and replacing
ui and g by their expression in (5.8), we deduce that a good approximation of us is

us(xs,
ck

2
;xs) =

∫
R

α(x)

4
eikxdx, k ∈ R. (5.11)
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This implies that the scattering data us(xs, ω;xs) uniquely determines the fluctuation
α and that the reconstruction is stable: all we have to do is to take the inverse Fourier
transform of us to obtain α(x). Namely, we have

α(x) =
2

π

∫
R
e−ikxus(xs,

ck

2
;xs)dk. (5.12)

Several assumptions have been made to arrive at this result. However as was the case
with the MRI problem, we obtain in the end a very simple reconstruction procedure:
all we have to do is to compute an inverse Fourier transform.

We can summarize the above result as follows.

Theorem 5.1.1 Let ui be given by (5.8) and us be the solution of

d2us
dx2

+
ω2

c2
us =

ω2

c2
α(x)ui, (5.13)

for α supported in (xs, R) and such that the radiation conditions (5.5) hold. Consider
the measurement operator

α 7→M(α) = us(xs, ·;xs), (5.14)

mapping α(x) ∈ L2(xs, R) to ω 7→ us(xs, ω;xs) ∈ L2(R). Then the measurement op-
erator uniquely determines α by means of the explicit inversion formula (5.12). The
inversion is Lipschitz stable in the sense that

‖α− α̃‖L2(xs,R) ≤ C‖M(α)−M(α̃)‖L2(R) , (5.15)

for a constant C > 0.

Exercise 5.1.2 Write the proof of the above theorem in detail. State a similar theorem
for a linearization of the wave equation in the time domain (5.1).

5.2 Linearized Inverse Scattering problem

In the preceding section, we analyzed the linearization of an inverse scattering problem
in one spatial dimension. In this section, we consider extensions to two and three
dimensions of space. The model is again a wave equation written in the frequency
domain (a Helmholtz equation). Unlike the one dimensional setting, in dimension two
or more, plane waves with a given frequency are sufficient to uniquely determine (the
low frequency component of) a sound speed. This is the setting that we present here.

5.2.1 Setting and linearization

Let us consider the wave equation in dimension n = 2, 3 given by

1

c2
s(x)

∂2p

∂t2
−∆p = 0, x ∈ Rn, t > 0, (5.16)
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with appropriate initial conditions. The velocity cs(x) is the unknown parameter. Let
us assume that cs(x) = c for |x| > R for a given radius R > 0. We assume that p = 0
for t < 0 and as in the preceding section, pass to the frequency domain by introducing

u(x, ω) =

∫ ∞
0

eiωtp(x, t)dt, p(x, t) =
1

2π

∫
R
e−iωtu(x, ω)dω. (5.17)

The equation for u is then the following Helmholtz equation

(∆ +
ω2

c2
s(x)

)u(x, ω) = 0, x ∈ Rn, ω ∈ R,

x̂ · ∇u(x, ω)− iω
c
u(x, ω) = o(|x|−(n−1)/2).

(5.18)

As usual x̂ = x
|x| and the second equation is the radiation condition, which ensures that

no energy comes from infinity (only waves radiating out are allowed at infinity). The
notation o(x) means a quantity such that o(x)/x → 0 as 0 < x → 0. So the decay at
infinity should be faster than |x|−1/2 in two dimensions and faster than |x|−1 in three
dimensions.

Let us now introduce the following linearization for the velocity and the frequency:

1

c2
s(x)

=
1

c2

(
1− α(x)

)
, k =

ω

c
. (5.19)

We recast the Helmholtz equation as

(∆ + k2)u(x, ω) = α(x)k2u(x, ω),

x̂ · ∇u(x, ω)− iku(x, ω) = o(|x|−(n−1)/2).
(5.20)

Let ϑ ∈ Sn be a unit vector. We verify that

(∆ + k2)ui(x, ω;ϑ) = 0, where ui(x, ω;ϑ) = eikϑ·x. (5.21)

Thus plane waves with the right wavenumber k = |kϑ| are solutions of the homogeneous
Helmholtz equation. Notice however that they do not satisfy the radiation conditions
(they do radiate out in the direction ϑ but certainly not in the direction −ϑ since they
come from infinity in that direction).

The forward problem we are interested in is the following: we have a probing plane
wave coming from infinity and want to find a solution us(x, ω) modeling the response
of the system to the probing. Therefore we impose that us does not radiate at infinity
(i.e., satisfies the radiation condition) and that the whole field u = ui + us satisfies the
Helmholtz equation. We thus end up with the following scattering problem

(∆ + k2)us(x, ω) = α(x)k2(us + ui)(x, ω),

x̂ · ∇us(x, ω)− ikus(x, ω) = o(|x|−(n−1)/2).
(5.22)

In the above equation we have used (5.21). Under general assumptions on α(x), the
above equation admits a unique solution [28]. The inverse scattering problem consists
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then of reconstructing α(x) from measurements of us at infinity in all possible directions
x̂ for all possible incoming plane waves ϑ ∈ Sn. We will not be concerned with this
general problem and refer the reader to [28] for more details.

Instead, we concentrate on the linearization of the inverse scattering problem about
the constant velocity profile cs(x) = c. Let us assume that α is small (in some appro-
priate sense that we do not describe further). As a consequence, us is also small as can
be seen from (5.22). We therefore neglect the term αus, which is second-order in α.
This approximation, as in the preceding section, is called the Born approximation. It
also has the advantage of linearizing the problem of reconstructing α(x) from scattering
measurements, which will be described in detail below. We are thus now concerned with
the linearized problem

(∆ + k2)us(x, ω) = α(x)k2ui(x, ω),

x̂ · ∇us(x, ω)− ikus(x, ω) = o(|x|−(n−1)/2).
(5.23)

This equation can be solved explicitly as

us(x, ω) = k2

∫
Rn
α(y)ui(y, ω)gn(x− y)dy, (5.24)

where gn is the Green function, solution of the following equation

(∆ + k2)gn(x) = δ(x)

x̂ · ∇us(x, ω)− ikus(x, ω) = o(|x|−(n−1)/2),
(5.25)

and is given for n = 2, 3 by

g2(x) =
i

4
H0(k|x|), g3(x) =

eik|x|

4π|x|
. (5.26)

Here, H0 is the 0th order Hankel function of the first kind, given by

H0(k|x|) =
1

π

∫
R

1√
k2 − p2

ei(px+
√
k2−p2y)dp, (5.27)

where we have decomposed x = (x, y) in Cartesian coordinates.

5.2.2 Far field data and reconstruction

The measurements we consider in this section are the far field scattering data. They
correspond to the scattered waves propagating outwards at infinity. This simplification
amounts to saying that the other component of the radiating field, composed of the
evanescent waves, is not measured. Mathematically, we consider the asymptotic limit of
us as |x| → ∞. Let us consider the three dimensional case first. Since x goes to infinity,
then |x− y| is equal to |x| plus a smaller order correction. So we have

us(x, ω) =
k2

4π|x|

∫
R3

α(y)eikϑ·yeik|x−y|dy + l.o.t. .
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Upon using the following approximation

|x− y| = |x||x̂− y

|x|
| = |x|

(
1 +
|y|2

|x|2
− 2

x̂ · y
|x|

) 1
2

= |x| − x̂ · y + l.o.t.,

we obtain

us(x, ω) =
k2eik|x|

4π|x|

∫
R3

α(y)eik(ϑ−x̂)·ydy + l.o.t. .

We thus observe that

us(x, ω) =
k2eik|x|

4π|x|
A(x̂) + o

( 1

|x|

)
,

A(x̂) = α̂
(
k(x̂− ϑ)

)
=

∫
R3

α(y)eik(ϑ−x̂)·ydy.
(5.28)

Recall that ω = ck. So for a plane wave at a given frequency ω, i.e., at a given
wavenumber k, and direction ϑ, the far field measurement is A(x̂) = A(x̂; k, ϑ) in the
direction x̂ (obtained by multiplying the measured signal by 4π|x|e−ik|x|k−2).

In two space dimensions (n = 2), the final result is similar in the sense that us is

proportional to |x|− 1
2 at infinity with a coefficient of proportionality A(x̂) taking the

same expression as given in (5.28).
The measurement operator we consider in this section thus takes the following form

L∞(B(0, R)) 3 α 7→M[α] = A(·; k, ·) ∈ L∞(Sn−1 × Sn−1), (5.29)

which to a (say bounded) sound speed fluctuation α(x) associates the far field measure-
ment (x̂, ϑ) 7→ A(x̂; k, ϑ), which is also bounded as the Fourier transform of a bounded,
compactly supported, function. Note that α lives in the n-dimensional space B(0, R)
whereas A for a fixed frequency k lives in the 2(n− 1)-dimensional space Sn−1 × Sn−1.
The latter dimensions agree when n = 2 whereas in dimensions n ≥ 3, the far field
data are richer than the unknown object α since 2(n − 1) > n then. Note that within
the (Born) approximation of linearization, the measurement operator again provides
information about α in the Fourier domain since

M[α](x̂, ϑ) = α̂(k(ϑ− x̂)). (5.30)

Each measurement (x̂, ϑ) provides different information about the Fourier transform
of the velocity fluctuation α(x). We distinguish two types of measurements. The first
ones correspond to directions of measurements x such that x·ϑ > 0. These measurements
are called transmission measurements since they correspond to the radiated wave that
have passed through the object we wish to image. The second ones correspond to the
directions such that x · ϑ < 0. They are called reflection measurements.

Transmission inverse scattering. Let us consider transmission measurements first,
with α̂(k(x̂− ϑ)) known for x̂ · ϑ > 0. In particular we obtain for x̂ = ϑ̂ the value α̂(0),
which is the average of the fluctuation α(x) over the whole domain. More generally as
x̂ varies in S1 such that x̂ · ϑ > 0, we obtain α̂(ξ) over a half-circle passing through 0,
of radius k and symmetric about the axis ϑ. As ϑ varies on the unit circle, we observe
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that α̂(k(x̂− ϑ)) fills the disk of radius
√

2k. At a fixed value of k, this is therefore all
we can get: α̂(ξ) for ξ such that |ξ| ≤

√
2k.

The picture in three dimensions is very similar: for a given ϑ ∈ S2, we have access
to α̂(k) for k on a half-sphere of radius

√
2k passing through 0 and invariant by rotation

about ϑ. As ϑ varies over the sphere S2, we thus get α̂(k) for all k such that |k| ≤
√

2k,
as in the two-dimensional case.

The diffraction inverse problem is therefore not injective. All we can reconstruct
from the measured data is a low-pass filter of the object α(x). The high frequencies are
not measured. The high frequencies of α are encoded in the radiation field us. However
they are the evanescent part of the waves. They decay therefore much more rapidly than
|x|−1 (when n = 3), actually exponentially, and thus cannot be measured accurately in
practice.

Let us now consider reconstruction formulas. Since frequencies above
√

2k cannot
be reconstructed, we assume that

α(x) = (F−1
ξ→xχ

√
2k(ξ)Fx→ξα)(x), (5.31)

where χ√2k(ξ) = 1 when |ξ| <
√

2k and 0 otherwise, i.e. α does not have high wavenum-
bers. Note that this assumption is inconsistent with our earlier assumption that α was
supported in B(0, R). We do not deal with this minor technical difficulty here. Then
the reconstruction is obviously unique according to what we just saw. Let us consider
the two-dimensional case. We want to reconstruct α(x) from α̂(k(x̂− ϑ)), where x̂ and
ϑ run over the unit circle S1. The inverse Fourier transform tells us that

α(x) =
1

(2π)2

∫
R2

eix·ξα̂(ξ)dξ =
k2

(2π)2

∫ 2π

0

∫ √2

0

eikρx·ϑα̂(kρϑ)ρdρdθ.

Observe that as ϑ covers the unit circle, all points of the disk |ξ| <
√

2k are covered
twice as x̂ varies, once for a point such that ξ̂ · ϑ⊥ > 0 and once for a point such that
ξ̂ · ϑ⊥ < 0. Therefore the information corresponding to ξ̂ · ϑ⊥ > 0 is sufficient. This
information is parameterized as follows: for a given ϑ we write x̂ as

x̂(φ, ϑ) = sinφϑ+ cosφϑ⊥, 0 ≤ φ ≤ π

2
. (5.32)

We thus obtain that

α̂(k(x̂− ϑ)) = α̂
(
kρ(φ)

(sinφ− 1

ρ(φ)
ϑ+

cosφ

ρ(φ)
ϑ⊥
))

= α̂
(
kρ(φ)R(φ)ϑ

)
,

with ρ(φ) =
√

2
√

1− cosφ and R(φ) an explicitly defined rotation depending on φ.
Here is the rest of the reconstruction:

α(x) =
k2

(2π)2

∫ 2π

0

∫ π/2

0

eikρ(φ)x·ϑα̂(kρ(φ)ϑ)ρ(φ)
dρ(φ)

dφ
dφdθ

=
k2

(2π)2

∫ 2π

0

∫ π/2

0

eikρ(φ)x·R(φ)ϑα̂(kρ(φ)R(φ)ϑ)
1

2

dρ2(φ)

dφ
dφdθ,

so that finally

α(x) =
2k2

(2π)2

∫ 2π

0

∫ π/2

0

eikρ(φ)x·R(φ)ϑα̂(k|x̂(φ, ϑ)− ϑ|) sinφdφdθ. (5.33)

This is the reconstruction formula we were after.
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Reflection inverse scattering. Let us conclude the section with a few words about
reflection tomography. In that case, we only measure data in directions x̂ such that
x̂ · ϑ < 0. Following the same techniques as above, we see that we can reconstruct
wavenumbers of α(x) in the corona of wavenumbers ξ such that

√
2k < |ξ| < 2k.

The reconstruction from reflection data is therefore by no means unique. We cannot
reconstruct low-frequency components of α and cannot reconstruct very-high frequencies
either. Assuming that the wavenumber content of α(x) is in the above corona, then the
reconstruction is unique. A reconstruction formula similar to what we just obtained
can also be derived. Notice that when both the transmission and reflection data can be
measured, we can reconstruct all wavenumbers ξ of α(x) such that |ξ| < 2k.

All these result are in sharp contrast to the one-dimensional example we saw in the
preceding section. There, a given wavenumber k allows us to reconstruct one wavenum-
ber of α(x). All wavenumbers are thus required (i.e. measurements for all frequencies
ω) to reconstruct α(x). Here α(x) is also uniquely determined by measurements ob-
tained for all values of k (since each value of k allows us to reconstruct all wavenumbers
|ξ| < 2k). However because of the multidimensional nature of the measurements (the
variable x̂ is discrete in one-dimension instead of living on the unit sphere Sn), measure-
ments for all values of k is quite redundant: once we have obtained measurements at a
given value of k0, all measurements obtained for wavenumbers k < k0 are redundant.

5.2.3 Comparison to X-ray tomography

Let us consider the case of transmission data in two space dimensions. We have seen
that wavenumbers of α(x) up to

√
2k could be reconstructed. However as k tends to

∞, this essentially means that all wavenumbers of α(x) can be reconstructed.
Indeed in that limit we observe that the half circle of radius k becomes the full line

orthogonal to ϑ. That is, as k →∞, the measurements tend to

α̂(σϑ⊥) = Rα
(
σ, θ +

π

2

)
.

Exercise 5.2.1 Show that the reconstruction formula (5.33) indeed converges to the
inverse Radon transform as k →∞.

In the limit of infinite frequency, we therefore obtain that the transmission measurements
tend to the Radon transform of α. We have seen in Chapter 2 that the knowledge
of Rα(σ, θ + π/2) for all values of σ and θ was sufficient to uniquely reconstruct the
fluctuation α(x).

So how should we consider the inverse diffraction problem? How ill-posed is it? As
we already mentioned, the first problem with diffraction tomography is that for a fixed
frequency ω, the function α(x) cannot uniquely be reconstructed. Only the wavenum-
bers below

√
2k (below 2k) in the case of transmission (transmission and reflection)

measurements can be reconstructed. However in the class of functions α(x) ∈ L2(R2)
such that (5.31) holds, we have uniqueness of the reconstruction. In this class we can
perform a similar analysis to what we obtained in Theorem 2.1.2.

Let us consider the measurements d(φ, ϑ) = α̂(k(x̂−ϑ)) for ϑ ∈ S1 and 0 ≤ φ ≤ π/2
using (5.32). We verify that 1 ≤ ρ′(φ) ≤

√
2 for 0 ≤ φ ≤ π/2.
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Let us assume that the error we make is of the same order for every angle φ and
every angle ϑ. An estimate of the total error will thus involve∫

S1

∫ π/2

0

|d(φ, ϑ)|2dφdϑ =

∫
S1

∫ π/2

0

|α̂(kρ(φ)R(φ)ϑ)|2dφdϑ

=

∫
S1

∫ √2

0

|α̂(kρϑ)|2(ρ′)−1dρdϑ ∼
∫
S1

∫ √2

0

|α̂(kρϑ)|2dρdϑ

∼ 1

k

∫
S1

∫ √2k

0

|α̂(uϑ)|2dudϑ ∼ 1

k

∫
S1

∫ √2k

0

|α̂(uϑ)|2u du dϑ
u

≥ 1

k
‖α‖2

H−
1
2 (R2)

.

In some sense, the above formula also shows that the data d(φ, ϑ) are more regular than
the function α(x) by half of a derivative. This is consistent with the Radon transform
in the limit as k →∞. To be more consistent with the Radon transform, notice in the
limit k → ∞ that k cosφ ∼ σ so that k sinφdφ ∼ dσ as the half circle converges to
the real line. Since sinφ ∼ 1 for most of the wavenumbers σ as k → ∞, this implies
that kdφ ∼ dσ. Therefore a total error in the angular measurements in diffraction
tomography consistent with the measurement errors for the Radon transform is given
by ∫

S1

∫ π/2

0

|d(φ, ϑ)|2kdφdϑ ≥ ‖α‖2
H−1/2(R2).

We recover in this limit that the measurements in diffraction tomography regularize the
function α by half of a derivative.

Note that we see here again that the ill-posedness of a problem very much depends
on the norm in which the error on the data is measured.

5.3 Inverse source problem in PAT

Consider the following wave equation

∂2p

∂t2
−∆p = 0, t > 0, x ∈ Rn

p(0, x) = f(x), x ∈ Rn

∂tp(0, x) = 0, x ∈ Rn.

(5.34)

The inverse wave source problem consists of reconstructing the initial condition f sup-
ported in a open, convex, bounded domain X from knowledge of p(t, x) for t > 0 and
x ∈ ∂X. This inverse problem finds application in Photo-acoustic tomography (PAT).
We will come back to the modeling of this imaging modality in Chapter 9.

5.3.1 An explicit reconstruction formula for Σ the unit sphere

Explicit inversion formulas are known when Σ = ∂X is a simple geometry. Explicit
reconstruction procedures based on time reversal are also known for general surfaces Σ
enclosing the support of the source f(x), which we assume is compactly supported.
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All explicit inversion formulas are based one way or another on the Fourier transform.
Let us assume that Σ is the unit sphere |x| = 1. Then an explicit reconstruction

formula by L. Kunyanski shows that in dimension n = 3, we have

f(x) =
1

8π2
∇x ·

∫
|y|=1

ν(y)
(1

t

d

dt

p(y, t)

t

)
t=|y−x|

dSy. (5.35)

The above formula generalizes to arbitrary dimension. We shall not delve into the de-
tails of this inversion formula. Like the formula based on the Radon transform, it uses
the symmetries of the Fourier transform. However, it is based on Fourier transforms on
the sphere (spherical harmonics) that we do not present here. The above reconstruc-
tion shows that the source term f(x) can uniquely and stably be reconstructed from
knowledge of u on the surface Σ.

5.3.2 An explicit reconstruction for detectors on a plane

In this section, we present an inversion procedure for point-wise detectors based on the
use of the Fourier transform. We assume that f is compactly supported in the unit ball
B(0, 1) and assume that the measurements are performed at each point of the hyperplane
xn = 1. The reconstruction procedure is essentially independent of dimension n ≥ 2
and is therefore presented for arbitrary dimensions. We denote by x′ = (x1, . . . , xn−1)
and by z = xn. We want to reconstruct f(x) from knowledge of p(t, x′, z = 1) for all
t ≥ 0 and x′ ∈ Rn−1 knowing that( ∂2

∂t2
−∆

)
p = δ′0(t)f(x), (t, x) ∈ R× Rn.

We denote by u(ω, ξ′, z) the partial Fourier transform of p given by

u(ω, ξ′, z) =

∫
Rn
e−i(ωt+ξ

′·x′)p(t, x′, z)dtdx′,

and by f̃(ξ′, z) =
∫
Rn−1 e

−iξ′·x′f(x′, z)dx′.
Since differentiation in t corresponds to multiplication by iω in the Fourier domain,

with a similar expression in the x′ variable, we find that(
ω2 − |ξ′|2 +

∂2

∂z2

)
u = −iωf̃ := s(ω, ξ′, z).

For the reconstructions, it turns out that we need only the subset ω > |ξ′| and define
θ =

√
ω2 − |ξ′|2. The above equation is a second-order non-homogeneous equation

similar to the forced harmonic oscillator. Its solution is of the form

u(ω, ξ′, z) = A(ω, ξ′)eiθz +B(ω, ξ′)e−iθz +

∫ z

0

s(z′)
sin θ(z − z′)

θ
dz′,

which we recast as

u(ω, ξ′, z) =
(
A+

∫ z

0

s(z′)
e−iθz

′

2iθ
dz′
)
eiθz +

(
B −

∫ z

0

s(z′)
eiθz

′

2iθ
dz′
)
e−iθz.
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The support of f and hence of s is a subset of (−1, 1) in the z variable. As z →∞, we
want only outgoing waves (no incoming waves), which imposes that

B(ω, ξ′) =

∫ 1

0

s(z′)
eiθz

′

2iθ
dz′.

Similarly, as z → −∞, the radiation condition imposes that

A(ω, ξ′) =

∫ 0

−1

s(z′)
e−iθz

′

2iθ
dz′.

At z = 1, where information is available, this means,

u(ω, ξ′, 1) = eiθ
∫ 1

−1

s(ω, ξ′, z)
e−iθz

′

2iθ
dz′ = − ω

2θ
eiθ
∫
R
e−iθzf̃(ξ′, z)dz.

Since f is real valued, then f̃ ∗(−ξ′, z) = f̃(ξ′, z). Let us therefore define

v(θ, ξ′) =


−2θ√
θ2 + |ξ′|2

u(
√
θ2 + |ξ′|2, ξ′, 1)e−iθ θ > 0

2θ√
θ2 + |ξ′|2

u(−
√
θ2 + |ξ′|2,−ξ′, 1)e−iθ θ < 0.

Then we find that

v(θ, ξ′) =

∫
R
e−iθzf̃(ξ′, z)dz := f̂(ξ)

is the Fourier transform of f in all variables.
Note that only the frequencies |ω| > |ξ′| are used in the reconstruction. This corre-

sponds to the propagating modes. The frequencies |ω| < |ξ′| are still measured but are
not necessary in the reconstruction. These evanescent modes decay exponentially in z
and their use might in fact yield unstable reconstructions.

Using the Parseval relation and the fact that |θ|dθ = |ω|dω, we have

‖f‖L2(B(0,1)) = c‖f̂‖L2(Rn) = c‖v‖L2(R×Rn−1) ≤ C‖u|z=1
θ

ω
‖L2(R×Rn−1) ≤ C‖u|z=1‖L2(R×Rn−1)

since | θ
ω
| ≤ 1. Consequently, we find that

‖f‖L2(B(0,1)) ≤ C‖p(t, x′, 1)‖R×Rn−1 .

The inverse wave problem is therefore injective and well posed in the L2 sense. This
means that there exists a constant C > 0 such that

‖f‖L2(B(0,1)) ≤ C‖Mf‖L2(Rn).

The above inverse wave problem is therefore stable. Measurement errors are not
amplified too drastically during the reconstruction and the inverse wave source problem
is consequently a high resolution inverse problem.
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5.4 One dimensional inverse coefficient problem

The three inverse problems considered so far in this chapter were linear inverse problems.
The first two inverse scattering problems were defined as the linearization of nonlinear
inverse scattering problems. The last inverse source problem is linear without any ap-
proximation. In this section, we consider a one-dimensional inverse coefficient problem,
which is nonlinear and treated as such. This nonlinear inverse problem enjoys the same
properties as their linear counterparts: Wave equations propagate singularities and thus
many measurement operators based on solutions of wave equations are Lipschitz stable.

Consider the equation

∂2p

∂t2
− ∂2p

∂x2
− q(x)p = 0, t > 0, x > 0

p(t, 0) = f(t), t > 0,

p(0, x) = ∂tp(0, x) = 0 x > 0.

(5.36)

This problem can equivalently be posed for t ∈ R by assuming that the source term
f(t) is supported in t ∈ R+. The solution p then vanishes for t ≤ 0 by finite speed of
propagation. For the same reason, the solution is supported in the domain t ≥ x ≥ 0.

Here, q(x) is an unknown bounded potential. We then assume that g(t) = ∂xp(t, 0)+
f ′(t) is measured at the domain’s boundary. This defines the measurement operator

L∞(0, L) 3 q 7→Mf (q) = g ∈ L∞(0, 2L). (5.37)

The objective is to show that g(t) for t ∈ (0, 2L) uniquely determines q(x) on (0, L)
under some conditions on f(t). Moreover, depending on the structure of f(t) at t = 0,
we obtain different stability estimates showing that the reconstruction of q(x) is a well
posed problem in appropriate topologies.

Cauchy problems at x = 0 and t = 0. Let us define p1(t, x) = p(t, x) − f(t − x),
where f(t − x) is seen to be the solution of the above problem when q ≡ 0. Then we
find that

∂2p1

∂t2
− ∂2p1

∂x2
= q(x)p(t, x) := s(t, x) t ∈ R, x > 0

p1(t, 0) = 0,
∂p1

∂x
(t, 0) = g(t), t ∈ R

p1(0, x) =
∂p1

∂t
(0, x) = 0 x > 0.

(5.38)

The above problem may be seen in two ways. It can either be seen as a Cauchy
problem for x > 0 and t ∈ R with Cauchy data at x = 0. The solution is then given by

p1(t, x) =
1

2

∫ t+x

t−x
g(τ)dτ +

1

2

∫
∆(t,x)

q(y)p(τ, y)dτdy, (5.39)

where we have defined the triangular-shaped area:

∆(t, x) =
{

(τ, y), 0 < y < x, t− (x− y) < τ < t+ (x− y)
}
. (5.40)
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Alternatively, we can write the above problem as a Cauchy problem with data at
t = 0. We need to ensure that the constraint p1(t, 0) = 0 is satisfied. In order to do so,
let us define f(t, x) = f(t − x) for t > 0 and x > 0 and f(t, x) = −f(t + x) for t > 0
and x < 0 and let us extend the potential so that q(x) := q(−x) for x < 0. We then
recast the wave equation for p1 as

∂2p1

∂t2
− ∂2p1

∂x2
= q(x)

(
f(t, x) + p1(t, x)

)
t > 0, x ∈ R

p1(0, x) =
∂p1

∂t
(0, x) = 0 x ∈ R.

(5.41)

The solution to that equation then satisfies the constraint p(t,−x) = −p(t, x) and with
s(t, x) := q(x)(f(t, x) + p1(t, x)) is given explicitly by

p1(t, x) = −1

2

∫
∆̃(t,x)

s(τ, y)dydτ, (5.42)

where ∆̃(t, x) = {(τ, y), 0 < τ < t, x− (t− τ) < y < x+ (t− τ)}.

Exercise 5.4.1 Check the above two formulas for p1(t, x).

We thus obtain again that

p1(t, x) = −1

2

∫
∆̃(t,x)

q(y)
[
f(τ, y) + p1(τ, y)

]
dτdy. (5.43)

For f(t) = δ(t), we observe that p1(t, x) is a bounded function. This implies that
g(t) is also a bounded function. We define here f(t) = δ(0) as the limit of fε(t) with
fε(t) = 1

ε
for t ∈ (0, ε) and fε(t) = 0 otherwise. We also write p and p1 the corresponding

limits as ε→ 0.

Exercise 5.4.2 Show that p1 is indeed a bounded function. Find that the right-hand
side in (5.43) with p1 set to 0 is indeed bounded. Then use an argument based on a
Gronwall lemma as indicated below to conclude.

Nonlinear problem for q(x). Let us come back to (5.39) and evaluate it at t = 0
for x > 0. Then we find

p1(0, x) =
1

2

∫ x

−x
g(τ)dτ +

1

2

∫ x

0

∫ x−y

−(x−y)

s(τ, y)dτdy.

Differentiating with respect to x yields

g(x) +

∫ x

0

q(y)p(x− y, y)dy = 0. (5.44)

This may be seen as a nonlinear equation for q since p depends on q.
The same equation may also be obtained from (5.43). Indeed, differentiating in x

yields

∂xp1(t, x) = −1

2

∫ t

0

(s(τ, x+ (t− τ))− s(τ, x− (t− τ)))τ = −
∫ t

0

s(τ, x+ (t− τ))dτ.
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Evaluated at x = 0, this yields

∂xp1(t, 0) = g(t) = −
∫ t

0

q(τ)p(t− τ, τ)dτ, (5.45)

which is equivalent to (5.44). The latter may be recast as

g(x) +

∫ x

0

q(y)f(x− 2y)dy +

∫ x

0

q(y)p1(x− y, y)dy = 0.

Let us now assume that f(t) = δ(t) as the limit indicated above. Then we find that

g(x) +
1

2
q
(x

2

)
+

∫ x

0

q(y)p1(x− y, y)dy = 0.

However, by the finite speed of propagation, p(t, x) and p1(t, x) are supported on t ≥ x.
This means that p1(x − y, y) is supported on y ≤ x

2
. As a consequence, changing x to

2x, we find that for all x > 0,

q(x) = −2g(2x)− 2

∫ x

0

q(y)p1(2x− y, y)dy. (5.46)

This is a nonlinear equation for q(x) of Fredholm type. We define g̃(x) = −2g(2x).

Error estimates and Gronwall lemma. Let us consider g̃ = Mf (q̃) and g = Mf (q).
We define δq = q − q̃ and δp = p− p̃ as well as δǧ with obvious notation. Then we find
that

δq(x) = δǧ(x)− 2

∫ x

0

δq(y)p1(2x− y, y)dy − 2

∫ x

0

q̃(y)δp1(2x− y, y)dy

δp1(t, x) =
1

2

∫ t+x

t−x
δg(τ)dτ +

1

2

∫
∆(t,x)

[
δq(y)p(τ, y) + q̃(y)δp1(τ, y)

]
dτdy.

(5.47)

Here, we used (5.39) for the expression of p1.
Let us define

Γ(T ) = {(x, t) ∈ R2, 0 ≤ t ≤ T, x = t} ∪ {(x, t) ∈ R2, 0 ≤ t ≤ T, x = 2T − t}, (5.48)

the part of the boundary of ∆(T, T ) that does not include the segment (0, 0 < t < T ).
We next define

δP (T ) = sup
Γ(T )

|δp1(t, x)|, δQ(T ) = sup
t∈[0,T ]

|δq|(t). (5.49)

Then we deduce from (5.47) that

δQ(T ) ≤ ‖δg‖L∞(0,2T ) + C

∫ T

0

δQ(τ)dτ + C

∫ T

0

δP (τdτ

δP (T ) ≤ T‖δg‖L∞(0,2T ) + C

∫ T

0

δQ(τ)dτ + C

∫ T

0

δP (τ)dτ.
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Exercise 5.4.3 Verify the above expression. The main difficulty involves the analysis
of the term ∫

∆(t,x)

δq(y)δ(τ − y)dτdy,

which has to be seen as the limit with source term fε as ε → 0. It is bounded by∫ T
0
|δq|(τ)dτ and hence by

∫ T
0
δQ(τ)dτ .

We deduce that

(δP + δQ)(T ) ≤ (1 + T )‖δg‖L∞(0,2T ) + C

∫ T

0

(δP + δQ)(τ)dτ

with constant C uniform in T . As an application of the Gronwall lemma, we deduce
that

(δP + δQ)(T ) ≤ CeCT‖δg‖L∞(0,2T ),

for some positive constant C also independent of T .

Exercise 5.4.4 Verify that the Gronwall lemma applies to the above problem and yields
the latter inequality.

This proves the following result:

Theorem 5.4.1 Let f(t) = δ(t) and q and q̃ be bounded potentials. Then Mδ(q) =
Mδ(q̃) implies that q = q̃ and we have the following error estimate

‖q − q̃‖L∞(0,T ) ≤ CeCT‖Mδ(q)−Mδ(q̃)‖L∞(0,2T ). (5.50)

The constant C is uniform in T > 0.

Let us now assume that the initial condition is not f(t) = δ(t) but rather fn(t) = 1
n!
tn

for n ≥ 0. Then obviously f
(n+1)
n (t) = δ(t). Moreover, since q is independent of t, then

∂n+1
t u solves the same equation as u with fn replaced by δ(t). As a consequence the

measurements gn(t) with f = fn are such that g
(n+1)
n (t) = g(t), the measurements

corresponding to f = δ(t). This yields

Corollary 5.4.2 Let fn(t) = 1
n!
tn and q and q̃ be bounded potentials. Then Mfn(q) =

Mfn(q̃) implies that q = q̃ and we have the following error estimate

‖q − q̃‖L∞(0,T ) ≤ CeCT‖Mfn(q)−Mfn(q̃)‖Wn+1,∞(0,2T ). (5.51)

The constant C is uniform in T > 0.

This straightforward corollary indicates that the stability estimate strongly depends on
the probing mechanism. The smoother the probing mechanism, the worse is the stability
estimate.

Intuitively, the above result is clear. A signal emitted at t = 0 propagates to position
x during time t = x and then back to x = 0 at time t = 2x. Only that signal
provides information about q at position x. When multiple signals are emitted, then
superpositions of signals create some blurring. The above corollary quantifies such a
blurring.



Chapter 6

Inverse Kinematic and Inverse
Transport Problems

Several problems of Integral Geometry model the propagation of particles interacting
with the underlying medium. This is the case for the Radon transform seen as a trans-
mission tomography problem in (2.1) and for the Attenuated Radon transform in (2.23).
Another transport equation was briefly encountered in (4.33) in the analysis of the
Generalized Ray transform. These source problems belong to a larger class of inverse
kinematic and inverse transport problems that we analyze in this chapter.

The propagation of particles essentially follows two dynamics: a Hamiltonian (of
classical mechanics) describes the “free” propagation of particles in the absence of in-
teractions with the underlying structure; a scattering operator models how particles
are absorbed and scattered when they interact with the underlying medium. The in-
verse kinematic and inverse transport problems aim to reconstruct the structures of the
Hamiltonian and the scattering operator from measurements of particle densities.

The first part of this chapter considers the reconstruction of a simple Hamiltonian of
the form H(x, k) = c(x)|k| from travel time boundary measurements. The second part
of the chapter assumes the Hamiltonian known with c a constant and considers the re-
construction of the absorption and scattering coefficients from boundary measurements
of particle densities.

Scattering: a transition to ill-posedness. Before addressing these inverse prob-
lems in more detail, let us comment on the influence of scattering on the structure of
an inverse problem and the stability properties of a measurement operator.

The inverse problems we have encountered in the preceding three chapters, to which
we can add the simplified M.R.I. description of the first chapter, were “well-posed”
inverse problems in the sense that they involved a stable inversion operator from a
Hilbert space to another Hilbert space. Wave propagation (as in diffraction tomography)
or particle propagation along straight lines (as in computerized tomography) all generate
well-posed inverse problems.

What causes then an inverse problem to be ill-posed? As we mentioned in the
introduction, an inverse problem is ill-posed when the measurement operator is a highly
smoothing/regularizing operator. We have seen that solving the heat equation forward
was a highly regularizing process. The main mechanism explaining its regularizing
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property is scattering: using a kinematic description of the diffusion equation, particles
represented by Brownian motions scatterer infinitely often before they exit the domain
of interest.

Scattering is one of the main mechanisms that regularizes solutions to PDEs and
hence renders inverse problems ill-posed. The linear transport equation, also known as
the linear Boltzmann equation or the radiative transfer equation, offers an ideal example
of a transition from non-scattering to scattering environments.

6.1 Inverse Kinematic Problem

In the absence of scattering or absorption, which we assume in this section, the propa-
gation of particles is modeled by the following Hamiltonian dynamics

dx

dt
= ẋ = ∇kH(x(t), k(t)) x(0) = x0,

dk

dt
= k̇ = −∇xH(x(t), k(t)) k(0) = k0.

(6.1)

As we did in the preceding chapter, we consider the simplest example of a Hamiltonian

H(x, k) = c(x)|k|. (6.2)

This Hamiltonian models the propagation of high frequency acoustic waves in a medium
with a spatially varying sound speed c(x). It also models the propagation of light in
media with varying indices of refraction when polarization effects are neglected. The
index of refraction n(x) is defined as n(x) = c

c(x)
with c light speed in a vacuum. The

same Hamiltonian may be used to model the propagation of seismic (shear) waves in the
Earth when pressure waves and polarization properties of shear waves are neglected.

The equation (6.1) models the propagation of a single particle knowing its informa-
tion (x0, k0) at time 0. The density u(t, x, k) of an ensemble of such particles then solves
the corresponding Liouville equation

∂u

∂t
+ {H, u} = 0, t > 0, u(0, x, k) = u0(x, k), (6.3)

where u0(x, k) is the density of particles at time t = 0 and where

{H, u} := ∇kH · ∇xu−∇xH · ∇ku = c(x)k̂ · ∇xu− |k|∇c(x) · ∇ku, (6.4)

is the Poisson bracket of the Hamiltonian H and the density u. The inverse kinematic
problem thus concerns the reconstruction of the Hamiltonian H from measurements of
the density u at the boundary of a domain of interest.

In the following section, we first consider a one-dimensional version of the inverse
kinematic problem in a geometry with spherical symmetry. This inverse kinematic
problem was solved by Herghlotz in 1905 as a means to understand the inner structure
of the Earth from travel time measurements. We then revisit the Mukhometov method
to solve the inverse kinematic problem in two dimensions of space.
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6.1.1 Spherical symmetry

We wish to reconstruct the velocity field c(r) inside the Earth assuming spherical sym-
metry of the Hamiltonian:

H(x, k) = c(r)|k| with r = |x|.

Our data is the time it takes from a particle following (6.1) and emitted at the surface of
a sphere with a given direction to come back to the surface of that sphere. To simplify
we assume that the Earth radius is normalized to 1. We also assume that c(1) is known.
We want to reconstruct c(r) from the time it takes to travel along all possible geodesics
(the trajectories of (6.1)). Because the geodesics depend on c(r), the travel time is a
nonlinear functional of the velocity profile c(r).

Let us denote x = rx̂ and k = |k|ϑ. The Hamiltonian dynamics take the form

ẋ = c(r)ϑ, k̇ = −c′(r)|k|x̂. (6.5)

We are interested in calculating the travel times between points at the boundary of the
domain r = |x| < 1. This implies integrating dt along particle trajectories. Since we
want to reconstruct c(r), we perform a change of variables from dt to dr. This will allow
us to obtain integrals of the velocity c(r) along curves. The objective will then be to
obtain a reconstruction formula for c(r).

In order to perform the change of variables from dt to dr, we need to know where
the particles are. Indeed the change of variables should only involve position r and no
longer time t. This implies to solve the problem t 7→ r(t). As usual it is useful to find
invariants of the dynamical system. The first invariant is as always the Hamiltonian
itself:

dH(x(t), k(t))

dt
= 0,

as can be deduced from (6.1). The second invariant is angular momentum and is obtained
as follows. Let us first introduce the basis (x̂, x̂⊥) for two dimensional vectors (this is
the usual basis (er, eθ) in polar coordinates). We decompose k = krx̂ + kθx̂

⊥ and
ϑ = k̂rx̂+ k̂θx̂

⊥. We verify that

ṙ = c(r)k̂r since ẋ = ṙx̂+ r ˙̂x = c(r)ϑ. (6.6)

We also verify that

d(rkθ)

dt
=
dx⊥ · k
dt

= ẋ⊥ · k + x · k̇⊥ = c(r)ϑ⊥ · k − c′(r)|k|x · x̂⊥ = 0. (6.7)

This is conservation of angular momentum, which implies that

r(t)kθ(t) = kθ(0),

since r(0) = 1.
By symmetry, we observe that the travel time is decomposed into two identical

components: the time it takes to go down the Earth until kr = 0, and the time it takes
to go back up. On the way up to the surface, kr is non-negative. Let us denote p = k̂θ(0)
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with 0 < p < 1. The lowest point is reached when k̂θ = 1. This means at a point rp
such that

rp
c(rp)

=
p

c(1)
.

To make sure that such a point is uniquely defined, we impose that the function rc−1(r)
be increasing on (0, 1) since it cannot be decreasing. This is equivalent to the constraint:

c′(r) <
c(r)

r
, 0 < r < 1. (6.8)

This assumption ensures the uniqueness of a point rp such that pc(rp) = c(1)rp.
Since the Hamiltonian c(r)|k| is conserved, we deduce that

ṙ = c(r)

√
1− k̂2

θ = c(r)

√
1−

( k̂θ(0)c(r)

rc(1)

)2

,

so that

dt =
dr

c(r)

√
1−

( k̂θ(0)c(r)

rc(1)

)2

. (6.9)

Notice that the right-hand side depends only on r and no longer on functions such as k̂r
that depend on time. The travel time as a function of p = k̂θ(0) is now given by twice
the time it takes to go back to the surface:

T (p) = 2

∫ 1

t(rp)

dt = 2

∫ 1

rp

dr

c(r)

√
1−

( k̂θ(0)c(r)

rc(1)

)2

. (6.10)

Our measurements are T (p) for 0 < p < 1 and our objective is to reconstruct c(r) on
(0, 1). We need a theory to invert this integral transform. Let us define

u =
c2(1)r2

c2(r)
so that du =

2rc2(1)

c2(r)

(
1− rc′(r)

c(r)

)
dr.

Upon using this change of variables we deduce that

T (p) = 2

∫ 1

p2

(dr
du

u

r

)
(u)

du√
u− p2

. (6.11)

It turns out that the function in parenthesis in the above expression can be reconstructed
from T (p). This is an Abel integral. Before inverting the integral, we need to ensure
that the change of variables r 7→ u(r) is a diffeomorphism (a continuous function with
continuous inverse). This implies that du/dr is positive, which in turn is equivalent to
(6.8). The constraint (6.8) is therefore useful both to obtain the existence of a minimal
point rp and to ensure that the above change of variables is admissible. The constraint
essentially ensures that no rays are trapped in the dynamics so that energy entering
the system will eventually exit it. We can certainly consider velocity profiles such that
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the energy is attracted at the origin. In such situation the velocity profile cannot be
reconstructed.

Let us denote by f = dr
du

u
r
. We will show in the following section that f(u) can be

reconstructed from T (p) and is given by

f(u) = − 2

π

d

du

∫ 1

u

T (
√
p)

√
p− u

dp. (6.12)

Now we reconstruct r(u) from the relations

f(u)

u
du =

dr

r
, u(1) = 1, so that r(u) = exp

(∫ 1

u

f(v)dv

v

)
.

Upon inverting this diffeomorphism, we obtain u(r) and g(r) = f(u(r)). Since

g(r) =
1

2

1

1− rc′/c
,

we now know rc′/c, hence (log c)′. It suffices to integrate log c from 1 to 0 to obtain c(r)
everywhere. This concludes the proof of the reconstruction.

6.1.2 Abel integral and Abel transform

For a smooth function f(x) (continuous will do) defined on the interval (0, 1), we define
the Abel transform as

g(x) =

∫ 1

x

f(y)

(y − x)1/2
dy. (6.13)

This transform can be inverted as follows:

Lemma 6.1.1 The Abel transform (6.13) admits the following inversion

f(y) = − 1

π

d

dy

∫ 1

y

g(x)

(x− y)1/2
dx. (6.14)

Proof. Let us calculate∫ 1

z

g(x)

(x− z)1/2
dx =

∫ 1

z

∫ 1

x

f(y)

(x− z)1/2(y − x)1/2
dxdy =

∫ 1

z

dyf(y)k(z, y)dy.

The kernel k(z, y) is given by

k(z, y) =

∫ y

z

dx

(x− z)1/2(y − x)1/2
=

∫ 1

0

dx√
x(1− x)

=

∫ 1

−1

dx√
1− x2

= π.

The latter equality comes from differentiating arccos. Thus we have∫ 1

z

g(x)

(x− z)1/2
dx = π

∫ 1

z

f(y)dy.

Upon differentiating both sides with respect to z, we obtain the desired result.
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We can also ask ourselves how well-posed the inversion of the Abel transform is. Since
the transforms are defined on bounded intervals, using the Hilbert scale introduced in
Chapter 1 would require a few modifications. Instead we will count the number of
differentiations. The reconstruction formula shows that the Abel transform is applied
once more to g before the result is differentiated. We can thus conclude that the Abel
transform regularizes as one half of an integration (since it takes one differentiation to
compensate for two Abel transforms). We therefore deduce that the Abel transform is
a smoothing operator of order α = 1/2 using the terminology introduced in Chapter 1.

6.1.3 Kinematic velocity Inverse Problem

Let us generalize the construction of the Earth velocity from boundary measurements
in the setting of a “two-dimensional” Earth.

As in section 4.3.1, we consider a bounded domain X ⊂ R2 with smooth surface ∂X
parameterized by 0 ≤ τ ≤ T and points x = S(τ) with S(0) = S(T ) and |Ṡ(τ)| = 1.

Local travel time and distance are related by

ds2 =
1

c2(x)
(dx2 + dy2) = n2(x)(dx2 + dy2).

which defines a Riemannian metric with tensor proportional to the 2×2 identity matrix.

The geodesics of that metric generate a family of curves z(t, s, ϑ) as in (4.1) in
Chapter 4. We assume that the family of geodesics satisfies the hypotheses stated
there, namely the existence of an inverse in (4.2). For a point x in X̄ and 0 ≤ τ ≤ T ,
we recall that z̃(x, τ) is the unique curve joining x and S(τ).

We are interested in reconstructing n(x) from knowledge of

G(τ1, τ2) =

∫
z̃(S(τ1),τ2)

dτ =

∫
z̃(S(τ1),τ2)

n(x)
√
dx2 + dy2, (6.15)

for every possible boundary points τ1 and τ2, where γ(t1, t2) is an extremal for the
above functional, i.e., a geodesic of the Riemannian metric dτ 2. Notice that since the
extremals (the geodesics) of the Riemannian metric depend on n(x), the above problem
is non-linear as in the one-dimensional case.

Let Gk for k = 1, 2 correspond to measurements for two slownesses nk, k = 1, 2. We
then have the following result

Theorem 6.1.2 Let nk be smooth positive functions on X such that the family of ex-
tremals are sufficiently regular. Then nk can uniquely be reconstructed from Gk(τ1, τ2)
and we have the stability estimate

‖n1 − n2‖L2(X) ≤ C
∥∥∥ ∂

∂τ1

(G1 −G2)
∥∥∥
L2((0,T )×(0,T ))

. (6.16)

Proof. Even though the inverse kinematic problem is non-linear, the proof is similar
to that of Theorem 4.3.1 for the corresponding linear inverse problem. The reason is
that the same energy estimate can be used in both cases. The regular family of curves
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z is defined as the geodesics of the Riemannian metric dτ 2. Let us define the travel
time

t(x, τ) =

∫
z̃(x,τ)

nds, (6.17)

so that as before t(S(τ1), τ2) = G(τ1, τ2). We deduce as in (4.33) that

ϑ · ∇xt = n(x). (6.18)

We recall ϑ(x, τ) = (cos θ(x, τ), sin θ(x, τ)) is the unit tangent vector to the curve z̃(x, τ)
at x and orientated such that (6.18) holds.

Because t is an integration along an extremal curve of the Riemannian metric (this
is where we use that the curves are geodesics), we deduce that

ϑ⊥ · ∇t = 0, so that ∇xt = n(x)ϑ and |∇xt|2(x, τ) = n2(x).

Upon differentiating the latter equality we obtain

∂

∂τ
|∇xt|2 = 0.

Let us now define u = t1 − t2, the difference of travel times for the two possible sound
speeds c1 and c2, so that ∇u = n1ϑ1−n2ϑ2. We deduce from the above expression that

∂

∂t
(∇u · (ϑ1 +

n2

n1

ϑ2)) = 0.

We multiply the above expression by 2ϑ⊥1 · ∇u and express the product in divergence
form. We obtain as in the preceding section that

2ϑ⊥1 · ∇u
∂

∂t
ϑ1 · ∇u−

∂

∂t

(
ϑ⊥1 · ∇uϑ1 · ∇u

)
= θ̇1|∇u|2 + ϑ1 · ∇(ϑ⊥1 · ∇uut)− ϑ⊥1 · ∇(ϑ1 · ∇uut).

We now show that the second contribution can also be put in divergence form. More
precisely, we obtain, since n1 and n2 are independent of t, that

2ϑ⊥1 · ∇u
∂

∂τ
(
n2

n1

ϑ2 · ∇u) = 2ϑ⊥1 · (n1ϑ1 − n2ϑ2)
∂

∂τ
(n2ϑ1 · ϑ2 −

n2
2

n1

)

= −2n2
2ϑ
⊥
1 · ϑ2(ϑ1 · ϑ2) = −2n2

2(ϑ⊥1 · ϑ2)2∂(θ1 − θ2)

∂τ
=

−2n2
2 sin2(θ1 − θ2)

∂(θ1 − θ2)

∂τ
=

∂

∂τ

(
n2

2

[sin(2(θ1 − θ2))

2
− (θ1 − θ2

)
]
)
.

The integration of the above term over X × (0, T ) thus yields a vanishing contribution.
Following the same derivation as in Chapter 4, we deduce that∫ T

0

∫
X

∂θ1

∂τ
|∇u|2dxdτ =

∫ T

0

∫ T

0

∂δG(τ1, τ2)

∂τ1

∂δG(τ1, τ2)

∂τ2

dτ1dτ2, (6.19)

where we have defined δG = G1 −G2. To conclude the proof, notice that

∇u · ∇u = |n1ϑ1 − n2ϑ2|2 = n2
1 + n2

2 − 2n1n2ϑ1 · ϑ2

≥ n2
1 + n2

2 − 2n1n2 = (n1 − n2)2,

since both n1 and n2 are non-negative. With (6.19), this implies that n1 = n2 when
G1 = G2 and using again the Cauchy-Schwarz inequality yields the stability estimate
(6.16).
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6.2 Forward transport problem

So far, the kinetic model accounted for spatial changes in the speed of propagation
but not for scattering or absorption mechanisms. We recall that physically, the trans-
port equation models high frequency waves or particles propagating in scattering en-
vironments. With the specific form of the Hamiltonian considered in (6.2), and in the
time-independent setting to simplify, the transport equation then takes the form

c(x)
v

|v|
· ∇xu− |v|∇c(x) · ∇vu+ σ(x)u =

∫
Rd
k(x, v′, v)u(x, v′)δ(c(x)|v| − c(x)|v′|)dv′,

(6.20)
where boundary conditions are imposed at the boundary of a domain of interest. Here,
u(x, v) still denotes the density of particles at position x with velocity v and c(x) is
the speed of propagation. Since we are primarily interested in scattering effects in
this chapter, we assume that c(x) = 1 is constant and normalized. The equation thus
becomes

v

|v|
· ∇xu+ σ(x)u =

∫
Rd
k(x, v′, v)u(x, v′)δ(ω − |v′|)dv′. (6.21)

Here, ω = c|v| is the frequency (e.g. the color for light) of the propagating waves.
Scattering is assumed to be elastic so that ω = c|v| is preserved by scattering and hence
wave packets with different frequencies satisfy uncoupled equations. We also normalize
ω = 1 so that |v| = ω = 1. In other words, v is now the direction of propagation of the
wave packets (photons). We thus have an equation of the form

v · ∇xu+ σ(x)u =

∫
Sd−1

k(x, v′, v)u(x, v′)dv′, (6.22)

where x ∈ Rn and v ∈ Sn−1 the unit sphere in Rn. It remains to describe the parameters
participating in scattering: σ(x) the attenuation (aka total absorption) coefficient, and
k(x, v′, v) the scattering coefficient. σ(x) models the amount of particles that are either
absorbed or scattered per unit distance of propagation. This is the same coefficient
already encountered in CT and SPECT. Unlike high-energy CT and SPECT, in lower
energies such as for visible light, many “absorbed” photons are re-emitted into another
direction, i.e., scattered. Then k(x, v′, v) gives the density of particles scattered into
direction v from a direction v′. The right-hand side in (6.22) corresponds to a re-
emission of scattered particles into the direction v.

In an inverse transport problem, σ(x) and k(x, v′, v) are the unknown coefficients.
They have to be reconstructed from knowledge of u(x, v) measured, say, at the boundary
of the domain of interest. When k ≡ 0, this is Computerized Tomography, where the
appropriate logarithm of u provides line integrals of σ.

To be more specific, we need to introduce ways to probe the domain of interest X
and to model measurements. In the most general setting, photons can enter into X at
any point x ∈ ∂X and with any incoming direction. In the most general setting, photon
densities can then be measured at any point x ∈ ∂X and for any outgoing direction.
The sets of incoming conditions Γ− and outgoing conditions Γ+ are defined by

Γ± = {(x, v) ∈ ∂X × V, s.t. ± v · ν(x) > 0}, (6.23)
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where ν(x) is the outgoing normal vector to X at x ∈ ∂X and V = Sn−1. Denoting
by g(x, v) the incoming boundary conditions, we then obtain the following transport
equation

v · ∇xu+ σ(x)u =

∫
Sd−1

k(x, v′, v)u(x, v′)dv′ (x, v) ∈ X × V

u|Γ−(x, v) = g(x, v) (x, v) ∈ Γ−.
(6.24)

From the functional analysis point of view, it is natural to consider the L1 norm
of photon densities, which essentially counts numbers of particles (the L1 norm of the
density on a domain is the number of particles inside that domain). Let us introduce
the necessary notation.

We say that the optical parameters (σ, k) are admissible when

0 ≤ σ ∈ L∞(X)

0 ≤ k(x, v′, ·) ∈ L1(V ) a.e. in X × V

σs(x, v
′) :=

∫
V

k(x, v′, v)dv ∈ L∞(X × V ).

(6.25)

Here σs is also referred to as the scattering coefficient. In most applications, σs(x) is
independent of v′.

We define the times of escape of free-moving particles from X as

τ±(x, v) = inf{s > 0|x± sv 6∈ X} (6.26)

and τ(x, v) = τ+(x, v) + τ−(x, v). On the boundary sets Γ±, we introduce the measure
dξ(x, v) = |v · ν(x)|dµ(x)dv, where dµ(x) is the surface measure on ∂X.

We define the following Banach space

W :=
{
u ∈ L1(X × V )|v · ∇xu ∈ L1(X × V ), τ−1u ∈ L1(X × V )

}
, (6.27)

with its natural norm. We recall that τ is defined below (6.26). We have the following
trace formula [27]

‖f|Γ±‖L1(Γ±,dξ) ≤ ‖f‖W , f ∈ W. (6.28)

This allows us to introduce the following lifting operator

Ig(x, v) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv, v)ds
)
g(x− τ−(x, v)v, v). (6.29)

It is proved in [27] that I is a bounded operator from L1(Γ−, dξ) to W . Note that Ig
is the solution u0 of

v · ∇xu0 + σ(x)u0 = 0 (x, v) ∈ X × V, u0 = g (x, v) ∈ Γ−.

Exercise 6.2.1 Prove this. This is the same calculation as for the X-ray transform.
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Let us next define the bounded operators

Ku(x, v) =

∫ τ−(x,v)

0

exp
(
−
∫ t

0

σ(x− sv, v)ds
)∫

V

k(x− tv, v′, v)u(x− tv, v′)dv′dt

LS(x, v) =

∫ τ−(x,v)

0

exp
(
−
∫ t

0

σ(x− sv, v)ds
)
S(x− tv, v)dt (6.30)

for (x, v) ∈ X × V . Note that LS is the solution uS of

v · ∇xuS + σ(x)uS = S (x, v) ∈ X × V, uS = 0 (x, v) ∈ Γ−.

Exercise 6.2.2 Prove this.

Note that

Ku(x, v) = L
[ ∫

V

k(x, v′, v)u(x, v′)dv′
]
(x, v),

which allows us to handle the right-hand side in (6.24). Looking for solutions in W , the
integro-differential equation (6.24) is thus recast as

(I −K)u = Ig. (6.31)

Exercise 6.2.3 Prove this.

Then we have the following result [12, 27].

Theorem 6.2.1 Assume that

(I −K) admits a bounded inverse in L1(X × V, τ−1dxdv). (6.32)

Then the integral equation (6.31) admits a unique solution u ∈ W for g ∈ L1(Γ−, dξ).
Furthermore, the albedo operator

A : L1(Γ−, dξ)→ L1(Γ+, dξ), g 7→ Ag = u|Γ+ , (6.33)

is a bounded operator.

The invertibility condition (6.32) holds under either of the following assumptions

σa := σ − σs ≥ 0 (6.34)

‖τσs‖∞ < 1. (6.35)

We shall not prove this theorem here. The salient features are that the transport equa-
tion is well-posed provided that (6.32) is satisfied, which is not necessarily true for
arbitrary admissible coefficients (σ, k). The conditions (6.34) or (6.35) are sufficient
conditions for (6.32) to be satisfied. The first condition is the most natural for us and
states that particles that are “created” by scattering into v by k(x, v′, v) are particles
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that are “lost” for direction v. In other words, the scattering mechanism does not cre-
ate particles. This is quite natural for photon propagation. In nuclear reactor physics,
however, several neutrons may be created by fission for each incoming scattering neu-
tron. There are applications in which (6.34) is therefore not valid. In most medical
and geophysical imaging applications, however, (6.34) holds and the transport solution
exists. Note that σa = σ−σs is the absorption coefficient, and corresponds to a measure
of the particles that are “lost” for direction v′ and do not reappear in any direction v
(i.e., particles that are absorbed).

Using these operators, we may recast the transport solution as

u = Ig +KIg + (I −K)−1K2Ig, (6.36)

where u0 := Ig is the ballistic component, u1 := KIg the single scattering component
and u2 := u− u0 − u1 = (I −K)−1K2Ig is the multiple scattering component.

Note that when the problem is subcritical, its solution may be expressed in terms of
the following Neumann expansion in L1(X × V )

u =
∞∑
m=0

KmIg. (6.37)

The contribution m = 0 is the ballistic part of u, the contribution m = 1 the single
scattering part of u, and so on. It is essentially this decomposition of the transport
solution into orders of scatterings that allows us to stably reconstruct the optical pa-
rameters in the following sections. Note that the above Neumann series expansions has
an additional benefit. Since the optical parameters are non-negative, each term in the
above series is non-negative provided that g and S are non-negative so that the trans-
port solution itself is non-negative. A little more work allows us to prove the maximum
principle, which states that u in X × V is bounded a.e. by the (essential) supremum of
g in Γ− when S ≡ 0.

Finally, the albedo operator A, which maps incoming conditions to outgoing den-
sities models our measurements. We control the fluxes of particles on Γ− and obtain
information about X by measuring the density of particles on Γ+. This allows us to
define the measurements operator of inverse transport. Let

X = {(σ, k) such that 0 ≤ σ ∈ L∞(X), 0 ≤ k ∈ L∞(X × V × V ), σ ≥ σs}, (6.38)

and let Y = L(L1(Γ−, dξ), L
1(Γ+, dξ)). Then we define the measurement operator M

M : X 3 (σ, k) 7→M(σ, k) = A[(σ, k)] ∈ Y, (6.39)

where A[(σ, k)] is the albedo operator constructed in (6.33) with coefficient (σ, k) in
(6.24). Note that the measurement operator, as for the Calderón problem in (1.14) is
an operator, which to a set of coefficients maps a coefficient-valued operator, the albedo
operator.

The main question of inverse transport consists of knowing what can be reconstructed
in (σ, k) from knowledge of the full operator M or knowledge of only parts of the operator
M. In these notes, we shall mostly be concerned with the full measurement operator.
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6.3 Inverse transport problem

One of the main results for inverse transport is the decomposition (6.36). The first
term u0 := Ig is the ballistic component and corresponds to the setting of vanishing
scattering. It is therefore the term used in CT and the X-ray transform. It turns out
that this term is more singular, in a sense that will be made precise below, than the
other contributions. It can therefore be extracted from the measurement operator and
provide the X-ray transform of the attenuation coefficient σ.

The second term in (6.36) is u1 := KIg and is the the single scattering component
of the transport solution. Finally, u2 := u − u0 − u1 = (I − K)−1K2Ig is the multiple
scattering component, which corresponds to particles that have interacted at least twice
with the underlying medium. A fundamental property of the transport equation is that
single scattering is also more singular than multiple scattering in dimension three (and
higher dimensions), but not in dimension two. We shall describe in more detail below in
which sense single scattering is more singular. The main conclusion, however, is that the
single scattering contribution can also be extracted from the full measurement operator
in dimension n ≥ 3. As we shall see, single scattering provides a linear operator that
allows us to invert for the scattering coefficient k once σ is known.

Multiple scattering is then less singular than ballistic and single scattering. Intu-
itively, this means that multiple scattering contributions are smoother functions. In
some sense, after multiple scattering, we do not expect the density to depend too much
on the exact location of the scattering events. Multiply scattered particles visit a large
domain and hence are less specific about the scenery they have visited.

6.3.1 Decomposition of the albedo operator and uniqueness
result

Following (6.36), we decompose the albedo operator as

Ag = Ig
∣∣
Γ+

+ KIg
∣∣
Γ+

+ K2(I −K)−1Ig
∣∣
|Γ+

:= A0g + A1g + A2g.
(6.40)

We denote by α the Schwartz kernel of the albedo operator A:

Ag(x, v) =

∫
Γ−

α(x, v, y, w)g(y, w)dµ(y)dw.

Any linear operator, such as the albedo operator, admits such a decomposition. Knowl-
edge of the operator A is equivalent to knowledge of its kernel α. The decomposition
for A then translates into the decomposition for α:

α = α0 + α1 + α2.

Here, α0 corresponds to the ballistic part of the transport solution, α1 corresponds to
the single scattering part of the transport solution, and α2 corresponds to the rest of
the transport solution.
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After some algebra, we have the following expression for the first two contributions
in the time independent case:

α0(x, v, y, w) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv, v)ds
)
δv(w)δ{x−τ−(x,v)v}(y). (6.41)

α1(x, v, y, w) =

∫ τ−(x,v)

0

exp
(
−
∫ t

0

σ(x− sv, v)ds−
∫ τ−(x−tv,w)

0

σ(x− tv − sw,w)ds
)

k(x− tv, w, v)δ{x−tv−τ−(x−tv,w)w}(y)dt.

(6.42)
Here, δv(w) denotes a delta function at v on the unit sphere, i.e., the distribution so
that

δv(f) =

∫
Sn−1

f(w)δv(w)dw = f(v),

for f a continuous function on Sn−1. Similarly, δ{x}(y) denotes the delta function at x
on the boundary ∂X, i.e., the distribution so that

δ{x}(f) =

∫
∂X

f(y)δ{x}(y)dµ(y) = f(x),

for f a continuous function in the vicinity of x ∈ ∂X.

Exercise 6.3.1 Prove the above two formulas (6.41) and (6.42). Note that the first
formula is nothing but the expression for the X-ray transform.

Note that α0 in any dimension and α1 in dimension n ≥ 3 are distributions: they
involve “delta” functions. In dimension n = 2, we verify that α1 is in fact a func-
tion. A tedious and lengthy calculation shows that the kernel corresponding to multiple
scattering α2 is also a function, and when k is bounded, satisfies that

|ν(y) · w|−1α2(x, v, y, w) ∈ L∞(Γ−, L
p(Γ+, dξ)), 1 ≤ p <

d+ 1

d
. (6.43)

We refer the reader to [12] (see also [27]) for the derivation of such a result. The exact
regularity of the function α2 is not very important for us here. For the mathematical
derivation of stability estimates, the fact that we can take p > 1 above is important.
For a picture of the geometry of the singularities, see Fig. 6.1: particles emitted emitted
with direction v′0 at x′0−Rv′0 scatter along the segment x0− (R− t)v′0 for t ≥ 0. Singly
scattered photons reach the plane orthogonal to a given direction v on the right-hand
side of fig. 6.1 along a segment of the plane. We can verify that photons that are at
least doubly scattered may reach any point in that plane and in any other plane. This
is consistent with the fact that α2 is a function.

The strategy to recover σ and k in dimension n ≥ 3 thus goes as follows: We
send beams of particles into the medium that concentrate in the vicinity of a point
(y0, v0) ∈ Γ−. More precisely, let gε be a sequence of normalized L1 functions on Γ−
converging as ε→ 0 to δv0(v)δ{y0}(y).
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Figure 6.1: Geometry of single scattering for n = 3.

Since the ballistic term is more singular than the rest, if we place detectors on the
support of the ballistic term, then such detectors will overwhelmingly be measuring
ballistic particles and very little scattered particles. Since single scattering is more
singular than multiple scattering in dimension n ≥ 3, we can use the same strategy and
place detectors at the location of the support of single scattering. Such detectors will
overwhelmingly be measuring singly scattered particles and very little multiply scattered
particles. We now briefly explain the rather tedious mathematical construction.

Recovery of the attenuation coefficient σ(x)

Let (y0, v0) ∈ Γ− be defined as above and (x0, v0) ∈ Γ+ such that y0 = x0− τ−(x0, v0)v0.
Let φε be a sequence of bounded functions on Γ+ equal to 1 in the vicinity of (x0, v0)
and with vanishing support as ε→ 0. Then we verify that∫

Γ+×Γ−

αm(x, v, y, w)φε(x, v)gε(y, w)dµ(x)dvdµ(y)dw
ε→0−−→ 0, m = 1, 2,

so that

〈φε,Agε〉 :=

∫
Γ+×Γ−

α(x, v, y, w)φε(x, v)gε(y, w)dµ(x)dvdµ(y)dw

ε→0−−→ exp
(
−
∫ τ−(x0,v0)

0

σ(x0 − sv0, v0)ds
)
.

(6.44)
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Exercise 6.3.2 Verify (6.44); see [12] for the details.

In other words, the measurements corresponding to the above choices of functions
gε and φε then converge to the function

〈φε,Agε〉
ε→0−−→ E(x, y) := exp

(
−
∫ |x−y|

0

σ
(
x− s x− y

|x− y|
)
ds
)
. (6.45)

This proves that knowledge of the albedo operator A, which allows one to construct
〈φε,Agε〉, provides knowledge of E(x, y), the exponential of minus the X-ray transform
of σ along the segment (x, y). This can be obtained from any segment (x, y) with x and
y on ∂X. As a consequence, knowledge of A provides knowledge of the X-ray transform
of σ. We know that σ is then uniquely and stably reconstructed from such knowledge
since the X-ray transform is a smoothing operator by (only) one-half of a derivative.

Recovery of the scattering coefficient k(x, v, w)

We assume that σ = σ(x) is now recovered. Let z0 ∈ X, v0 ∈ V , and v0 6= w0 ∈ V .
Define x0 = z0 + τ+(z0, v0)v0 so that (x0, v0) ∈ Γ+ and y0 = z0 − τ−(z0, w0)w0 so
that (y0, w0) ∈ Γ−. We formally show how the scattering coefficient may be uniquely
reconstructed from full knowledge of A.

Let us define gε1 as before and φε as a sequence of bounded functions on Γ+ equal
to a constant in the vicinity of (x0, v0) and with vanishing support as ε → 0. Since
v0 6= w0, we find that∫

Γ+×Γ−

α0(x, v, y, w)φε(x, v)gε1(y, w)dµ(x)dvdµ(y)dw = 0, 0 ≤ ε, ε1 < ε0(x0, v0, y0, w0).

i.e., the ballistic contribution vanishes with such measurements. Let us define gε1 such
that |ν(y0) · w0|−1gε1(y, w) converges to a delta function. The factor |ν(y0) · w0|−1 is
here to ensure that the number of emitted particles is independent of y0 and w0. The
ballistic part of the transport solution is then approximately concentrated on the line
passing through y0 and with direction w0. Scattering occurs along this line and particles
scattered in direction v0 are approximately supported on the plane with directions v0

and w0 passing through x0. The intersection of that plane with the boundary ∂X is a
one-dimensional curve z(x0, v0, w0) ⊂ X. In two space dimensions, the curve z has the
same dimension as ∂X. As a consequence, α1 is a function and therefore is not more
singular than α2 in the time independent setting when n = 2.

Let φε(x, v) be a bounded test function supported in the ε−vicinity of z. Because
z is of measure 0 in ∂X when d ≥ 3, we find using (6.43) that∫

Γ+×Γ−

α2(x, v, y, w)φε(x, v)gε1(y, w)dµ(x)dvdµ(y)dw
ε,ε1→0−−−−→ 0,

i.e., the multiple scattering contribution is asymptotically negligible with such measure-
ments. Now, choosing φε(x, v) properly normalized and supported in the ε2−vicinity of
(x0, v0) (for ε� ε2 � 1), we find that

〈φε,Agε1〉
ε,ε1,ε2→0−−−−−→ E(y0, z0)E(z0, x0)k(z0, w0, v0),
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at each point of continuity of k(z0, w0, v0), where E(x, y) is defined in (6.45). Since σ(x)
and hence E(x, y) are known from knowledge of A, then so is k(z0, w0, v0) at each point
of continuity in X × V × V thanks to the above formula.

Exercise 6.3.3 Verify the above formula; see [12] for the details.

The above reconstruction of the attenuation coefficient is valid in any dimension n ≥
2. The reconstruction of the scattering coefficient, however, is valid only in dimension
n ≥ 3. The reason again is that in dimension n = 2, the single scattering contribution
is also a function, not a distribution, and thus cannot be separated from the multiple
scattering component. What we have obtained so far may be summarized as:

Theorem 6.3.1 ([27]) Let (σ, k) and (σ̃, k̃) be two admissible pairs of optical parame-
ters associated with the same albedo operator A and such that σ and σ̃ are independent
of the velocity variable. Then σ = σ̃ in dimension n ≥ 2. Moreover, k = k̃ in dimension
n ≥ 3.

6.3.2 Stability in inverse transport

Let us assume the existence of two types of measurements A and Ã, say, corresponding
to the optical parameters (σ, k) and (σ̃, k̃), respectively. The question of the stability of
the reconstruction is to bound the errors σ − σ̃ and k − k̃ as a function of A− Ã.

We obtain stability estimates in dimension n ≥ 3. In dimension n = 2, only the
estimate on σ(x) is valid. The construction of the incoming source φε(x, v) is such
that φε ∈ C1(Γ−) is supported in the ε1 vicinity of (x0, v0) and normalized so that∫

Γ−
φεdξ = 1. Let ψ be a compactly support continuous function, which models the

array of detectors, on Γ+ such that ‖ψ‖∞ ≤ 1. Then∣∣∣ ∫
Γ+

ψ(x, v)
(
(A− Ã)φε

)
(x, v)dξ(x, v)

∣∣∣ ≤ ‖(A− Ã)‖L(L1), (6.46)

where now ‖ · ‖L(L1) = ‖ · ‖L(L1(Γ−,dξ),L1(Γ+,dξ)). We still introduce

Im(ψ, ε) =

∫
Γ+

ψ(x, v)
(
(Am − Ãm)φε

)
(x, v)dξ(x, v), m = 0, 1, 2,

and obtain that

lim
ε→0+

I0(ψ, ε) = ψ(y0, v0)
(
E(x0, y0)− Ẽ(x0, y0)

)
lim
ε→0+

I1(ψ, ε) =

∫
V

∫ τ+(x0,v0)

0

ψ(x(s) + τ+(x(s), v)v, v)
(
E+k − Ẽ+k̃)(x(s), v0, v)dsdv

(6.47)

where we have introduced x(s) = x0 + sv0.
The estimate (6.43) allows us to show that∣∣I2(ψ, ε)

∣∣ ≤ C

∫
V

(∫
∂X

|ψ(t, x, v)|p′dx
) 1
p′
dv, p′ > d. (6.48)

Multiple scattering is therefore still negligible when the support of ψ := ψλ tends to 0
when λ→ 0.
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The first sequence of functions ψλ is chosen to have a small support concentrated
in the vicinity of (y0, v0) ∈ Γ+. Then the single scattering contribution I1(ψλ) → 0 as
λ → 0. For w0 fixed in V , we choose the sequence of functions ψλ such that they are
concentrated in the vicinity of the curve z(s) on Γ+ and that they approximately take
the value sign(E+k − Ẽ+k̃)(x0 + sv0, v0, w0) along that curve. Since v0 6= w0, we verify
that I0(ψλ) → 0 for such sequence of functions; see [12]. Now, the function ψλ has a
small support only in dimension n ≥ 3. Indeed, in dimension n = 2, the curve z has
the same dimensionality as the boundary ∂X. When n = 2, multiple scattering may no
longer be separated from single scattering by using the singular structure of the albedo
operator A. This allows us to state the result:

Theorem 6.3.2 ([12]) Assume that σ(x) and k(x, v′, v) are continuous on X̄ and X̄×
V × V , respectively and that (σ̃, k̃) satisfy the same hypotheses. Let (x0, v0) ∈ Γ− and
y0 = x0 + τ+(x0, v0)v0. Then we have for d ≥ 2 that∣∣E(x0, y0)− Ẽ(x0, y0)

∣∣ ≤ ‖A− Ã‖L(L1), (6.49)

while in dimension n ≥ 3, we have∫
V

∫ τ+(x0,v0)

0

∣∣E+k − Ẽ+k̃
∣∣(x0 + sv0, v0, v)dsdv ≤ ‖A− Ã‖L(L1). (6.50)

The stability obtained above for the X-ray transform of the absorption coefficient is
not sufficient to obtain any stability of σ itself without a priori regularity assumptions
on σ. This results from the well known fact that the X-ray transform is a smoothing
(compact) operator so that the inverse X-ray transform is an unbounded operator. Let
us assume that σ belongs to some space Hs(Rn) for s sufficiently large and that σp
defined in (6.25) is bounded. More precisely, define

M =
{

(σ, k) ∈ C0(X̄)× C0(X̄ × V × V )|σ ∈ H
n
2

+r(X), ‖σ‖
H
n
2 +r(X)

+ ‖σp‖∞ ≤M
}
,

(6.51)
for some r > 0 and M > 0. Then, we have the following result.

Theorem 6.3.3 ([12, 13]) Let n ≥ 2 and assume that (σ, k) ∈ M and that (σ̃, k̃) ∈
M. Then the following is valid:

‖σ − σ̃‖Hs(X) ≤ C‖A − Ã‖κL(L1), (6.52)

where −1
2
≤ s < n

2
+ r and κ = n+2(r−s)

n+1+2r
.

When d ≥ 3, we have

‖k − k̃‖L1(X×V×V ) ≤ ‖A− Ã‖κ
′

L(L1)

(
1 + ‖A − Ã‖1−κ′

L(L1)

)
, (6.53)

where κ′ = 2(r−r′)
n+1+2r

and 0 < r′ < r.

Such estimates show that under additional regularization assumptions on σ, we have
explicit stability expression of Hölder type on σ and k. The first stability result (6.52)
was first established in [63].

The proof of these theorems is fairly technical and will not be presented here in
detail; see [12, 13].
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Chapter 7

Inverse diffusion and severe
ill-posedness

This chapter introduces a classical example of a severely ill-posed problem for which
the measurement operator is injective. In the absence of any noise, reconstructions are
feasible. However, (in)stability is such that even tiny amounts of noise in moderately
high frequency will be so amplified during the reconstruction that the resulting noise
in the reconstructed parameters may overwhelm the real parameters. We have seen in
earlier chapters that solving the heat equation backward was an example of a severely
ill-posed problem. In the preceding chapter, we saw that scattering was responsible for
smoothing (in the sense that the multiple scattering contribution of the albedo operator
in (6.40) was smoother than the single scattering contribution and that the latter was
smoother than the ballistic contribution). In this chapter and in the next chapter, we
consider two new examples: the Cauchy problem, which is an inverse source problem,
and the Inverse Diffusion problem, also known as the Calderón problem, which is a
nonlinear inverse problem. In both problems, the forward modeling, based on a diffusion
equation, is highly smoothing because of scattering effects.

This chapter is devoted to the analysis of the Cauchy problem and related inverse
problems.

7.1 Cauchy Problem and Electrocardiac potential

Let us consider the imaging of the electrical activity of the heart. A probe is sent inside
the heart, where the electrical potential is measured. The inverse problem consists of
reconstructing the potential on the endocardial surface (the inside of the cardiac wall)
from the measurements on the probe.

Mathematically, this corresponds to solving a Cauchy problem for an elliptic equa-
tion. The problem is modeled as follows. Let Γ0 be a closed smooth surface in R3

representing the endocardial surface and let Γ1 be the closed smooth surface inside the
volume enclosed by Γ0 where the measurements are performed. We denote by X the
domain with boundary ∂X = Γ0 ∪ Γ1; see Fig.7.1. The electric potential solves the
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Figure 7.1: Geometry of endocardial measurements

following Laplace equation:

∆u = 0 in X,

u = u1 on Γ1,
∂u

∂n
= 0 on Γ1.

(7.1)

The function u1 models the measurements at the surface of the probe, which is assumed
to be insulated so that n · ∇u = 0 on Γ1. The objective is then to find u = u0 on Γ0.

7.2 Half Space Problem

Let us consider the simplified geometry where X is the slab Rn−1 × (0, L). We assume
that boundary measurements are given at the boundary xn = 0 and wish to obtain the
harmonic solution in X. We are thus interested in solving the equation

∆u = 0, x = (x′, xn) ∈ X

u(x′, 0) = f(x′), x′ ∈ Rn−1

∂u

∂xn
(x′, 0) = g(x′), x′ ∈ Rn−1.

(7.2)

Let us denote by
û(k′, xn) = (Fx′→k′u)(k′, xn). (7.3)

Upon Fourier transforming (7.2) in the x′ variable, we obtain

−|k′|2û+
∂2û

∂xn2
= 0, k′ ∈ Rn−1, 0 < xn < L

û(k′, 0) = f̂(k′), k′ ∈ Rn−1,
∂û

∂y
(k′, 0) = ĝ(k′), k′ ∈ Rn−1.

(7.4)
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The solution of the above ODE is given by

û(k′, xn) = f̂(k′) cosh(|k′|xn) +
ĝ(k′)

|k′|
sinh(|k′|xn). (7.5)

We thus observe that the solution at xn > 0 is composed of an exponentially growing
component e|k

′|xn and an exponentially decreasing component e−|k
′|xn .

7.2.1 The well posed problem

Let us assume we are in the favorable case where

|k′|f̂(k′) + ĝ(k′) = 0, k′ ∈ Rn−1. (7.6)

In the physical domain, this corresponds to satisfying the non-local problem

√
−∆f(x′) + g(x′) = 0 x′ ∈ Rn−1, (7.7)

with
√
−∆ defined as the square root of the Laplacian. It takes the form

√
−∆ = H

d

dx
in two dimensions n = 2, where H is the Hilbert transform.

In the Fourier domain, the solution is thus given by

û(k′, xn) = f̂(k′)e−|k
′|xn . (7.8)

Exercise 7.2.1 (i) In two dimensions n = 2, prove that

u(x1, x2) = (f ∗ 1

π

x2

x2
1 + x2

2

)(x) =
1

π

∫
R
f(x1 − z)

x2

z2 + x2
2

dz. (7.9)

Hint: Use (A.9) and show that

1

2π

∫
R
e−x2|k|eix1k1dk1 =

1

π

x2

x2
1 + x2

2

.

(ii) Show that 1
π

y
x21+x22

is the fundamental solution of (7.2) when n = 2 with f(x1) = δ(x1).

Calculate the corresponding value of g(x1).

Provided the above compatibility condition is met, the problem (7.2) admits a unique
solution and is well-posed, for instance in the sense that∫

Rn−1

u2(x′, xn)dx′ ≤
∫
Rn−1

f 2(x′)dx′, for all xn > 0.

This is an immediate consequence of (7.8) and the Parseval relation. In this situation,
the construction of u for xn > 0 becomes a well-posed problem.
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7.2.2 The electrocardiac application

In general, however, (7.6) is not satisfied. For the electro-cardiac application, g0 = 0
and the harmonic solution is therefore given (for all xn > 0) by

û(k′, xn) = f̂(k′) cosh |k′|xn. (7.10)

This implies that high frequencies are exponentially amplified. Therefore, the mapping
from f(x′) to Axnf(x′) := u(x′, xn) for a fixed xn > 0 cannot be bounded from any
Hs(Rn−1) (even for s very large) to any H t(Rn−1) (even for −t very large). This does
not mean that Axn cannot be inverted. Let us define the space

Xxn(Rn−1) = {u ∈ L2(Rn−1), cosh(|k′|xn)û(k′) ∈ L2(Rn−1)}. (7.11)

Then, Axn is indeed continuous in L(L2(Rn−1),Xxn(Rn−1)) with an inverse A−1
xn contin-

uous in L(Xxn(Rn−1), L2(Rn−1)) and given by

A−1
xnu = F−1

k′→x′ cosh(|k′|xn)Fx′→k′u. (7.12)

This construction is useful when noise is small in Xxn(Rn−1), which means that it is
essentially low-frequency. Such a restrictive assumption on noise is often not verified
in practice. When noise is small only in some L2 sense, for instance, then Axn above
cannot be inverted without assuming prior information about the solution we seek to
reconstruct. Chapters 10 and 11 will be devoted to the analysis of such prior information.
Here, we look at how stability estimates may still be obtained when simple bounds are
available on the harmonic solutions.

7.2.3 Prior bounds and stability estimates

Let us consider the solution (7.10) in the setting where f is small in some sense (modeling
the level of noise in the available data since our problem is linear) and where u(x) the
harmonic solution is bounded a priori in some sense. We can then obtain a stability
result of the form:

Theorem 7.2.1 Let u(x) be the solution to (7.2) with g ≡ 0. Let us assume that

‖f‖L2(Rn−1) ≤ η ≤ E, ‖u(·, L)‖L2(Rn−1) ≤ E. (7.13)

Then we find that
‖u(·, xn)‖L2(Rn−1) ≤ Cη1−xn

L E
xn
L , (7.14)

for some universal constant C.

Proof. The proof is based on the following observation: û(k′, xn) is close to f̂(k′) for
small values of |k′|, where we wish to use the constraint involving η. For large |k′|, the
bound in η on f̂(k′) is no longer sufficient and we need to use the bound at L, which
constrains the growth at high frequencies. We thus calculate∫

Rn−1

|f̂ |2(k′) cosh2(|k′|xn)dk′ =

∫
|k′|<k0

|f̂ |2(k′) cosh2(|k′|xn)dk′

+

∫
|k′|>k0

|f̂ |2(k′) cosh2(|k′|xn)dk′ ≤ cosh2(k0xn)η2 +
cosh2(k0xn)

cosh2(k0L)
E2.
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We now equate both terms. Since k0 is “large”, we verify that coshx ∼ 1
2
ex and choose

k0 =
1

L
ln

2E

η
.

With this choice, we obtain that∫
Rn−1

|f̂ |2(k′) cosh2(|k′|xn)dk′ ≤ Cη2
(2E

η

)xn
L ≤ C

(
η
xn
L E1−xn

L

)2

.

This proves the result.
The above result states that even though solving the Cauchy problem is severely ill-
posed, if we possess information about the solution at a distance L from where the
measurements are collected, then we can reconstruct the elliptic solution for all 0 <
xn < L with Hölder-type stability, which is a mildly ill-posed problem. However, at
xn = L, which is where we would like to obtain some stable reconstructions in the
electro-cardiac problem, then a mere bound at xn = L in the L2 norm is not sufficient
to obtain any meaningful stability. However, a stronger bound would be sufficient as
the following result indicates.

Theorem 7.2.2 Let u(x) be the solution to (7.2) with g ≡ 0. Let us assume that

‖f‖L2(Rn−1) ≤ η ≤ E, ‖u(·, L)‖Hs(Rn−1) ≤ E, s > 0. (7.15)

Then we find that

‖u(·, xn)‖L2(Rn−1) ≤ C
∣∣∣ ln E

η

∣∣∣−sxnL η1−xn
L E

xn
L , (7.16)

for some universal constant C.

Proof. The proof is similar to the preceding one. We calculate∫
Rn−1

|f̂ |2(k′) cosh2(|k′|xn)dk′ =

∫
|k′|<k0

|f̂ |2(k′) cosh2(|k′|xn)dk′

+

∫
|k′|>k0

|f̂ |2(k′) cosh2(|k′|xn)dk′ ≤ cosh2(k0xn)η2 +
cosh2(k0xn)

cosh2(k0L)
〈k0〉−2sE2.

We recall that 〈k0〉2 = 1 + k2
0. We then choose

k0 =
1

L
ln

2E

η
− s

L
ln

1

L
ln

2E

η
.

This is a good approximation to the equation cosh2(k0L)η2 = 〈k0〉−2sE2. We then find

ηek0xn =
∣∣∣ 1
L

ln
2E

η

∣∣∣−sxnL η1−xn
L (2E)

xn
L ,

from which the result follows.
For xn < L, the latter result is not much more precise than the preceding one. However,
when xn = L, we obtain that the error in the L2(Rn−1) norm of u(x′, xn) is of order
| ln η|−s. This is a logarithmic stability result that cannot be improved and indicates the
severe ill-posedness of the electro-cardiac problem. Note also that the stability estimate
depends on the strength of the exponent s in the prior regularity assumption.
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Exercise 7.2.2 Let us assume that in Theorem 7.2.2, the prior estimate is replaced by
an estimate of the form

‖u‖Hm(Rn−1×(0,L)) ≤ E, m ≥ 0 (7.17)

(i) Obtain a result of the form (7.16) in this setting.
(ii) Show that ‖u(·, L)‖L2(Rn−1) satisfies a logarithmic stability estimate when m is suf-
ficiently large (how large?). Relate this result to that of Theorem 7.2.2.

7.2.4 Analytic continuation

The above results in dimension n = 2 are intimately connected to the analytic continu-
ation of an analytic function given on the real line.

Let f(z) = g(z) + ih(z) be an analytic function with g(z) and h(z) real valued-
functions. Let us assume that g(z) and h(z) are known on the real line =(z) = 0. The
objective is to find them for arbitrary values of z. We identify z = x + iy and assume
that g(x, 0) and h(x, 0) are distributions in S ′(R) so that their Fourier transform is
defined. Since f(z) is analytic, we have

∂f

∂z̄
= 0,

or equivalently that
∂g

∂x
− ∂h

∂y
= 0,

∂g

∂y
+
∂h

∂x
= 0. (7.18)

These Cauchy-Riemann relations imply that g and h are harmonic, i.e., ∆g = ∆h = 0.
They thus solve the following problems

∆g = 0, y > 0, ∆h = 0, y > 0,
∂g

∂y
(x, 0) = −∂h

∂x
(x, 0),

∂h

∂y
(x, 0) =

∂g

∂x
(x, 0),

g(x, 0) known, h(x, 0) known.

(7.19)

Both problems are of the form (7.2). The solutions in the Fourier domain are given by

ĝ(kx, y) = ĝ(kx, 0) cosh(|kx|y)− isign(kx)ĥ(kx, 0) sinh(|kx|y)

ĥ(kx, y) = ĥ(kx, 0) cosh(|kx|y) + isign(kx)ĝ(kx, 0) sinh(|kx|y)
(7.20)

We verify that the problem is well-posed provided that (7.7) is verified, which in this
context means

∂h

∂x
= H

∂g

∂x
,

∂g

∂x
= −H∂h

∂x
. (7.21)

Notice that H2 = −I so that both equalities above are equivalent. When the above
conditions are met, then the analytic continuation is a stable process. When they are
not met, we have seen that high frequencies increase exponentially as y increases, which
renders the analytic continuation process a severely ill-posed problem.
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7.3 General two dimensional case

We now consider a general two-dimensional geometry as described in section 7.1. We use
the Riemann mapping theorem to map such a geometry conformally to an annulus (the
region lying between two concentric circles) in the plane. We then solve the problem
on the annulus. The Riemann mapping gives us a stable way to transform the original
domain to an annulus and back. We will see that solving the problem on the annulus is
severely ill-posed similarly to what we saw in the preceding section.

7.3.1 Laplace equation on an annulus

Let us begin with a presentation of the problem on the annulus. We assume that the
inner circle has radius 1 and the outer circle radius ρ > 0. By simple dilation, this is
equivalent to the more general case of two circles of arbitrary radius a and b. In polar
coordinates the Laplacian takes the form

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
. (7.22)

The general solution to the above equation periodic in θ is decomposed in Fourier modes
as

u(r, θ) = a0 + b0 ln r +
∑
n∈N∗

(an
2
rn +

bn
2
r−n
)
einθ. (7.23)

Since ν · ∇u = 0 on at r = 1, we deduce that b0 and bn − an vanish. We then find that
the solution to (7.1) on the annulus is given by

u(r, θ) =
∑
n∈N

( 1

2π

∫ 2π

0

e−inφu1(φ)dφ
)rn + r−n

2
einθ. (7.24)

The above solution holds for all r > 1.

Exercise 7.3.1 Find the relation that u1(θ) = u(1, θ) and g1(θ) = ν · ∇u(1, θ) must
satisfy so that the problem

∆u = 0, |r| > 1

u(1, θ) = u1(θ), n · ∇u(1, θ) = g1(θ), 0 ≤ θ < 2π,

is well-posed (in the sense that the energy of θ → u(ρ, θ) is bounded by the energy of
u1(θ)).

We verify that an error of size δ in the measurement of the coefficient an is amplified
into an error of order

An(ρ) =
δ

2
en ln ρ at r = ρ.

We verify that An cannot be bounded by any Cnα for all α > 0, which would correspond
to differentiating the noise level α times. This implies that the reconstruction of u(ρ, θ)
from u1(θ) using (7.24) is a severely ill-posed problem.
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7.3.2 Riemann mapping theorem

Let X be an open smooth two dimensional domain with smooth boundary having two
smooth connected components. We denote by Γ0 the outer component of ∂X and Γ1

the inner component; see Fig. 7.1.
For z ∈ X ⊂ C we construct a holomorphic function Ψ(z) (i.e., a function such that

∂Ψ
∂z̄

= 0) mapping X to an annulus of the form 1 < r < ρ. The function is constructed
as follows. Let first v be the unique solution to the following Dirichlet problem

∆v = 0 on X, v|Γ0 = 1, v|Γ1 = 0. (7.25)

For some c to be fixed later, let G = cv. We verify that

I =

∫
Γ1

−∂G
∂y

dx+
∂G

∂x
dy = −c

∫
Γ1

∂v

∂ν
ds > 0

by the maximum principle (v is positive inside X and its normal derivative must be
negative on Γ1). We fix c such that I = 2π. In that case we can define a function H(z),
a conjugate harmonic of G(z) on X, by

H(z) =

∫ z

p

−∂G
∂y

dx+
∂G

∂x
dy, (7.26)

where p is an arbitrary point in X. Since G is harmonic, we verify that the definition
of H is independent of the path chosen between p and z. Moreover we verify that

∂H

∂x
= −∂G

∂y
,

∂H

∂y
=
∂G

∂x
,

so that G+ iH is a holomorphic function on X. Then so is

Ψ(z) = eG(z)+iH(z). (7.27)

We verify that Ψ(z) maps Γ0 to the circle |z| = ec and Γ1 to the circle |z| = 1. Moreover
Ψ is a diffeomorphism between X and the annulus Uc = {z ∈ C, 1 ≤ |z| ≤ ec}. Finally
we verify that ∆Ψ(z) = 0 on X since Ψ is holomorphic. Therefore we have replaced the
problem (7.1) on X by solving the Laplace equation on Uc with boundary conditions
u1(Ψ(z)) on the circle r = 1 and vanishing Neumann boundary conditions (we verify
that Neumann boundary conditions are preserved by the map Ψ).

Exercise 7.3.2 Verify the above statements.

7.4 Backward Heat Equation

Let us now consider the backward heat equation. The forward heat equation is given
by

∂u

∂t
−∆u = 0 t > 0, x ∈ Rn

u(0, x) = f(x) x ∈ Rn,
(7.28)
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with f(x) an initial condition. Let us assume that u(T, x) = Mf(T, x) is measured and
that we wish to reconstruct f(x). In this setting, we pass to the Fourier domain and
obtain as above that

û(t, k) = e−t|k|
2

f̂(k). (7.29)

Therefore, f̂(k) = eT |k|
2
û(T, k) is the formal inverse to the measurement operator M.

Again, this is a severely ill-posed problem. But with prior information about the solution
u(t, x), we can again obtain Hölder and logarithmic type stability results. For instance,
we have

Theorem 7.4.1 Let us assume that

‖u(T, ·)‖L2(Rn) = η ≤ E, ‖f‖Hs(Rn) ≤ E. (7.30)

Then we find that

‖u(t, ·)‖L2(Rn) ≤ C
∣∣∣ ln η

E

∣∣∣− s(T−t)2T
η
t
T E1− t

T . (7.31)

Proof. The proof is the same as above. We use the η bound for |k| < k0 and the
other bound for |k| > k0. We then choose k0 so that

k2
0 =

1

T
ln
E

η
− s

2T
ln k2

0 ≈
1

T
ln
E

η
− s

2T
ln

1

T
ln
E

η
.

The rest of the proof proceeds as above. Note that the main difference with respect to
the Cauchy problem is that s is replaced by s

2
in the estimate because frequencies are

exponentially damped with a strength proportional to |k|2 rather than |k|.
Note that for all t > 0, the error on the reconstruction of u(t, x) is Hölder in η, which
measures the errors in the measurements. At t = 0, which is the problem of interest
in the backward heat equation, we obtain a logarithmic stability: the errors in the
reconstruction are proportional to | ln η|− s2 , which does converge to 0 as η → 0, but does
so extremely slowly.

The above proof generalizes to a large class of elliptic operators. For instance,
consider the problem

∂u

∂t
− Lu = 0, t > 0, x ∈ X

u(t, x) = 0 x ∈ ∂X

u(0, x) = f(x), x ∈ X

(7.32)

with L a symmetric operator such as for instance −∇ · a∇ + c admitting a spectral
decomposition

−Lφn = λnφn in X φn = 0 on ∂X, (7.33)

with an orthonormal basis of normalized eigenvectors φn and positive eigenvalues 0 <
λ1 < λ2 ≤ . . . with λn →∞ as n→∞. Then we can decompose

f(x) =
∑
n≥1

fnφn(x), u(t, x) =
∑
n≥1

un(t)φn(x).
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Let us assume that un(T ) is measured and that we want to reconstruct un(t) for t ≥ 0
and hence also fn at t = 0. Then we find that

un(t) = e−λntfn = eλn(T−t)un(T ).

Let us assume that f(x) admits an a priori bound in Hs(X) of the form

‖f‖Hs(X) :=
(∑
n≥1

n2sf 2
n

) 1
2

= E. (7.34)

Let us assume that we have an error of the form

‖u(T, ·)‖L2(X) :=
(∑
n≥1

u2
n(T )

) 1
2

= η ≤ E. (7.35)

Let us assume that λn ≈ nα for some α > 0 asymptotically. Then we calculate∑
n≥1

u2
n(t) =

∑
n≤n0−1

(eλn(T−t)un(T ))2 +
∑
n≥n0

(e−λntfn)2

≤ e2λn0 (T−t)η2 + e−2λn0 tn−2s
0 E2.

Again, we use the estimate on the noise η for the low frequencies of u(t) and the regularity
estimate E for the high frequencies of u(t). It remains to equate these two terms to find
that

nα0 ≈
1

T
ln
E

η
− s

Tα
ln

1

T
ln
E

η
.

This yields the error estimate

‖u(t, ·)‖L2(X) ≤ C
∣∣∣ ln η

E

∣∣∣− (T−t)s
Tα

η
t
T E1− t

T . (7.36)

We leave it to the reader to fill in the gaps and state theorems. As usual, we obtain
a Hölder estimate for all 0 < t ≤ T . At t = 0, the stability estimate becomes again
logarithmic and crucially relies on the prior information that f is bounded in some space
Hs(X) with s > 0.

7.5 Carleman Estimates, UCP and Cauchy problem

We briefly revisit the endocardial problem and show a much more general result for
second-order elliptic problems (with isotropic diffusion). The proofs of the (weak) unique
continuation principle (UCP) stating that a solution vanishing on an open set vanishes
everywhere, of the Cauchy data problem, stating that a solution vanishing on an open
set of the boundary with vanishing Neumann conditions on that open set has to vanish
everywhere, are based on Carleman estimates, which we consider first.

We want to show that the Laplacian controls lower-order derivatives locally. This is
done by means of Carleman estimates.
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Let ψ(x) be a function such that ψ = exp(φ) with φ ≥ 0 on a domain of interest.
We are looking at the operator

Pτψ = eτψ(−∆)e−τψ = −eτψ∇e−τψ · eτψ∇e−τψ = −(∇− τ∇ψ) · (∇− τ∇ψ)

and want to show that for an appropriate function ψ defined on a bounded domain X
and for u ∈ C∞c (X), we have

‖Pτψu‖ ≥ C
(
τ

1
2‖∇u‖+ τ

3
2‖u‖

)
for a positive constant C independent of τ sufficiently large.

The derivation goes as follows. We first observe that

Pτψ = A+B, A = −∆− τ 2|∇ψ|2, Bu = τ
(
∇ · (u∇ψ) +∇ψ · ∇u

)
.

Note that A and iB are Hermitian while B is antisymmetric. We then write

‖Pτψu‖2 =

∫
X

(A+B)u(A+B)u = ‖Au‖2 + ‖Bu‖2 + ([A,B]u, u)

The term ‖Bu‖2 is non-negative and will not have any other role. Expanding the
commutator [A,B] = AB −BA yields

‖Pτψu‖2 = ‖Au‖2 + ‖Bu‖2 + 4τ(∇2ψ∇u,∇u) + 4τ 3((∇2ψ∇ψ,∇ψ)u, u)− τ((∆2ψ)u, u).

The control on u will come from a combination of ‖Au‖2, the positivity of (∇2ψ∇ψ,∇ψ),
and τ large. Here, ∇2ψ is the Hessian of ψ. Using ψ = expφ yields

∇2ψ = (∇2φ+ (∇φ)⊗2)ψ

so that
4τ(∇2ψ∇u,∇u) = 4τ(ψ∇2φ∇u,∇u) + 4τ(ψ, |∇φ · ∇u|2)

The last term is non-negative. Define C1 = supX |∇2φ| to get

‖Pτψu‖2 ≥ ‖Au‖2 + ‖Bu‖2 − C1τ(ψ∇u,∇u) + 4τ 3((∇2ψ∇ψ,∇ψ)u, u)− τ((∆2ψ)u, u).

Control over the term involving ∇u has to come from Au and u in some form. Let us
write

(ψ∇u,∇u) =

∫
−(∆u)ψu− (∇ψ · ∇u, u) = (Au, ψu) + τ 2(|∇ψ|2u, ψu)− (∇ψ · ∇u, u).

We find

|(∇ψ · ∇u, u)| = (ψ
1
2∇u, ψ−

1
2∇ψu) ≤ 1

2
‖ψ

1
2∇u‖2 +

1

2
‖ψ−

1
2∇ψu‖2

so that
1

2
‖ψ

1
2∇u‖2 ≤ (Au, ψu) + 2τ 2(|∇ψ|2u, ψu)
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for τ ≥ 1 and when ψ|∇ψ|2 ≥ ψ−
1
2 |∇ψ|, which holds when ψ ≥ 1 and |∇ψ| ≥ 1, say.

Under the same constraints, we have

1

2
‖ψ

1
2∇u‖2 ≤ δ

2
‖Au‖2 + (

1

2δ
+ 2τ 2)(|∇ψ|2u, ψu).

Choosing 2C1δτ = 1, we get

‖Pτψu‖2 ≥ 1

2
‖Au‖2 +

([
4τ 3(∇2ψ∇ψ,∇ψ)− C1τ(

1

2δ
+ 2τ 2)ψ|∇ψ|2 − τ∆2ψ

]
u, u
)

We thus need to find a function ψ such that

4(∇2ψ∇ψ,∇ψ)− 2C1ψ|∇ψ|2 ≥ 2ψ3c, c > 0. (7.37)

uniformly on X. For ψ ≥ 1 sufficiently smooth and τ sufficiently large, we obtain that

‖Pτψu‖2 ≥ 1

2
‖Au‖2 + cτ 3‖u‖2.

The estimate on ∇u

(∇u,∇u) =

∫
−(∆u)u = (Au, u) + τ 2(|∇ψ|2u, u) ≤ C

(
‖Au‖2 + τ 2‖u‖2)

provides
τ‖∇u‖2 ≤ C‖Pτψu‖2,

which is what we wanted to show.
It remains to find a sufficiently large family of functions ψ such that the above

constraints hold. This is so for sufficiently convex functions. Let us construct φ = λϕ
so that ψ = eλϕ for λ > 0 that will be chosen large enough. Then

(∇2ψ∇ψ,∇ψ) = |∇φ|4ψ3 + (∇2φ∇φ,∇φ)ψ3 = λ4|∇ϕ|4ψ3 + λ3(∇2ϕ∇ϕ,∇ϕ)ψ3.

Let ϕ be a smooth function such that |∇ϕ| ≥ c0 > 0. Since C1 = λC10 with C10 =
supX |∇2ϕ| and |∇ψ|2 = λ2|∇ϕ|2ψ2, we observe that for λ sufficiently large, we indeed
obtain (7.37).

The result is therefore the following. Consider ϕ ≥ 0 such that |∇ϕ| ≥ c0 > 0 on X̄.
Then for λ sufficiently large and ψ = exp(λϕ), there is a positive constant C such that
for all τ sufficiently large, we have

‖Pτψu‖ ≥ C
(
τ

1
2‖∇u‖+ τ

3
2‖u‖

)
.

The derivation obtained for u ∈ C∞c (X) extends to any function (with the same con-
stants) in H2

0 (X), i.e., function that have two derivatives that are square integrable and
that vanish on ∂X, by simple approximation.

Let us relax the positivity constraint on ϕ and assume that ϕ + α ≥ 0 for some
constant α ≥ 0. We define ψα = exp(λ(ϕ + α)) as well as ψ = exp(λϕ). For λ
sufficiently large and τ ≥ 1, we have

‖Pτψu‖ = ‖Pταψαu‖ ≥ C
(
τ

1
2
α ‖∇u‖+τ

3
2
α ‖u‖

)
≥ Ce−

3
2
λα
(
τ

1
2‖∇u‖+τ

3
2‖u‖

)
, ταe

λα = τ.
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We thus obtain the following result. Let ϕ be a smooth function bounded below and
such that |∇ϕ| ≥ c0 > 0 on X̄. Then for λ sufficiently large and ψ = exp(λϕ), there is
a positive constant C independent of τ and u ∈ H2

0 (X) such that for all τ sufficiently
large, we have

‖Pτψu‖ ≥ C
(
τ

1
2‖∇u‖+ τ

3
2‖u‖

)
.

By replacing u by eτψu, we find, after some simple manipulation, that

‖eτψ∆u‖ ≥ C
(
τ

1
2‖eτψ∇u‖+ τ

3
2‖eτψu‖

)
uniformly for all function u ∈ H2

0 (X). Note that the results do not change if ψ = eλϕ−c
for any constant c, say c = 1.

Now, for a(x) scalar bounded below by a positive constant and a, b, c bounded above
(component by component), we deduce that

‖eτψ∆u‖ ≤ C‖eτψ(a∆u+ b∇u+ cu)‖+ C‖eτψ(|∇u|+ |u|)‖.

Therefore, for τ sufficiently large, we obtain more generally that, for a positive constant
C,

‖eτψLu‖ ≥ C
(
τ

1
2‖eτψ∇u‖+ τ

3
2‖eτψu‖

)
for any operator of the form L = a∆+b·∇+c or in divergence form L = ∇·a∇+b·∇+c
provided a is Lipschitz in the latter case. Note that Lipschitz continuity of a is optimal
to obtain unique continuation results as such results are known not to hold for Hölder
continuous coefficient a(x).

Figure 7.2: Geometry of the Carleman estimate. We obtain from the estimate that
u = 0 ‘below’ x0 where χ = 1.
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We now want to use the above Carleman estimate to obtain unique continuation
principles.

Let φ(x) be a smooth real-valued function with non-vanishing ∇φ in the vicinity V
of a point x0 ∈ Rn. Set Σ = φ−1(0) in V and Σ± the parts of V where ±φ > 0. We
assume that u = 0 on Σ+ and that Lu = 0 on V . We want to show that u = 0 in an
open neighborhood of x0. This is done as follows. We define

ϕ(x) = φ(x) + δ3 − 3δ|x− x0|2

for some δ > 0 sufficiently small. We then verify that ∇ϕ 6= 0 in V and that ϕ is
bounded from below. Note that ϕ(x0) = δ3 > 0. The level sets ϕ = 0 and ϕ = −δ3 are
hypersurfaces intersecting Σ− within a distance δ of x0; see Fig. 7.2.

Let us now define χ ∈ C∞c (Rn) equal to 1 on {ϕ > 0} ∩ B(0, δ), equal to 0 on
{ϕ < −δ3} and hence with support of ∇χ in Σ− given by {−δ3 < ϕ < 0}. This is
also the domain where u∇χ is supported and hence where [L, χ]u is supported. Define
ψ = eλϕ − 1 as above with λ sufficiently large, so that ϕ and ψ share the same 0−level
set. Now we have

‖u|χ=1‖ ≤ ‖eτψu|χ=1‖ ≤ ‖eτψuχ‖ ≤ τ−
3
2‖eτψL(χu)‖ = τ−

3
2‖eτψ[L, χ]u‖ ≤ τ−

3
2‖[L, χ]u‖

since eτψ ≥ 1 where χ = 1 and u 6= 0 and eτψ ≤ 1 where [L, χ]u is supported.
Finally, for u sufficiently smooth, ‖[L, χ]u‖ is bounded so that, sending τ →∞, we

observe that u|χ=1 = 0. This domain includes an open set including the point x0.
This proves unique continuation across a surface locally. When u = 0 on one side of

the surface and Lu = 0 in the vicinity of the surface, then u = 0 in a (possibly smaller)
vicinity of the surface simply by displacing x0 along the surface.

From this, we deduce the weak unique continuation principle for second-order elliptic
equations (with scalar coefficients in the above proof although the method extends to
the general elliptic (scalar!) case). This goes as follows.

Theorem 7.5.1 Let X be a bounded connected open domain and u ∈ H2(X) with Lu =
0 on X and L with sufficiently smooth coefficient that the above Carleman estimates hold.
Let X0 be an open subdomain with X̄0 ⊂ X and assume that u = 0 on X. Then u = 0
on X.

Proof. Let us first assume that for open balls B0 ⊂ B1 ⊂ X, we have u = 0 on B1

when u = 0 on B0. We define Bt a continuous family of balls such that B0 ⊂ Bs ⊂ Bt ⊂
B1 for s < t. From the above construction, we observe that if u = 0 on Bs, then u = 0
on a slightly larger ball Bs′ for s′ > s. This is obtained by constructing functions φ such
that the level set of φ is the boundary of Bs locally in the vicinity of x0 ∈ ∂Bs, then
ϕ positive in the vicinity of x0, and finally ψ such that the Carleman estimate holds.
This shows that u vanishes in the vicinity of x0. Now rotating x0 along ∂Bs yields the
result. We also observe from the construction that the vicinity is independent of s since
the coefficients are uniformly sufficiently smooth on X. This shows that u = 0 on each
ball Bs including B1.

Now let x be any point in X and V a bounded connected (since X is connected)
open domain including x and X0 such that V̄ ⊂ X. By compactness, we can cover V̄
with a finite number of open balls supported in X. Let us add to the collection a ball
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in X0 where u vanishes. Assume that u vanishes on a ball Bk and that Bk ∩ Bk+1 6= ∅.
Then there is a ball in the intersection where u vanishes so that u vanishes on Bk+1

as well. This shows that u vanishes on all balls and hence at x, which was arbitrary.
Therefore, u vanishes on X.

We also have the local UCP result for Cauchy data

Theorem 7.5.2 Let X be a bounded connected open domain with smooth boundary and
u ∈ H2(X) with Lu = 0 on X and L with sufficiently smooth coefficient that the above
Carleman estimates hold. Let Γ be a non-empty open subset of ∂X and assume that u
and ∇u vanish on Γ. Then u = 0 in X.

Proof. Note that the conditions are u = 0 and ν ·∇u = 0 on Γ with ν(x) the outward
unit normal to X at x ∈ ∂X. Let x0 ∈ Γ and let B be a sufficiently small ball centered
at x0 so that the intersection of ∂X and B0 is in Γ. Let us extend u by 0 in the open part
Y1 of B that is not in X. We then extend the coefficients in L to smooth coefficients in
B that preserve ellipticity. Then Lu = 0 in Y1 and in Y2, the intersection of B with X.
Moreover, the compatibility conditions at ∂Y1 ∩ ∂Y2 ensure that u ∈ H2(B). We have
therefore constructed an extension u such that Lu = 0 on B and u = 0 in Y1. From
the preceding theorem, this means that u = 0 in the whole of B, and hence in Y2 and
finally the whole of X.
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Chapter 8

Calderón problem

This chapter focuses on the Calderón problem, which is another inverse diffusion problem
with a similar behavior to the Cauchy problems considered in the preceding chapter.
Because of its central role in inverse problem theory and of the importance of the
mathematical tools that are used to solve it, we have devoted a full chapter to its study.

8.1 Introduction

The Calderón problem finds applications in two medical imaging methods, electrical
impedance tomography (EIT) and optical tomography (OT). We begin with the setting
of EIT, a non-invasive modality that consists of reconstructing the electrical properties
(the conductivity) of tissues from current and voltage boundary measurements. The
mathematical framework for the Calderón problem and the definition of the measure-
ment operator were presented in the introduction. For completeness, we repeat this
definition here. The Calderón problem is modeled by the following elliptic problem
with Dirichlet conditions

Lγu(x) ≡ ∇ · γ(x)∇u(x) = 0, x ∈ X

u(x) = f(x), x ∈ ∂X,
(8.1)

where X ⊂ Rn is a bounded domain with smooth boundary ∂X. In what follows, we
assume n ≥ 3. Here, γ(x) is a conductivity coefficient, which we assume is a smooth
function, and f(x) is a prescribed Dirichlet data for the elliptic problem.

The Dirichlet-to-Neumann or voltage-to-current map is given by

Λγ :
H

1
2 (∂X) → H−

1
2 (∂X)

f(x) 7→ Λγ[f ](x) = γ(x)
∂u

∂ν
(x).

(8.2)

With X = C2(X̄) and Y = L(H
1
2 (∂X), H−

1
2 (∂X)), we define the measurement operator

M : X 3 γ 7→M(γ) = Λγ ∈ Y. (8.3)

The Calderón problem consists of reconstructing γ from knowledge of the Calderón
measurement operator M. To slightly simplify the derivation of uniqueness, we also
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make the (unnecessary) assumption that γ and ν · ∇γ are known on ∂X. The main
result of this chapter is the following.

Theorem 8.1.1 Define the measurement operator M as in (8.3). Then M is injective
in the sense that M(γ) = M(γ̃) implies that γ = γ̃.

Moreover, we have the following logarithmic stability estimate:

‖γ(x)− γ′(x)‖L∞(X) ≤ C
∣∣ log ‖M(γ)−M(γ̃)‖Y

∣∣−δ, (8.4)

for some δ > 0 provided that γ and γ̃ are uniformly bounded in Hs(X) for some s > n
2
.

The proof of the injectivity result was first obtained in [58]. It is based on two main
ingredients. The first ingredient consists of recasting the injectivity result as a statement
of whether products of functionals of solutions to elliptic equations such as (8.2) are
dense in the space of, say, continuous functions. The second step is to construct specific
sequences of solutions to (8.2) that positively answer the density question. These specific
solutions are Complex Geometric Optics (CGO) solutions. Their construction is detailed
in section 8.3. We first start with a section on the uniqueness and stability results.

8.2 Uniqueness and Stability

8.2.1 Reduction to a Schödinger equation

We start with the following lemma

Lemma 8.2.1 Let Λγj for j = 1, 2 be the two operators associated to γj and let fj ∈
H

1
2 (∂X) for j = 1, 2 be two Dirichlet conditions. Then we find that∫

∂X

(Λγ1 − Λγ2)f1f2dµ =

∫
X

(γ1 − γ2)∇u1 · ∇u2dx, (8.5)

where dµ is the surface measure on ∂X and where uj is the solution to (8.1) with γ
replaced by γj and f replaced by fj.

Here we use the notation on the left-hand side to mean:∫
∂X

(Λγ1 − Λγ2)f1(x)f2(x)dµ(x) := 〈(Λγ1 − Λγ2)f1, f2〉H− 1
2 (∂X),H

1
2 (∂X)

.

Proof. The proof is a simple integration by parts. Let us consider the equation for
u1, multiply it by u2 and integrate the product over X. Then we find by application of
the divergence theorem that

0 = −
∫
X

u2Lγ1u1dx =

∫
X

γ1∇u1 · ∇u2dx−
∫
∂X

u2γ1ν · ∇u1dµ(x).

=

∫
X

γ1∇u1 · ∇u2dx−
∫
∂X

f2Λγ1f1dµ(x).

Exchanging the roles of the indices j = 1 and j = 2 and subtracting the result to the
above equality yields (8.5).
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The above lemma shows that when Λγ1 = Λγ2 , the right-hand-side in (8.1) also
vanishes for any solutions u1 and u2 of (8.1) with γ given by γ1 and γ2, respectively.
We are now thus faced with the question of whether products of the form ∇u1 ·∇u2 are
dense in the space of, say, continuous functions. Unfortunately, answering this question
affirmatively seems to be a difficult problem. The main difficulty in the analysis of
(8.1) is that the unknown coefficient γ appears in the leading order of the differential
operator Lγ. The following Liouville change of variables allows us to treat the unknown
coefficient as a perturbation to a known operator (with constant coefficients):

γ−
1
2Lγγ

− 1
2 = ∆− q, q =

∆γ
1
2

γ
1
2

. (8.6)

Here ∆ is the usual Laplacian operator.

Exercise 8.2.1 Prove (8.6).

Therefore if u is a solution of Lγu = 0, then v = γ
1
2u is a solution to the Schrödinger

equation (∆− q)v = 0. We thus wish to replace the problem of the reconstruction of γ
by that of q.

Consider the Schrödinger equation (still calling the solution “u” rather than “v”)

(∆− q)u = 0 in X, u = f on ∂X, (8.7)

with q given by (8.6). For f ∈ H 1
2 (∂X), we find a unique solution u ∈ H1(X) such that

ν · ∇u ∈ H− 1
2 (∂X). Indeed, the above equation admits a solution since it is equivalent

to (8.1) by the change of variables (8.6). We then define the Dirichlet-to-Neumann
operator

Λq :
H

1
2 (∂X) → H−

1
2 (∂X)

f(x) 7→ Λq[f ](x) =
∂u

∂ν
(x),

(8.8)

where u is the solution to (8.7). We then verify that

Λqf = γ−
1
2
∂γ

∂ν

∣∣∣
∂X
f + γ−

1
2 Λγ(γ

− 1
2

∣∣∣
∂X
f), f ∈ H

1
2 (∂X). (8.9)

Exercise 8.2.2 Prove the above result.

We thus observe that knowledge of Λγ, γ|∂X and ν · ∇γ|∂X implies knowledge of Λq. It
turns out that knowledge of Λγ implies that of γ|∂X and ν · ∇γ|∂X :

Theorem 8.2.2 Let us assume that 0 < γi ∈ Cm(X̄) and that Λγ1 = Λγ2. Then we can
show that for all |α| < m, we have

∂αγ1

∣∣∣
∂X

= ∂αγ2

∣∣∣
∂X
. (8.10)

See [41] for a proof of this result. To simplify the analysis of stability, we have assumed
here that γ|∂X and ν · ∇γ|∂X were known. Thus, Λγ uniquely determines Λq. Our next
step is therefore to reconstruct q from knowledge of Λq. We start with the following
lemma:
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Lemma 8.2.3 Let Λqj for j = 1, 2 be the two operators associated to qj and let fj ∈
H

1
2 (∂X) for j = 1, 2 be two Dirichlet conditions. Then we find that∫

∂X

(Λq1 − Λq2)f1f2dµ =

∫
X

(q1 − q2)u1u2dx, (8.11)

where dµ is the surface measure on ∂X and where uj is the solution to (8.7) with q
replaced by qj and f replaced by fj.

Exercise 8.2.3 Prove this lemma following the derivation in Lemma 8.2.1.

The above lemma shows that when Λq1 = Λq2 , then the right-hand-side in (8.11) also
vanishes for any solutions u1 and u2 of (8.7) with q replaced by q1 and q2, respectively.
We are now thus faced with the question of whether products of the form u1u2 are dense
in the space of, say, continuous functions. This is a question that admits an affirmative
answer. The main tool in the proof of this density argument is the construction of
complex geometric optics solutions. Such solutions are constructed in section 8.3. The
main property that we need at the moment is summarized in the following lemma.

Lemma 8.2.4 Let % ∈ Cn be a complex valued vector such that % ·% = 0. Let ‖q‖∞ <∞
and |%| be sufficiently large. Then there is a solution u of (∆−q)u = 0 in X of the form

u(x) = e%·x(1 + ϕ(x)), (8.12)

such that
|%|‖ϕ‖L2(X) + ‖ϕ‖H1(X) ≤ C. (8.13)

The proof of this and more general lemmas can be found in section 8.3. The principle of
such solutions is this. When q ≡ 0, then e%·x is a (complex-valued) harmonic function,
i.e., a solution of ∆u = 0. The above result shows that q may be treated as a perturba-
tion of ∆. Solutions of (∆− q)u = 0 are fundamentally not that different from solutions
of ∆u = 0.

Now, coming back to the issue of density of product of elliptic solutions. For u1 and
u2 solutions of the form (8.12), we find that

u1u2 = e(%1+%2)·x(1 + ϕ1 + ϕ2 + ϕ1ϕ2). (8.14)

If we can choose %1 + %2 = ik for a fixed k with |%1| and |%2| growing to infinity so that
ϕ1 +ϕ2 +ϕ1ϕ2 becomes negligible in the L2 sense thanks to (8.13), then we observe that
in the limit u1u2 equals eik·x. The functions eik·x for arbitrary k ∈ Rn certainly form a
dense family of, say, continuous functions.

8.2.2 Proof of injectivity result

Let us make a remark on the nature of the CGO solutions and the measurement operator
M. The CGO solutions are complex valued. Since the equations (8.1) and (8.7) are
linear, we can assume that the boundary conditions f = fr + ifi are complex valued as
a superposition of two real-valued boundary conditions fr and fi. Moreover, the results
(8.5) and (8.11) hold for complex-valued solutions. Our objective is therefore to show
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that the product of complex-valued solutions to elliptic equations of the form (8.7) is
indeed dense. The construction in dimension n ≥ 3 goes as follows.

Let k ∈ Rn be fixed for n ≥ 3. We choose %1,2 as

%1 =
m

2
+ i

k + l

2
, %2 = −m

2
+ i

k − l
2

, (8.15)

where the real-valued vectors l, and m are chosen in Rn such that

m · k = m · l = k · l = 0, |m|2 = |k|2 + |l|2. (8.16)

We verify that %i ·%i = 0 and that |%i|2 = 1
2
(|k|2 + |l|2). In dimension n ≥ 3, such vectors

can always be found. For instance, changing the system of coordinates so that k = |k|e1,
we can choose l = |l|e2 with |l| > 0 arbitrary and then m =

√
|k|2 + |l|2e3, where

(e1, e2, e3) forms a family of orthonormal vectors in Rn. Note that this construction is
possible only when n ≥ 3. It is important to notice that while k is fixed, |l| can be
chosen arbitrarily large so that the norm of %i can be arbitrarily large while %1 + %2 = k
is fixed.

Upon combining (8.11) and (8.14), we obtain for the choice (8.15) that Λq1 = Λq2
implies that∣∣∣ ∫

X

eik·x(q1 − q2)dx
∣∣∣ ≤ ∣∣∣ ∫

X

eik·x(q1 − q2)(ϕ1 + ϕ2 + ϕ1ϕ2)dx
∣∣∣ ≤ C

|l|

thanks to (8.13) since |l|(ϕ1 +ϕ2 +ϕ1ϕ2) is bounded in L1(X) by an application of the
Cauchy-Schwarz inequality and eik·x(q1 − q2) is bounded in L∞(X). Since the above
inequality holds independent of l, we deduce that the Fourier transform of (q1 − q2)
(extended by 0 outside of X) vanishes, and hence that q1 = q2. So far we have thus
proved that

Λγ1 = Λγ2 =⇒ Λq1 = Λq2 =⇒ q1 = q2,

where qj and γj are related by (8.6). From (8.6) still, we deduce that

0 = γ
1
2
1 ∆γ

1
2
2 − γ

1
2
2 ∆γ

1
2
1 = ∇ · (γ

1
2
1∇γ

1
2
2 − γ

1
2
2∇γ

1
2
1 ) = ∇ · (γ1∇

(γ2

γ1

) 1
2
). (8.17)

Since γ1 = γ2 on ∂X, this is an elliptic equation for
(
γ1
γ2

) 1
2 whose only solution is

identically 1. This shows that γ1 = γ2. This concludes the proof of the uniqueness
result

Λγ1 = Λγ2 =⇒ γ1 = γ2. (8.18)

8.2.3 Proof of the stability result

Let us return to (8.11) and assume that Λq1 −Λq2 no longer vanishes but is (arbitrarily)
small. We first want to assess how errors in Λq translates into errors in q. For uj
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solutions as stated in Lemma 8.2.3 and of the form (8.12), we find that∣∣∣∫
X

eik·x(q1 − q2)dx
∣∣∣ ≤ ∣∣∣∫

X

eik·x(q1 − q2)(ϕ1 + ϕ2 + ϕ1ϕ2)dx
∣∣∣+
∣∣∣∫
∂X

(Λq1 − Λq2)f1f2dµ
∣∣∣

≤ C

|l|
+ ‖Λq1 − Λq2‖Y‖f1‖H 1

2 (∂X)
‖f2‖H 1

2 (∂X)

≤ C

|l|
+ C‖Λq1 − Λq2‖Y‖u1‖H1(X)‖u2‖H1(X)

≤ C

|l|
+ C|l|‖Λq1 − Λq2‖YeC|l|.

Indeed, fj = uj|∂X and ‖u‖
H

1
2 (∂X)

≤ C‖u‖H1(X) is a standard estimate. This step is

where the ill-posedness of the Calderón problem is best displayed.

Exercise 8.2.4 Verify that that for some constant C independent of |l| and for u given
by (8.12)-(8.13), we have:

‖u‖H1(X) ≤ C|l|eC|l|.

Define δq = q1 − q2. So far, we have obtained a control of δ̂q(k) uniform in k ∈ Rn.
Upon choosing

|l| = σ

C
ln

1

ε
, 0 < σ < 1,

so that eC|l| = ε−σ, we find that for ε := min(1, ‖Λq1 − Λq2‖Y),

|δ̂q(k)| ≤ η := C
∣∣ ln ε∣∣−1

. (8.19)

Since q is assumed to be bounded and compactly supported, it is square integrable in
Rn so that ‖δq‖L2(Rn) := E <∞. This and the control in (8.19) allows one to obtain a
control of δq in H−s(Rn) for s > 0. Indeed

‖δq‖2
H−s(Rn) =

∫
〈k〉−2s|δ̂q|2dk

≤ kn0 η
2 + k−2s

0 E2,

by splitting the integration in k into |k| < k0 and |k| > k0 and choosing k0 ≥ 1. We
then choose

k0 =
(E
η

) 2
n+2s

.

This implies

‖q1 − q2‖H−s(Rn) ≤ CE
n

n+2s | ln ε
∣∣− 2s

n+2s . (8.20)

Exercise 8.2.5 Assume that ‖δq‖Hς(Rn) := E < ∞. Show that the estimate (8.20)
holds with s replaced by s+ ς on the right-hand-side.
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It remains to convert the estimate on q1 − q2 into an estimate for γ1 − γ2. We find
that (8.17) is replaced by

(γ1γ2)
1
2 (q1−q2) = ∇·(γ1∇

(γ2

γ1

−1
) 1

2
) in X,

(γ2

γ1

−1
) 1

2
= 0 on ∂X. (8.21)

Standard elliptic regularity results and the fact that γ1 is of class C2 therefore show
that

‖γ1 − γ2‖H1(X) ≤ C‖q1 − q2‖H−1(X) ≤ C| ln ε
∣∣−δ, (8.22)

with δ = 2
2+n

if q is bounded in the L2 sense and δ = 2(1+ς)
n+2(1+ς)

if q is bounded as in

Exercise 8.2.5. The final result in (8.4) then follows from interpolating the a priori
bound in Hs of γ1 − γ2, the above smallness bound in H1 to obtain a small bound in
Hτ for some n

2
< τ < s. Then by the Sobolev imbedding of L∞(X) into Hτ (X), we

conclude the proof of Theorem 8.1.1.

8.3 Complex Geometric Optics Solutions

The major technical ingredient in the proof of Theorem 8.1.1 is the existence of complex
geometrical optics (CGO) solutions of the form (8.12). The proof of Lemma 8.2.4 and
more general results that will be useful in subsequent chapters is undertaken in this
section.

Let us consider the equation ∆u = qu in X. When q = 0, then a rich family of
harmonic solutions is formed by the complex exponentials e%·x for % ∈ Cn a complex
valued vector such that % · % = 0. Indeed, we verify that

∆ex·% = % · % ex·% = 0. (8.23)

A vector % = %r + i%i is such that % · % = 0 if an only if %r and %i are orthogonal vectors
of the same (Euclidean) length.

When q 6= 0, it is tempting to try and write solutions of ∆u = qu as perturbations
of the harmonic solutions e%·x, for instance in the form

u(x) = e%·x(1 + ϕ(x)).

This provides an equation for ϕ of the form

(∆ + 2% · ∇)ϕ = q(1 + ϕ). (8.24)

Exercise 8.3.1 Check this formula.

Treating the right-hand side as a source f , the first part of the construction consists of
solving the problem

(∆ + 2% · ∇)ϕ = f, (8.25)

for f a source in X and ϕ defined on X as well. Surprisingly, the analysis of (8.25)
is the most challenging technical step in the construction of solutions to (8.24). The
construction with f ∈ L2(X) is sufficient for the proof of Theorem 8.1.1. In later
chapters, we will require more regularity for the solution to (8.25) and thus prove the
following result.
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Lemma 8.3.1 Let f ∈ Hs(X) for s ≥ 0 and let |%| ≥ c > 0. Then there exists a
solution to (8.25) in Hs+1(X) and such that

|%|‖ϕ‖Hs(X) + ‖ϕ‖Hs+1(X) ≤ C‖f‖Hs(X). (8.26)

Proof. We first extend f defined on X to a function still called f defined and
compactly supported in Rn and such that

‖f‖Hs(Rn) ≤ C(X)‖f‖Hs(X).

That such an extension exists is proved for instance in [57, Chapter 6, Theorem 5]. We
thus wish to solve the problem

(∆ + 2% · ∇)ϕ = f, in Rn. (8.27)

The main difficulty is that the operator (∆ + 2% · ∇) has for symbol

Fx→ξ(∆ + 2% · ∇)F−1
ξ→x = −|ξ|2 + 2i% · ξ.

Such a symbol vanishes for %r · ξ = 0 and 2%i · ξ + |ξ|2 = 0. The original proof of
the injectivity result of Theorem 8.1.1 in [58] shows the existence and uniqueness of a
solution to (8.27) in appropriate functional spaces. Since uniqueness is of no concern
to us here, we instead follow a path undertaken by [34, 51] and construct a solution
that can be seen of the product of a plane wave with a periodic solution with different
period. Let us define

ϕ = eiς·xp, f = eiς·xf

for some vector ς ∈ Rn to be determined. Then we find(
∆ + 2(%+ iς) · ∇+ (2i% · ς − |ς|2)

)
p = (∇+ iς + 2%) · (∇+ iς)p = f. (8.28)

Exercise 8.3.2 Verify this.

Let us now assume that f is supported in a box Q of size (−L,L)n for L sufficiently
large. Then we decompose as Fourier series:

p =
∑
k∈Zn

pke
i π
L
k·x, f =

∑
k∈Zn

fke
i π
L
k·x. (8.29)

We then find that (8.28) is equivalent in the Fourier domain to

pk =
1

−| π
L
k + ς|2 + 2i% · (ς + π

L
k)

fk (8.30)

The imaginary part of the denominator is given by 2%r · ( πLk + ς). It remains to choose

ς =
1

2

π

L

%r
|%r|

,
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to obtain that the above denominator never vanishes since k ∈ Zn. Moreover, for such
a choice, we deduce that∣∣∣− ∣∣π

L
k + ς

∣∣2 + 2i% ·
(
ς +

π

L
k
)∣∣∣ ≥ C|%|,

for some constant C independent of %. This shows that

|pk| ≤ C|%|−1|fk|.

Since f ∈ Hs(Q), we deduce that ‖f‖2
Hs(Q) =

∑
k∈Zn |k|2s|fk|2 < ∞, from which we

deduce that

‖p‖Hs(Q) ≤ C|%|−1‖f‖Hs(Q).

It remains to restrict the constructed solution to X (and realize that eiς·x is smooth) to
obtain that |%|‖ϕ‖Hs(X) ≤ C‖f‖Hs(X) and the first step in (8.26).

The result on ‖ϕ‖Hs+1(X) requires that we obtain bounds for |k|pk. For |k| small, say
|k| ≤ 8L

π
|%|, then we use the same result as above to obtain

|k||pk| ≤ C|fk|, |k| ≤ 8L

π
|%|.

For the other values of |k|, we realize that the denominator in (8.30) causes no problem
and that

|k||pk| ≤ C|k|−1|fk|, |k| > 8L

π
|%|.

This shows that |k||pk| ≤ C|fk| for some constant C independent of k and |%|. The proof
that ‖ϕ‖Hs+1(X) ≤ C‖f‖Hs(X) then proceeds as above. This concludes the proof of the
fundamental lemma of CGO solutions to Schrödinger equations.

We now come back to the perturbed problem (8.24). We assume that q is a complex-
valued potential in Hs(X) for some s ≥ 0. We say that q ∈ L∞(X) has regularity s
provided that for all ϕ ∈ Hs(X), we have

‖qϕ‖Hs(X) ≤ qs‖ϕ‖Hs(X), (8.31)

for some constant qs. For instance, when s = 0, when qs = ‖q‖L∞(X). Then we have the
following result.

Theorem 8.3.2 Let us assume that q ∈ Hs(X) is sufficiently smooth so that qs < ∞.
Then for |%| sufficiently large, there exists a solution ϕ to (8.24) that satisfies

|%|‖ϕ‖Hs(X) + ‖ϕ‖Hs+1(X) ≤ C‖q‖Hs(X). (8.32)

Moreover, we have that

u(x) = e%·x(1 + ϕ(x)) (8.33)

is a Complex Geometrical Optics solution in Hs+1(X) to the equation

∆u = qu in X.
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Proof. Let T be the operator which to f ∈ Hs(X) associates ϕ ∈ Hs(X) the solution
of (8.27) constructed in the proof of Lemma 8.3.1. Then (8.24) may be recast as

(I − Tq)ϕ = Tq.

We know that ‖T‖L(Hs(X)) ≤ Cs|%|−1. Choosing |%| sufficiently large so that |%| > Csqs,
we deduce that (I−Tq)−1 =

∑∞
m=0(Tq)m exists and is a bounded operator in L(Hs(X)).

We have therefore constructed a solution so that q(1+ϕ) ∈ Hs(X). The estimate (8.26)
yields (8.32) and concludes the proof of the theorem.
Note that the above theorem with s = 0 yields Lemma 8.2.4.

Let us now consider the elliptic equation (8.1). The change of variables in (8.6)

shows that u = γ−
1
2v with v a solution of ∆v = qv, is a solution of (8.1). We therefore

have the

Corollary 8.3.3 Let γ be sufficiently smooth so that q = γ−
1
2 ∆γ

1
2 verifies the hy-

potheses of Theorem 8.3.2. Then for |%| sufficiently large, we can find a solution u of
∇ · γ∇u = 0 on X such that

u(x) =
1

γ
1
2 (x)

e%·x(1 + ϕ(x)), (8.34)

and such that (8.32) holds.

For instance, for s ∈ N, we verify that (8.31) holds provided that γ is of class Cs+2(X).
The case s = 0 with γ of class C2(X) is the setting of Theorem 8.1.1.

8.4 The Optical Tomography setting

We have seen that optical tomography measurements could be modeled by radiative
transfer equations. In the diffusive regime, where photons travel over distances that are
much larger than the mean free path, the photon density is accurately modeled by a
diffusion equation. Let us assume that the source of photons used to probe the domain
of interest is time harmonic with a frequency modulation ω. The density of such time
harmonic photons then solves the following elliptic model

−∇ · γ∇u+ (σ + iω)u = 0 in X, u = f on ∂X. (8.35)

We assume here that f is the prescribed distribution of photons at the domain’s bound-
ary. This is an approximation as only the density of incoming photons can be prescribed.
More accurate models would not fundamentally change the main conclusions of this sec-
tion and we therefore assume Dirichlet conditions to simplify.

The coefficients (γ, σ) are the diffusion and absorption coefficients, respectively. We
assume that light speed is normalized to c = 1 to simplify (otherwise ω should be
replaced by c−1ω).

The Dirichlet-to-Neumann or density-to-current map is given in this setting by

Λω
γ,σ :

H
1
2 (∂X) → H−

1
2 (∂X)

f(x) 7→ Λω
γ,σ[f ](x) = γ(x)

∂u

∂ν
(x).

(8.36)
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With X = C2(X̄)×C0(X̄) and Y = L(H
1
2 (∂X), H−

1
2 (∂X)), we define the measurement

operator
Mω : X 3 (γ, σ) 7→Mω(γ, σ) = Λω

γ,σ ∈ Y. (8.37)

The measurement operator is parameterized by the (known) modulation frequency ω
and there are now two unknown coefficients γ and σ. Then we have the following result.

Theorem 8.4.1 Define the measurement operator Mω as in (8.37). Then for ω 6= 0,
we have that Mω is injective in the sense that Mω(γ, σ) = Mω(γ̃, σ̃) implies that (γ, σ) =
(γ̃, σ̃).

Moreover, we have the following logarithmic stability estimate:

‖γ(x)−γ′(x)‖L∞(X)+‖σ(x)−σ′(x)‖L∞(X) ≤ C
∣∣ log ‖Mω(γ, σ)−Mω(γ̃, σ̃)‖‖Y

∣∣−δ, (8.38)

for some δ > 0 provided that (γ, σ) and (γ̃, σ̃) are uniformly bounded in (Hs(X))2 for
some s > n

2
. Here, C depends on ω.

Let now ω = 0. Then M(γ, σ) = M(γ̃, σ̃) implies that

q :=
∆γ

1
2

γ
1
2

+
σ

γ
= q̃ :=

∆γ̃
1
2

γ̃
1
2

+
σ̃

γ̃
. (8.39)

and (γ, σ) are defined up to an arbitrary change of variables that leaves q above invariant.
Moreover, q above can reconstructed in H−1(X) as shown in the preceding sections and
hence in L∞(X) by interpolation.

Proof. The proof is very similar to that of Theorem 8.1.1. We mainly highlight the
differences. Let u be a solution of the above equation and v = γ

1
2u. We verify that

∆v = qωv, qω =
∆γ

1
2

γ
1
2

+
σ + iω

γ
.

Let us assume that ω 6= 0. Then knowledge of Λγ,σ yields knowledge of Λqω as before.
This uniquely determines qω and allows to obtain an error bound for qω− q̃ω in H−1(X).
The imaginary part of qω thus provides a reconstruction of γ in the same space, and
hence in L∞ by interpolation between H−1(X) and Hs(X) for s > n

2
. Since n ≥ 3, we

thus obtain an error in ∆γ
1
2 also in H−1, which then yields an error estimate for σ, also

in H−1(X). Again, by interpolation, we find a value of δ so that (8.38) holds. Note that
the value of δ is a priori worse than the one found for the Calderón problem since we
do not take advantage of solving an elliptic equation for γ

1
2 .

This concludes the proof when ω 6= 0. When ω = 0, then clearly we can reconstruct
q in (8.39) with the corresponding stability estimate. Now let us consider two couples
(γ, σ) and (γ̃, σ̃) such that (8.39) holds. From (8.9), we deduce that

Λγ,σ(f) = γ
1
2Λqγ

1
2

∣∣∣
∂X
f − ∂γ

∂ν

∣∣∣
∂X
γ

1
2

∣∣∣
∂X
f, f ∈ H

1
2 (∂X). (8.40)

Since we assume γ and ν · ∇γ known on ∂X, then we obtain that Λγ,σ = Λγ̃,σ̃. This
shows that the reconstruction of (γ, σ) is obtained up to any change of variables that
leaves q in (8.39) invariant.
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The above theorem shows that measurements in Optical Tomography with contin-
uous wave (CW) sources corresponding to ω = 0 do not guaranty uniqueness of the
reconstruction of (γ, σ). The injectivity of the measurement operator is restored when
ω 6= 0. However, as for the Calderón problem, the stability estimates are logarithmic
(and cannot fundamentally be improved; only the value of δ may not be optimal in the
above derivations).

8.5 Anisotropy and non-uniqueness

Let us return to the equation

Lγu(x) ≡ ∇ · γ(x)∇u(x) = 0 x ∈ X, u(x) = f(x) x ∈ ∂X, (8.41)

where now γ is a second-order symmetric tensor rather than a scalar coefficient.
We define the Dirichlet-to-Neumann as

Λγ :
H

1
2 (∂X) → H−

1
2 (∂X)

f(x) 7→ Λγ[f ](x) = ν · γ(x)∇u(x).
(8.42)

We have seen in the preceding section that the Dirichlet to Neumann map Λγ

uniquely determined a scalar coefficient γ. We now see that the reconstruction of the
tensor γ is not unique. In fact, for any γ compatible with a given λγ, we can construct
a very large family of tensors with the same Dirichlet-to-Neumann map.

Define F : X → X a diffeomorphism such that F∂X = Id, i.e., an arbitrary change
of variables that leaves every point at the boundary ∂X invariant. We then change
variables according to y = F (x). We then define the push-forward

v(y) = F∗u(y) := u ◦ F−1(y). (8.43)

In other words, v(y) = u(x). We also define JF (x) the Jacobian of the transformation

JF (x) = det(DF (x)) with the differential (DF )ij(x) =
(∂Fi
∂xj

(x)
)
ij
. (8.44)

We thus find that

u(x) = v ◦ F (x), ∇u(x) = (DF )t(x)∇v(F (x)), dy = Jf (x)dx.

Let us consider the Dirichlet form

Jγ(u) =

∫
X

γ∇u · ∇udx. (8.45)

The unique solution to (8.41) is also the unique minimizer to (8.45) in H1(X) such that

u = f in H
1
2 (∂X). Now, using the above change of variables, we find that

Jγ(u) =

∫
X

(DF )(x)γ(x)(DF )t(x)∇v(F (x)) · ∇v(F (x))dx

=

∫
X

(DF )(x)γ(x)(DF )t(x)

JF (x)

∣∣∣
x=F−1(y)

∇v(y) · ∇v(y)dy.
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Therefore, we obtain that the Dirichlet form is invariant by change of variables if:

Jγ(u) = JF∗γ(F∗u) if F∗γ(y) :=
(DF )(x)γ(x)(DF )t(x)

JF (x)

∣∣∣
x=F−1(y)

, (8.46)

the push-forward of γ by F . Therefore, we find that v = F∗u is the unique minimizer of

∇ · (F∗γ)(y)∇v(y) = 0 y ∈ X, v(y) = f(y) y ∈ ∂X,

since f(y) = f(F−1(y)) on ∂X. Now standard integrations by parts done earlier in this
chapter show that

Jγ(u) =

∫
∂X

Λγf(x)f(x)dµ(x) = JF∗γ(F∗u) =

∫
X

ΛF∗γf(y)f(y)dy.

By polarization, the above expression implies that

Λγ = ΛF∗γ. (8.47)

In other words, although the conductivities γ and F∗γ are different, the corresponding
Dirichlet-to-Neumann maps are equal. The Calderón problem with anisotropic conduc-
tivities is therefore not injective.

In dimension n = 2, it is known that the above changes of variables are the only
obstruction to injectivity. In other words, if two conductivities share the same Dirichlet-
to-Neumann operator, then there exists a diffeomorphism F such that one is the push-
forward by F of the other. In dimension n ≥ 3, this is known only in the case of
analytic conductivities. An outstanding open problem related to the Calderón problem
is whether such results still hold for (sufficiently smooth) conductivities.
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Chapter 9

Coupled-physics IP I:
Photo-acoustic Tomography and
Transient Elastography

Many inverse diffusion problems, including the Calderón problem, are modeled by mea-
surement operators that are injective but not very stable in the sense that the modulus
of continuity is logarithmic. The main reason for such a behavior is that solutions to
elliptic equations are very smooth away from where the singularities are generated. As
a consequence, singularities in the parameters do not propagate to strong, easily recog-
nizable, signals in the boundary measurements. High frequencies of the parameters are
still present in the measurements when the measurement operator is injective. However,
they have been exponentially attenuated and the inverse problem is then best described
as severely ill-posed and typically displays poor resolution capabilities. Imaging modali-
ties based on inverse diffusion problems are still useful because of the high contrast they
often display, for instance between healthy and non-healthy tissues in medical imaging.
Modalities such as Electrical Impedance Tomography and Optical Tomography may be
described as high contrast, low resolution modalities.

In applications where resolution is not paramount, the severe ill-posedness of inverse
diffusion problems might not be an issue. In many instances, however, high resolution
in the reconstruction is an important objective of the imaging modality. The remedy to
such a low resolution is to find methodologies that combine the high contrast modality
with another well-posed, high-resolution, inversion, such as for instance, those involving
inverse wave problems or inverse problems of integral geometry (such as the Radon
transform). In order for the combination to exist, we need to be sufficiently fortunate
that a measurable physical phenomenon couples the high resolution wave-like mechanism
with the high contrast elliptic-like phenomenon. Such examples exist in nature and give
rise to hybrid imaging techniques that couples the high contrast (but low-resolution)
of the diffusion-like equation with the high resolution (but often low contrast) of the
wave-like equation.

In this chapter and the next, we consider several such physical couplings. In this
chapter, we consider the coupling of optical waves with ultrasound in the so-called
photo-acoustic effect. This gives rise to a modality called Photo-acoustic Tomography
(PAT). We also consider the coupling of elastic waves with ultrasound in the modality
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called Transient Elastography (TE). TE and PAT are relatively similar mathematically
and both involve inverse problems with internal functionals.

In the next chapter, we consider another coupling of optical waves with ultrasound
called ultrasound modulation. Mathematically, this problem also gives rise to an inverse
problem with internal functionals, albeit one whose analysis is more complicated than
for TE and PAT.

9.1 Introduction to PAT and TE

9.1.1 Modeling of photoacoustic tomography

Photoacoustic tomography (PAT) is a hybrid medical imaging modality that combines
the high resolution of acoustic waves with the high contrast of optical waves. When a
body is exposed to short pulse radiation, typically emitted in the near infra-red spectrum
in PAT, it absorbs energy and expands thermo-elastically by a very small amount; this
is the photoacoustic effect. Such an expansion is sufficient to emit acoustic pulses, which
travel back to the boundary of the domain of interest where they are measured by arrays
of transducers.

Radiation propagation. The propagation of radiation in highly scattering media is
modeled by the following diffusion equation

1

c

∂

∂t
u−∇ · γ(x)∇u+ σ(x)u = 0, x ∈ X ⊂ Rn, t > 0

u = f x ∈ ∂X, t > 0
(9.1)

whereX is an open, bounded, connected domain in Rn with C1 boundary ∂X (embedded
in Rn), where n spatial dimension; c is light speed in tissues; γ(x) is a (scalar) diffusion
coefficient; and σ(x) is an absorption coefficient. Throughout the paper, we assume
that γ(x) and σ(x) are bounded from above and below by (strictly) positive constants.
The source of incoming radiation is prescribed by f(t, x) on the boundary ∂X and is
assumed to be a very short pulse supported on an interval of time (0, η) with cη of order
O(1).

Photoacoustic effect. As radiation propagates, a small fraction is absorbed. This
absorbed radiation generates a slight temperature increase, which results in a minute
mechanical expansion. The latter expansion is responsible for the emission of ultrasound,
which are measured at the domain’s boundary. The coupling between the optical and
ultrasonic waves is called the photo-acoustic effect. The amount of energy deposited
and transformed into acoustic energy is given by:

H(t, x) = Γ(x)σ(x)u(t, x),

where Γ(x) is the Grüneisen coefficient quantifying the photo-acoustic effect while
σ(x)u(t, x) is the density of absorbed radiation.
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A thermal expansion proportional to H results and acoustic waves are emitted. Such
waves are modeled by

1

c2
s(x)

∂2p

∂t2
−∆p =

∂

∂t
H(t, x), (t, x) ∈ R× Rn, (9.2)

with cs the sound speed. We assume here to simplify that the wave equation is posed
in the whole space Rn. This assumption is justified by the fact that waves propagating
away from the domain of interest are assumed not to interfere with the measurements
and by the fact that the measurement devices themselves do not modify the wave field.
In a typical measurement setting, the acoustic pressure p(t, x) is then measured on ∂X
as a function of time.

Since light travels much faster than sound with cs � c, we may assume for short
light pulses that radiation propagation occurs over a very short time at the scale of the
acoustic waves. This justifies the simplification:

H(t, x) ∼ H(x)δ0(t), H(x) = Γ(x)σ(x)

∫
R+

u(t, x)dt.

The acoustic signals are therefore modeled by the following wave equation

1

c2
s(x)

∂2p

∂t2
−∆p =

∂δ0(t)

∂t
H(x). (9.3)

We now set the sound speed to cs = 1 to simplify. The acoustic pressure p(t, x) is then
measured on ∂X as a function of time. Assuming a system at rest so that p(t, x) = 0
for t < 0, the wave equation may then be recast as the following equation:

∂2p

∂t2
−∆p = 0, t > 0, x ∈ Rn

p(0, x) = H(x), x ∈ Rn

∂tp(0, x) = 0, x ∈ Rn.

(9.4)

Exercise 9.1.1 Show that under the above simplifying assumptions, (9.3) formally leads
to the initial value problem (9.4).

We retrieve the wave equation with unknown source term H(x) given by

H(x) = Γ(x)σ(x)u(x), u(x) =

∫
R+

u(t, x)dt, (9.5)

where u(x) is the total intensity of radiation reaching a point x integrated over the time
span of the radiation pulse, and thus satisfies the equation

−∇ · γ(x)∇u+ σ(x)u = 0, x ∈ X ⊂ Rn,

u = f x ∈ ∂X,
(9.6)

where f(x) =
∫
R+ f(t, x)dt is the spatial density of photons emitted into the domain.
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9.1.2 First step: Inverse wave source problem

The first step in PAT consists of reconstructing H(x) from available ultrasound mea-
surements. Two different settings of ultrasound measurements are considered now.

Inverse wave problem with boundary measurements. The reconstruction of
H(x) in (9.4) from a measurement operator given by MH(t, x) = p(t, x)|∂X was con-
sidered in Chapter 4. Several explicit reconstruction formulas were presented there,
including (5.35) and the reconstruction procedure in the Fourier domain presented in
section 5.3.2.

Inverse waves problem with planar measurements. Other measurement settings
than point measurements have been considered in practice. One major issue with point
measurements such as those considered above is that the acoustic signal is typically
rather weak and thus difficult to measure accurately. An alternative to such point
measurements is to consider planar detectors, which integrate the pressure field over a
larger domain and thus become less sensitive to noise.

Consider the setting of (9.2) with f(x) = H(x) an unknown source term. Let P (s, ω)
for s ∈ R and ω ∈ S2 be the plane of points x ∈ R3 such that x · ω = s. Then we recall
that the three-dimensional Radon transform of a function is defined as

Rf(s, ω) =

∫
R3

f(x)δ(s− x · ω)dx =

∫
P (s,ω)

f(x)dµ(x),

where dµ(x) is the surface measure on the plane P (s, ω). We thus obtain that the
measurements are given as a function of time t and angle ω by

f 7→M3f(t, ω) = Rp(1, ω, t), t > 0, ω ∈ S2.

Again, we have in the Fourier domain the Fourier slice theorem

R̂f(σ, ω) = f̂(σω),

from which combined with the following representation of the Laplace operator

−∆ = F−1
ξ→x|ξ|

2Fx→ξ,

we deduce the intertwining property of the Radon transform and the Laplacian:

R∆f(s, ω) =
∂2

∂s2
Rf(s, ω).

This property holds for smooth functions that decay sufficiently fast at infinity and by
extension to a large class of distributions.

Thus (9.2) can be recast for Rp(s, ω, t) as

∂2Rp

∂t2
− ∂2Rp

∂s2
= 0, t > 0, s ∈ R, ω ∈ S2

with conditions ∂tRp(s, ω, 0) = 0 and Rp(s, ω, 0) = Rf(s, ω).
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This is a one-dimensional wave equation, whose unique solution is given by

Rp(s, ω, t) =
1

2

(
Rp(s+ t, ω, 0) +Rp(s− t, ω, 0)

)
=

1

2

(
Rf(s+ t, ω) +Rf(s− t, ω)

)
.

For the planes tangent to the unit sphere, s = 1, while t > 0. Then Rf(t + s, ω) = 0
since f is supported inside the ball of radius 1 so that Rf(s, ω) = 0 for |s| ≥ 1. Thus for
0 < t < 2, we have

Rf(1− t, ω) = 2Rp(1, ω, t) = 2M3f(t, ω).

Up to a slight smooth change of variables, the data are therefore the three-dimensional
Radon transform of f, i.e., the integral of f along all possible hyperplanes (passing
through the support of f).

We recall the explicit inversion of the Radon transform:

f(x) =
−1

8π2
R∗

∂2

∂s2
Rf(x) =

−1

8π2

∫
S2

( ∂2

∂s2
Rf
)
(x · ω, ω)dω.

The Radon transform is injective and stable as we saw in Chapter 2. We have the
following stability result:

√
2‖f‖Hs(R3) ≤ ‖M3f‖Hs+1(Z), (9.7)

where Z = R× S2 and Hs(Z) is defined in Chapter 2.

Remarks on the first step of PAT. The inverse wave source problems considered
here are therefore well posed problems. When ultrasound is measured with sufficient
precision, then the reconstruction of the initial condition H(x) = f(x) is stable.

9.1.3 Second step: Inverse problems with internal functionals

Once the first step of PAT is satisfactorily performed, a second step consists of recon-
structing the unknown coefficients (γ(x), σ(x),Γ(x)) from knowledge of internal func-
tionals of the form

Hj(x) = Γ(x)σ(x)uj(x), 1 ≤ j ≤ J, (9.8)

for J ∈ N∗ illumination maps fj(x), where uj is the solution to the steady-state equation

−∇ · γ(x)∇uj + σ(x)uj = 0, x ∈ X ⊂ Rn,

uj = fj x ∈ ∂X.
(9.9)

This second step of PAT is sometimes called quantitative photoacoustic tomography
(QPAT). Indeed, the reconstruction of Hj(x) in (9.8) offers important information about
the unknown coefficients but depends on the illumination fj used to probe the domain
of interest and cannot be used to quantify intrinsic properties of the parameters. The
second step of PAT aims to provide quantitative statements on the unknown parameters
(γ(x), σ(x),Γ(x)).
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Throughout the paper, we assume that the coefficients in (9.9) are known at the
domain’s boundary ∂X. Our objective is to reconstruct them in X. Formally, the
measurement operator in QPAT is therefore

(γ(x), σ(x),Γ(x)) 7→M(γ(x), σ(x),Γ(x)) = (Hj(x))1≤j≤J .

One of the main theoretical results about QPAT is that, unfortunately, no matter
how large J and the illuminations fj may be chosen, we cannot reconstruct all of
(γ(x), σ(x),Γ(x)) uniquely from QPAT measurements of the form (9.8). In other words,
M is not injective. However, as we shall see, as soon as one of the coefficients is as-
sumed to be known, then the restriction of M in this setting is injective and enjoys good
(Lipschitz or Hölder) stability properties.

9.1.4 Reconstruction of one coefficient.

We conclude this introductory section by a simpler problem: the reconstruction of one
coefficient in (γ(x), σ(x),Γ(x)) when the other two coefficients are known. In practice, it
is not uncommon as a first approximation to assume that Γ and γ are known, at least ap-
proximatively. Then the important absorption coefficient σ (for instance to reconstruct
the oxygenation properties of human tissues) is uniquely and stably determined.

(i) When only Γ is unknown, then we solve (9.9) for u and then construct Γ =
H

σu
.

(ii) When only σ is unknown, then we solve the following elliptic equation for u

−∇ · γ∇u(x) +
H

Γ
= 0, in X

u(x) = f(x), on ∂X
, (9.10)

and then evaluate σ =
H

Γu
.

Exercise 9.1.2 Assume that f is uniformly bounded above and below by positive con-
stants. Show that the reconstruction of σ is Lipschitz-stable in L∞(X), i.e., that

‖σ − σ̃‖L∞(X) ≤ C‖H − H̃‖L∞(X), (9.11)

where H̃ is acquired as in (9.8)-(9.9) with σ replaced by σ̃.

(iii) When only γ is unknown, we obtain u = H
σΓ

and then the above elliptic equation
in (9.10) with γ|∂X known is a transport equation for γ. As soon as β := ∇u is a
sufficiently smooth, non-vanishing vector field, then γ is uniquely determined by the
linear equation

∇ · γβ = β · ∇γ + (∇ · β)γ =
H

Γ
, in X

γ(x) = γ|∂X(x), on ∂X.
(9.12)

This transport equation will be analyzed in more detail later in the chapter.
What the above results say is that the reconstruction of the optical coefficients is

relatively straightforward when two out of the three are already known. The interest of
the QPAT theory resides in the fact that the acquisition of more measurements in fact
allows us to (uniquely and stably) reconstruct two coefficients but not three.
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9.1.5 Introduction to Transient Elastography

Transient elastography images the (slow) propagation of shear waves using ultrasound.
For more details, see, e.g., [43] and its extended list of references. As shear waves
propagate, the resulting displacements can be imaged by ultra-fast ultrasound. Consider
a scalar approximation of the equations of elasticity

∇ · γ(x)∇u(x, t) = ρ(x)∂ttu(x, t), t ∈ R, x ∈ X

u(x, t) = f(x, t), t ∈ R, x ∈ ∂X,
(9.13)

where u(x, t) is the (say, downward) displacement, γ(x) is one of the Lamé parameters
and ρ(x) is density. Using ultra-fast ultrasound measurements, the displacement u(x, t)
can be imaged. This results in a very simplified model of transient elastography where
we aim to reconstruct (γ, ρ) from knowledge of u(x, t); see [43] for more complex models.
We may slightly generalize the model as follows. Upon taking Fourier transforms in the
time domain and accounting for possible dispersive effects of the tissues, we obtain

∇ · γ(x;ω)∇u(x;ω) + ω2ρ(x;ω)u(xω) = 0, ω ∈ R, x ∈ X

u(x;ω) = f(x;ω), ω ∈ R, x ∈ ∂X.
(9.14)

The inverse transient elastography problem with dispersion effect would then be the
reconstruction of (γ(x;ω), ρ(x;ω)) from knowledge of u(x;ω) corresponding to one or
several boundary conditions f(x;ω) applied at the boundary ∂X.

This corresponds to the setting of PAT with Γσ = 1 so that H = u. As in PAT,
H is an internal functional of the unknown coefficients (γ, ρ). The role of quantitative
transient elastography (QTE) is therefore to reconstruct (γ, ρ) from knowledge of one
or several internal functionals of the form H = u.

9.2 Theory of quantitative PAT and TE

Let us come back to the general theory of photo-acoustic tomography and transient
elastic tomography. The two mathematical problems are quite similar. For concreteness,
we first focus on the PAT setting and next state how the results should be modified to
solve the TE problem.

9.2.1 Uniqueness and stability results in QPAT

We have seen above that one coefficient in (γ, σ,Γ) could be uniquely reconstructed
from one internal functional H provided that the other two coefficients were known.
It turns out that two coefficients in (γ, σ,Γ) can also be uniquely (and stably) be re-
constructed from two (well-chosen) internal functionals Hj, j = 1, 2 provided that the
third coefficient is known. However, these two internal functionals (H1, H2) uniquely
determine any internal functional H3 obtained by using an arbitrary illumination f3 on
∂X. Moreover, the two internal functionals (H1, H2) uniquely characterize two explicit
functionals of (γ, σ,Γ) that do not allow us to reconstruct all parameters in (γ, σ,Γ)
uniquely.
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Measurement operator in QPAT. We have mentioned above the notion of well-
chosen internal functionals Hj, j = 1, 2, or equivalently well-chosen illuminations fj,
j = 1, 2 on ∂X since the different functions Hj are characterized by the probing fj on

∂X. To make precise statements, we introduce some notation. For f ∈ H
1
2 (∂X), we

obtain a solution u ∈ H1(X) of (9.9) and we can define the internal functional operator

H(γ,σ,Γ) :
H

1
2 (∂X) → H1(X)

f 7→ H(γ,σ,Γ)f = Γ(x)σ(x)u(x).
(9.15)

Let I ∈ N∗ and fi ∈ H
1
2 (∂X) for 1 ≤ i ≤ I be a given set of I boundary conditions.

Define f = (f1, . . . , fI). The measurement operator Mf is then defined as the following
collection of internal functionals:

Mf :
X → YI

(γ, σ,Γ) 7→ Mf(γ, σ,Γ) = (H(γ,σ,Γ)f1, . . . ,H(γ,σ,Γ)fI).
(9.16)

Here, X is a subset of a Banach space in which the unknown coefficients are defined; see
(H1) below). Also Y is a subset of H1(X) where the solutions to (9.9) are defined. We
also define Hj = H(γ,σ,Γ)fj for 1 ≤ j ≤ I.

Assumptions on the coefficients and the illuminations. Here are now some
mathematical assumptions on the coefficients and a definition of illuminations that we
call well-chosen. Here and below, we denote by Wm,p(X) the space of functions with
derivatives of order less than or equal to m belonging to Lp(X).

(H1). We denote by X the set of coefficients (γ, σ,Γ) that are of class W 1,∞(X),
are bounded above and below by fixed positive constants, and such that the traces
(γ, σ,Γ)|∂X on the boundary ∂X are fixed (known) functions.

(H2). The illuminations fj are positive functions on ∂X that are the restrictions on
∂X of functions of class C3(X̄).

(H3). We say that f2 = (f1, f2) is a pair of well-chosen illuminations with corresponding
functionals (H1, H2) = (H(γ,σ,Γ)f1,H(γ,σ,Γ)f2) provided that (H2) is satisfied and the
vector field

β := H1∇H2 −H2∇H1 = H2
1∇

H2

H1

= H2
1∇

u2

u1

= −H2
2∇

H1

H2

(9.17)

is a vector field in W 1,∞(X) such that

|β|(x) ≥ α0 > 0, a.e. x ∈ X. (9.18)

(H3’). We say that f2 = (f1, f2) is a pair of weakly well-chosen illuminations with cor-
responding functionals (H1, H2) = (H(γ,σ,Γ)f1,H(γ,σ,Γ)f2) provided that (H2) is satisfied
and the vector field β defined in (9.17) is in W 1,∞(X) and β 6= 0 a.e. in X.
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Remark 9.2.1 Note that (H3’) is satisfied as soon as f1
f2
6= C is not a constant. Indeed,

if β = 0 on a set of positive measure, then ∇u2
u1

= 0 on that same set. Yet, u2
u1

solves the
elliptic equation (9.20) below. It is known that under sufficient smoothness conditions on
the coefficients, the critical points of solutions to such elliptic equations are of measure
zero unless these solutions are constant [35, 49].

Uniqueness/Non-uniqueness result. Hypothesis (H3) will be useful in the anal-
ysis of the stability of the reconstructions. For the uniqueness result, the weaker hy-
pothesis (H3’) is sufficient. Note that almost all illumination pairs f2 satisfy (H3’),
which is a mere regularity statement. Beyond the regularity assumptions on (γ, σ,Γ),
the domain X, and the boundary conditions fj, the only real assumption we impose is
thus (9.18). In general, there is no guaranty that the gradient of u2

u1
does not vanish.

Not all pairs of illuminations f2 = (f1, f2) are well-chosen although most are weakly
well-chosen. That the vector field β does not vanish is a sufficient condition for the
stability estimates presented below to be satisfied. It is not necessary. As we shall see,
guaranteeing (9.18) is relatively straightforward in dimension n = 2. It is much compli-
cated in dimension n ≥ 3. The only available methodology to ensure that (9.18) holds
for a large class of conductivities is based on the same method of complex geometric
optics (CGO) solutions already used to solve the Calderón problem in Chapter 7.

Under these hypotheses, we obtain the following result:

Theorem 9.2.2 Let X be defined as in (H1) and let f2 be well chosen illuminations as
indicated in (H2) and (H3’). Let I ∈ N∗ and f = (f1, . . . , fI) be a set of (arbitrary)
illuminations satisfying (H2). Then we have the following:

(i). The measurement operator Mf2 uniquely determines Mf (meant in the sense that
Mf2(γ, σ,Γ) = Mf2(γ̃, σ̃, Γ̃) implies that Mf(γ, σ,Γ) = Mf(γ̃, σ̃, Γ̃)).

(ii). The measurement operator Mf2 uniquely determines the two following functionals
of (γ, σ,Γ) (meant in the same sense as above):

χ(x) :=

√
γ

Γσ
(x), q(x) :=

(∆
√
γ

√
γ

+
σ

γ

)
(x). (9.19)

(iii). Knowledge of the two functionals χ and q uniquely determines (in the same sense
as above) Mf2 = (H1, H2). In other words, the reconstruction of (γ, σ,Γ) is unique up
to any transformation that leaves (χ, q) invariant.

Proof. Let us start with (i). Upon multiplying the equation for u1 by u2, the equation
for u2 by u1, and subtracting both relations, we obtain

−∇ · (γu2
1)∇H2

H1

= 0, in X

γu2
1 = γ|∂Xf

2
1 , on ∂X.

(9.20)

This is a transport equation in conservative form for γu2
1. More precisely, this is a

transport equation ∇ · ρβ̃ = 0 for ρ with ρ|∂X = 1 and

β̃ = χ2β = (γu2
1)∇H2

H1

.
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Since β̃ ∈ W 1,∞(X) and is divergence free, the above equation for ρ admits the unique
solution ρ ≡ 1 since (9.18) holds. Indeed, we find that ∇ · (ρ− 1)2β̃ = 0 by application
of the chain rule with ρ|∂X − 1 = 0 on ∂X. Upon multiplying the equation by H2

H1
and

integrating by parts, we find∫
X

(ρ− 1)2χ2H2
1

∣∣∣∇H2

H1

∣∣∣2dx = 0.

Using (H3’) and the result of remark 9.2.1, we deduce that ρ = 1 on X by continuity.
This proves that γu2

1 is uniquely determined. Dividing by H2
1 = (Γσ)2u2

1, this implies
that χ > 0 defined in (9.19) is uniquely determined. Note that we do not need the full
W 1,∞(X) regularity of β in order to obtain the above result. However, we still need to
be able to apply the chain rule to obtain an equation for (ρ− 1)2 and conclude that the
solution to the transport equation is unique.

Let now f be an arbitrary boundary condition and let u be the solution to (9.9) and
H = H(γ,σ,Γ)f defined by (9.8). Replacing H2 above by H yields

−∇ · χ2H2
1∇

H

H1

= 0, in X

H = Γ|∂Xσ|∂Xf, on ∂X.

(9.21)

This is a well-defined elliptic equation with a unique solution H ∈ H1(X) for f ∈
H

1
2 (∂X). This proves that H = H(γ,σ,Γ)f is uniquely determined by (H1, H2) and

concludes the proof of (i).
Let us next prove (ii). We have already seen that χ was determined by Mf2 =

(H1, H2). Define now v =
√
γu1, which is also uniquely determined based on the results

in (i). Define

q =
∆v

v
=

∆(
√
γu1)

√
Du1

,

which is the Liouville change of variables used in Chapter 7 to solve the Calderón
problem. Since u1 is bounded from below, is sufficiently smooth, and solves (9.9), the
following calculations show that q is given by (9.19). Indeed, we find that

∇ · γ∇u1 = ∇ · (√γ∇v)−∇ · ((∇√γ)v) =
√
γ∆v − (∆

√
γ)v = σu1 =

σ
√
γ
v. (9.22)

Finally, we prove (iii). Since q is now known, we can solve

(∆− q)vj = 0, X, vj =
√
γ|∂Xgj ∂X, j = 1, 2.

Because q is of the specific form (9.19) as a prescribed functional of (γ, σ,Γ), it is known
that (∆ − q) does not admit 0 as a (Dirichlet) eigenvalue, for otherwise, 0 would also
be a (Dirichlet) eigenvalue of the elliptic operator

(−∇ · γ∇+ σ)· = (−√γ(∆− q)√γ) · . (9.23)

The latter calculation follows from (9.22). Thus vj is uniquely determined for j = 1, 2.
Now,

Hj = Γσuj =
Γσ
√
γ
vj =

vj
χ
, j = 1, 2,

and is therefore uniquely determined by (χ, q). This concludes the proof that (χ, q)
uniquely determines Mf2 .
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Reconstruction of two coefficients. The above result shows that the unique recon-
struction of (γ, σ,Γ) is not possible even from knowledge of a measurement operator Mf

corresponding to an arbitrary (in fact possibly infinite) number of internal functionals
I. We therefore face this peculiar situation that two well-chosen illuminations uniquely
determine the functionals (χ, q) but that acquiring additional measurements does not
provide any new information.

However, we can prove the following positive result that if one of the coefficients in
(γ, σ,Γ) is known, then the other two coefficients are uniquely determined.

Corollary 9.2.3 Under the hypotheses of the previous theorem, let (χ, q) in (9.19) be
known. Then

(a) If Γ is known, then (γ, σ) are uniquely determined.

(b) If γ is known, then (σ,Γ) are uniquely determined.

(c) If σ is known, then (γ,Γ) are uniquely determined.

Proof. (a) is probably the most practical case as Γ is often assumed to be constant
or known. Since Γ is known, then so is Γχ =

√
γ/σ so that we have the elliptic equation

for
√
γ:

(∆− q)√γ +
1

Γχ
= 0, X,

√
γ|∂X =

√
γ|∂X , ∂X. (9.24)

Again, because of the specific form of q, (∆ − q) is invertible and the above equation

admits a unique solution. Once
√
γ, hence γ, is known, then so is σ =

√
γ

Γχ
.

If γ is known in (b), then σ is known from q and Γ is known from χ.

Finally in (c), we obtain that from the expression for q that

√
γ(∆− q)√γ + σ = 0 X,

√
γ|∂X =

√
γ|∂X , ∂X. (9.25)

We need to prove a uniqueness result for the above nonlinear equation for
√
γ. Let us

assume that
√
γ and another solution τ

√
γ for 0 < τ(x) satisfy the above equation for

σ fixed. We have

−√γ(∆− q)√γτ − σ

τ
= 0 X.

Thanks to (9.23), this implies the following equation for τ :

−∇ · γ∇τ + σ(τ − 1

τ
) = 0, X, τ = 1, ∂X.

Upon multiplying by τ − 1 and integrating by parts, we find that∫
X

γ|∇(τ − 1)|2dx+

∫
X

σ|τ − 1|2 τ + 1

τ
dx = 0.

Since τ > 0, we deduce from the above that τ ≡ 1 and that γ is uniquely determined
by q. We then retrieve Γ from knowledge of χ.
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Reconstruction formulas. Note that the above uniqueness results provide a con-
structive reconstruction procedure. In all cases, we first need to solve a transport equa-
tion for the functional χ:

−∇ · (χ2β) = 0 in X, χ|∂X known on ∂X, (9.26)

with β the vector field defined in (9.17). This uniquely defines χ > 0. Then we find
that

q(x) =
∆(H1χ)

H1χ
=

∆(H2χ)

H2χ
. (9.27)

This provides explicit reconstructions for (χ, q). In case (b), no further equation needs
to be solved. In cases (a) and (c), we need to solve an elliptic equation for

√
γ, which is

the linear equation (9.24) in (a) and the nonlinear equation (9.25) in (c). These steps
have been implemented numerically with very satisfactory results in [17].

Stability of the solution of the transport equation for χ(x). We now derive
a stability result for the reconstruction of χ obtained from analyzing the transport
equation (9.20). Similar stability results can be obtained for q and then for (γ, σ,Γ)
depending on the reconstruction considered.

Theorem 9.2.4 Let Mf2(γ, σ,Γ) = (H1, H2) be the measurements corresponding to the
coefficients (γ, σ,Γ) such that (H1), (H2), (H3) hold. Let Mf2(γ̃, σ̃, Γ̃) = (H̃1, H̃2) be
the measurements corresponding to the same illuminations f2 = (f1, f2) with another
set of coefficients (γ̃, σ̃, Γ̃) such that (H1), (H2) hold. Define δMf2 = Mf2(γ̃, σ̃, Γ̃) −
Mf2(γ, σ,Γ).Then we find that

‖χ− χ̃‖Lp(X) ≤ C‖δMf2‖
1
2

(W 1,
p
2 (X))2

, for all 2 ≤ p <∞. (9.28)

Let us assume, moreover, that γ(x) is of class C3(X̄). Then we have the estimate

‖χ− χ̃‖Lp(X) ≤ C‖δMf2‖
1
3

(L
p
2 (X))2

, for all 2 ≤ p <∞. (9.29)

By interpolation, the latter result implies that

‖χ− χ̃‖L∞(X) ≤ C‖δMf2‖
p

3(d+p)

(L
p
2 (X))2

, for all 2 ≤ p <∞. (9.30)

We may for instance choose p = 4 above to measure the noise level in the measurement
Mf2 in the square integrable norm when noise is described by its power spectrum in the
Fourier domain.

Proof. Define ν = χ2 and ν̃ = χ̃2 with χ defined in (9.19) and β and β̃ as in (9.17).
Then we find that

∇ · ν − ν̃
ν

(νβ) +∇ · ν̃(β − β̃) = 0.

Note that νβ = χ2H2
1∇H2

H1
is a divergence-free field. Let ϕ be a twice differentiable,

non-negative, function from R to R with ϕ(0) = ϕ′(0) = 0. Then we find that

∇ · ϕ
(ν − ν̃

ν

)
(νβ) + ϕ′

(ν − ν̃
ν

)
∇ · ν̃(β − β̃) = 0.
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Let us multiply this equation by a test function ζ ∈ H1(X) and integrate by parts.
Since ν = ν ′ on ∂X, we find∫

X

ϕ
(ν − ν̃

ν

)
νβ · ∇ζdx+

∫
X

ν̃(β − β̃)∇ ·
[
ζϕ′
(ν − ν̃

ν

)]
dx = 0.

Upon choosing ζ = H2

H1
, we find∫

X

ϕνH2
1

∣∣∣∇H2

H1

∣∣∣2dx+

∫
X

ν̃(β − β̃) · ∇H2

H1

ϕ′dx+

∫
X

ν̃(β − β̃) · ∇ν − ν̃
ν

H2

H1

ϕ′′dx = 0.

Above, ϕ stands for ϕ(ν−ν̃
ν

) in all integrals. By assumption on the coefficients, ∇ν−ν̃
ν

is bounded a.e.. This is one of our main motivations for assuming that the optical
coefficients are Lipschitz. The middle term is seen to be smaller than the third term
and so we focus on the latter one. Upon taking ϕ(x) = |x|p for p ≥ 2 and using
assumption (H3), we find that

‖ν − ν̃‖pLp(X) ≤ C

∫
X

|β − β̃||ν − ν̃|p−2dx.

By an application of the Hölder inequality, we deduce that

‖ν − ν̃‖Lp(X) ≤ C‖β − β̃‖
1
2

L
p
2 (X)

.

We next write β− β̃ = (H1− H̃1)∇H2 + H̃1(∇(H2− H̃2)− . . . and use the fact that the
solutions to (9.9) and the coefficients are in W 1,∞(X) to conclude that (9.28) holds.

The other results are obtained by regularity theory and interpolation. Indeed from
standard regularity results with coefficients in W 1,∞(X), we find that the solutions to
(9.9) are of class W 3,q(X) for all 1 ≤ q < ∞. Since the coefficient γ is of class C3(X̄),
then the measurements Hj are of class W 3,q(X) for all 1 ≤ q < ∞. Standard Sobolev
estimates show that

‖Hj − H̃j‖W 1,q(X) ≤ C‖Hj − H̃j‖
2
3

Lq(X)‖Hj − H̃j‖
1
3

W 3,q(X).

The last term is bounded by a constant, which gives (9.29) for q = p
2
. Another interpo-

lation result states that

‖ϕ‖∞ ≤ ‖∇ϕ‖θ∞‖ϕ‖1−θ
p , θ =

d

d+ p
.

This provides the stability result in the uniform norm (9.30).

Exercise 9.2.1 Find similar stability estimates for q and (γ, σ,Γ) in the different set-
tings considered in Corollary 9.2.3 and in section 9.1.4.

9.2.2 Application to Quantitative Transient Elastography

We can apply the above results to the time-harmonic reconstruction in a simplified
model of transient elastography. Let us assume that γ and ρ are unknown functions of
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x ∈ X and ω ∈ R. Recall that the displacement solves (9.14). Assuming that u(x;ω)
is known after step 1 of the reconstruction using the ultrasound measurements, then
we are in the setting of Theorem 9.2.2 with Γσ = 1. Let us then assume that the two
illuminations f1(x;ω) and f2(x;ω) are chosen such that for u1 and u2 the corresponding
solutions of (9.14), we have that (H3’) holds. Then, (9.19) shows that the reconstructed
function χ uniquely determines the Lamé parameter γ(x;ω) and that the reconstructed
function q then uniquely determines ω2ρ and hence the density parameter ρ(x;ω). The
reconstructions are performed for each frequency ω independently. We may summarize
this as follows:

Corollary 9.2.5 Under the hypotheses Theorem 9.2.2 and the hypotheses described
above, let (χ, q) in (9.19) be known. Then (γ(x;ω), ρ(x;ω)) are uniquely determined
by two well-chosen measurements. Moreover, if (H3) holds, the stability results in The-
orem 9.2.4 hold.

Alternatively, we may assume that in a given range of frequencies, γ(x) and ρ(x)
are independent of ω. In such a setting, we expect that one measurement u(x;ω) for
two different frequencies will provide sufficient information to reconstruct (γ(x), ρ(x)).
Assume that u(x;ω) is known for ω = ωj, j = 1, 2 and define 0 < α = ω2

2ω
−2
1 6= 1. Then

straightforward calculations show that

∇ · γβα = 0, βα =
(
u1∇u2 − αu2∇u1). (9.31)

This provides a transport equation for γ that can be solved stably provided that |βα| ≥
c0 > 0, i.e., a hypothesis of the form (H3) applies and βα does not vanish on X. Then,
Theorem 9.2.2 and Theorem 9.2.4 apply in this setting.

9.3 Well-chosen illuminations in PAT and TE

The stability results presented for QPAT and QTE involve well-chosen illuminations so
that (H3) and (9.18) hold. Such a constraint is clearly not satisfied for all possible pairs
(f1, f2). In two dimensions of space, i.e., when n = 2, a very large class of illuminations
can be proved to be well-chosen. In dimensions n ≥ 3, the proofs are much more
complicated and involve the CGO solutions constructed in Chapter 7.

9.3.1 The two dimensional case

In dimension n = 2, we have:

Lemma 9.3.1 Assume that h = f2
f1

on ∂X is an almost two-to-one function, i.e., a
function that is a two-to-one map except possibly at its minimum and at its maximum.
Then (9.18) is satisfied.

Proof. Upon multiplying the equation for u1 by u2, the equation for u2 by u1, and
subtracting both relations, we obtain

−∇ · (γu2
1)∇u2

u1

= 0, in X
u2

u1

=
f2

f1

, on ∂X. (9.32)



9.3. WELL-CHOSEN ILLUMINATIONS IN PAT AND TE 169

This implies that υ := u2
u1

satisfies an elliptic equation with a diffusion coefficient γ̃ = γu2
1

bounded from above and below by positive constants. Note that β = H2
1∇υ. Results

in, e.g., [2, Theorem 1.2] show that ∇υ cannot vanish inside X. In other words, υ does
not admit any critical point. By the maximum principle and the assumption on h, no
critical point of υ can occur on ∂X either. This implies that |∇υ| > 0 and that we can
find a constant such that (9.18) holds since H2

1 is bounded from below by a positive
constant and by continuity |∇υ| attains its (strictly positive) minimum in X̄.

9.3.2 The n dimensional case

In dimension n ≥ 3, the above result on the (absence of) critical points of elliptic
solutions no longer holds. However, by continuity, we may verify that (9.18) is satisfied
for a large class of illuminations when γ is close to a constant and σ is sufficiently small.
For arbitrary coefficients (γ, σ) in dimension n ≥ 3, the only available proof that (9.18)
is satisfied for an open set of illuminations is the one obtained by means of complex
geometrical optics solutions; see [21]. The main result is:

Theorem 9.3.2 Let (H1) hold. Then there is an open set in C3(∂X) of illuminations
f2 = (f1, f2) such that (H3) holds.

The open set, unlike the result obtained in two dimensions in Lemma 9.3.1, is not
explicitly constructed.

Proof. Let us consider the elliptic equation (9.6). In chapter 7, we have constructed
solutions of the form

u%(x) =
1
√
γ
e%·x
(
1 + ψ%(x)

)
, (9.33)

with |%|ψ%(x) bounded uniformly in Hs(X) for arbitrary s ≥ 0 provided that γ and σ
are sufficiently smooth coefficients. Using the construction of Chapter 7, we can prove
the following lemma:

Lemma 9.3.3 Let u%j for j = 1, 2 be CGO solutions with (γ, σ) sufficiently smooth for
both %j and k ≥ 1 and with c−1

0 |%1| ≤ |%2| ≤ c0|%1| for some c0 > 0. Then we have

β̂ :=
1

2|%1|
e−(%1+%2)·x

(
u%1∇u%2 − u%2∇u%1

)
=
%1 − %2

2|%1|
+ ĥ, (9.34)

where the vector field ĥ satisfies the constraint

‖ĥ‖Ck(X̄) ≤
C0

|%1|
, (9.35)

for some constant C0 independent of %j, j = 1, 2.

Exercise 9.3.1 Prove the above lemma using the results obtained in Chapter 7.

With %2 = %1 so that u%2 = u%1 , the imaginary part of (9.34) is a vector field that does
not vanish on X for |%1| sufficiently large. Moreover, let u%1 = v + iw and u%2 = v − iw
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for v and w real-valued functions. Then the imaginary and real parts of (9.34) are given
by

=β̂ =
1

|%1|
e−2<%1·x(w∇v − v∇w) =

=%1

|%1|
+ =ĥ, <β̂ = 0.

Let u1 and u2 be solutions of the elliptic problem (9.6) on X such that u1 + iu2 on ∂X
is close (in the C3(∂X) (strong) topology) to the trace of u%1 . The above result shows
that

|u1∇u2 − u2∇u1| ≥ c0 > 0 in X.

This yields (9.18) and the proof of the theorem.
The set of illuminations f2 = (f1, f2) for which (9.18) is guaranteed is not known

explicitly. All we know is that if f2 is chosen sufficiently close to the traces of CGO
solutions constructed above, then indeed the vector field β will satisfy (9.18). One
major drawback with such a result is that the CGO solutions depend on the unknown
coefficient (γ, σ). That said, there does exist an open set of illuminations f2 such that
(9.18) holds.

This result should be contrasted with the case in two dimensions, where we were
able to prove that (9.18) held for a very large class of (non-oscillatory) illuminations f2.

9.4 The case of anisotropic coefficients

9.4.1 Linear algebra problem

We saw in the analysis of the Calderón problem that anisotropic coefficients could not
be uniquely reconstructed from boundary measurements. The setting of PAT or TE is
different since the first step of the reconstruction provides internal information, including
where ‘each point x really is’. It turns out that much more information is available on
the coefficients in PAT and TE than in elliptic boundary inverse problems.

We consider the most general second-order scalar elliptic equation (with real-valued
coefficients to simplify the presentation)

Lu := ∇ · a∇u+ b · ∇u+ cu = 0 in X, u = f on ∂X.

Let us assume that we have made In measurements Hj of the PAT or TE type, with In
large enough. Our measurements are linear in u so that ratios of measurements gives
for known vj = uj+1/u1 the following equations:

∇ · u2
1a∇vj + u2

1b · ∇vj = 0, α : ∇⊗2vj + β · ∇vj = 0

where we have defined α = u2
1a and β = u2

1b+∇· (u2
1a). It is clear that we can multiply

the last equation by τ so that α and β can be reconstructed only up to multiplication
by a scalar coefficient. This is what we now do.

We assume the construction of vj such that (∇v1, . . . ,∇vn) form a local frame (locally
a basis at each point x). Define Hjk = ∇vj · ∇vk the symmetric invertible matrix with
inverse given by coefficients denoted by Hjk. For m ≥ 1, we can decompose any other
gradient as

−∇vn+m = θ̃mj∇vj, θ̃mj = −Hjk∇vn+m · ∇vk.
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Define now θjm equal to θ̃jm for 1 ≤ j ≤ n, equal to 1 for j = m + n, and equal to 0
otherwise. The construction is made so that

In−1∑
j=1

θjm∇vj = 0.

Define next the matrices

Mm =
∑
j

θjm∇⊗2vj, 1 ≤ m ≤ 1

2
n(n+ 1)− 1.

We assume that the matrices so constructed as linearly independent and hence form
a span of dimension 1

2
n(n + 1) − 1 in the space of symmetric matrices. This is the

dimension of the space of such matrices minus 1. We therefore deduce the existence of
a matrix M0 such that

Mm : M0 = tr(MmM0) = δm0, 0 ≤ m ≤ 1

2
n(n+ 1)− 1.

We define α = M0 since we know that the latter tensor can only be defined up to
multiplication by a scalar constant.

Once α is known, we can reconstruct β from the equation using the first n measure-
ments:

β = −Hjk(M0 : ∇⊗2vj)∇vk,

as may easily be verified.
Let us assume that we can find sets of such functions vj for each x ∈ X. We then

observe that the reconstruction of α and β involves two derivatives of vj. The above
expressions therefore allow us to state that

‖δα‖Cm,α(X̄) + ‖δβ‖Cm,α(X̄) . ‖{δvj}‖Cm+2,α(X̄) ∼ ‖{δHj}‖Cm+2,α(X̄),

where δHj models measurement error and δα and δβ quantify reconstruction errors.

9.4.2 Explicit reconstructions

Let us assume that (α, β) above are reconstructed. Then a and b are such that u2
1a = τα

and u2
1b+∇ · u2

1a = τβ for some undetermined scalar τ . Let us assume that b = 0, i.e.,
the drift term vanishes. This assumption holds in both PAT and TE. We also define
γ = −a and σ = c for consistency with previous sections. We then find that

∇ · (ατ) = τβ, or α∇τ = (β −∇ · α)τ,

which is an overdetermined elliptic problem for τ . We can take the divergence of such
an equation to obtain a well-posed problem for τ provided that τ is known on ∂X. This
is an elliptic equation for τ , which we know to be invertible by an application of the
maximum principle. Note that the latter principle holds only because τ is scalar-valued
here. In such a setting, τ , and hence u2

1a is uniquely reconstructed. Moreover, from
elliptic regularity, we observe that τ is one derivative smoother than α.
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When u1 is known, then so is the full anisotropic tensor a. When H1 = Γσu1 is
known, then what we reconstruct is the tensor (Γσ)−2γ, which is similar to χ2 introduced
earlier. Note that only the determinant of a remains unknown in QPAT. The anisotropic
structure of a is fully reconstructed at this stage.

Let us denote a = âB2 with â the anisotropic part with determinant set to 1. We
know u2

1a = u2
1B

2â. As in the scalar case, let us introduce v = Bu1 and deduce from
the equation for u1 that

−∇ · âB∇v +∇ · âv∇B +
σv

B
= 0.

This is, with −â∇v · ∇B + â∇B · ∇v = 0,

−B∇ · â∇v + v∇â∇B +
σv

B
= 0,

or

∇ · â∇v = qv, q =
∇ · â∇B

B
+

σ

B2
.

This shows that q is known since v and â are known. As in the scalar case, if we assume
that the Grüneisen coefficient Γ is known, then q and B/σ are known and we deduce
from the equation

−(∇ · â∇− q)B =
σ

B
that B can be reconstructed when it is known on ∂X. Note that the above equation is
also elliptic. This comes from the above derivation, which we recast more explicitly as

B−1∇ · âB2∇B−1 = ∇â∇−B−1(∇ · â∇B) = ∇â∇− (q − σ

B2
).

This concludes the derivation of QPAT in the anisotropic setting. In general, all we
can reconstruct is (Γσ)−2γ and q above. When Γ is known, then (γ, σ) are uniquely
characterized from the available measurements.

In terms of stability, we observed that the reconstruction of â and that of β = ∇·(âv2)
involved a loss of two derivatives compared to {Hj}. The reconstruction of τ , B2u2

1, v,
and σ/B involves the loss of one derivative. The loss for the reconstruction of q is 3 and
then by elliptic regularity 1 for that of B. We now verify that

−∇âv2∇ 1

u1

= −âv2 : ∇⊗2 1

u1

−∇ · (âv2)∇ 1

u1

= H1.

This shows that u−1
1 is reconstructed with no loss of regularity compared to H by

Schauder elliptic estimates since the error in the reconstruction of u1 is two derivatives
smoother than the errors in the coefficients âv2 and its divergence. This implies the
same result for σ.

This is summarized, with any m ≥ 0 and 0 < α < 1.

‖δâ‖Cm,α + ‖δB‖Cm+1,α + ‖δσ‖Cm+2,α . ‖{δHj}‖Cm+2,α . (9.36)

When â is known a priori, then we may choose any m ≥ −1 above. Note that the
errors on the reconstructions of σ and the isotropic part B are optimal. The reconstruc-
tion of the anisotropic structure involves the loss of one additional derivative compared
to that of the determinant, a fact that is shared by many other hybrid inverse problems.
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9.4.3 Control problem

The above estimates hinge on appropriate linear independence of derivatives of the
solutions uj and vj. This is obtained in two steps.

The first step is to consider a point x0 ∈ X, to freeze the coefficients at their
values at x0, and then to construct solutions of the elliptic equation with constant
coefficients. We let the reader verify (as a lengthy exercise) that we can construct
locally, by generalizing the notion of harmonic polynomial, local solutions that satisfy all
the constraints of linear independence (for gradients and Hessians) we mentioned in the
preceding section. Now choosing a small ball B of radius r centered at x0, we can impose
the boundary conditions obtained from the solutions of the constant coefficient equations
to the equation with non-constant coefficients restricted to B. When r is sufficiently
small, the linear independence is clearly still satisfied and so we have constructed linearly
independent solutions of the original equation on B. The question is whether we can find
boundary conditions fj such that the solutions obtained on X are well approximated
by the local solutions when restricted to B. When this is the case, then the problem is
solved and estimates such as, e.g., (9.36) hold.

The problem at hand is therefore a control problem. Can one control solutions in B
from solutions in X? It should be clear that such a control cannot be exact. Solutions in
B need not be smooth on ∂B. When the coefficients in the vicinity of ∂B are smooth,
then solutions on X have to be smooth there. So control has to be approximate at
best. What makes the approximate control possible is the unique continuation principle
(UCP) we already used in the analysis of the Cauchy problem for elliptic equations.

We denote L = ∇ · a∇ + b · ∇ + c and recall that UCP holds for such an operator
when a is elliptic and of class C1 while all other coefficients are bounded. We proved
such a result in the case where a is scalar. Such results extend to the anisotropic setting
as well. We assume L invertible on X when augmented with Dirichlet conditions.

Theorem 9.4.1 (Runge approximation) Let X0 be an open subset with closure in
X and let u be a solution in H1(X0) of Lu = 0 on X0. Then there is a sequence of
function uε ∈ H1(X) solutions of Luε = 0 in X such that vε → u in L2(X0), where
vε = uε|X0

is the restriction of uε to X0.

Proof. The proof goes by contradiction as an application of a geometric version of
the Hahn-Banach theorem. Let F = {v|X0 ; v ∈ H1(X), Lv = 0 on X} and G = {u ∈
H1(X0), Lu = 0 on X0}. Both are subspaces of L2(X0). Let F̄ and Ḡ be the closures
of F and G for the L2(X0) topology. The Runge approximation states that F̄ = Ḡ.
Assume otherwise. We verify that F̄ is a closed convex subset of L2(X0) since F is a
linear space. Assume the existence of u ∈ Ḡ with u 6∈ F̄ . Then {u} is a compact subset
of L2(X0) and Hahn-Banach states that F̄ and {u} are separated, in other words, there
is an element f ∈ L2(X0) identified with its dual such that (f, v) < α < (f, u) for some
α > 0, say. Since v may be replaced by λv for any λ ∈ R, this implies (f, v) = 0 for each
v ∈ F̄ while (f, u) > 0. Let us now prove that this contradicts the unique continuation
principle (UCP).

Let us extend f by 0 in X outside X0 and still call f the extension. Let us solve

L∗w = f, in X, w = 0, on ∂X.
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This equation admits a unique solution by assumption on L (and the Fredhiolm alter-
native). Then, for v ∈ F , we have

0 = (Lv,w)− (v, L∗w) = −
∫
∂X

(an · ∇w)vdσ.

This holds for arbitrary trace v|∂X in H
1
2 (∂X), from which we deduce that an · ∇w = 0

on ∂X. However, we also have w = 0 on ∂X so that all Cauchy data associated to
w vanish. From the UCP, we deduce that w ≡ 0, and hence that f ≡ 0, which is
incompatible with the existence of u 6∈ F̄ . This proves the result.

We are not entirely done. The approximation we obtain is in the L2(X0) sense. This
is not sufficient to obtain point-wise linear independence of Hessians of vj. However,
such an estimate clearly comes from elliptic interior regularity. Indeed, we have uε − u
small in X0 and L(uε − u0) = 0 in X0. Elliptic regularity with coefficients in Cp,α

shows that uε − u is also small in Cp,α(X1) for any X1 open with closure in X0. This
concludes our control of internal derivatives of elliptic solutions from the boundary. The
boundary controls are obviously the sequence of traces fε = uε|∂X . We choose ε small
enough so that the Hessian of uε and that of u are sufficiently small. This proves the
linear independent of Hessians and gradients of the functions uj,ε approximating uj. By
continuity of elliptic solutions with respect to perturbations in the boundary conditions,
we therefore obtain the existence of an open set of boundary conditions fj such that the
resulting solutions uj satisfy the independence conditions on the domain X1. This may
be repeated for a covering of X by domains of the form X1 (including by domains that
cover the boundary ∂X using a slightly different regularity theory leading to the same
results).



Chapter 10

Coupled-physics IP II: Ultrasound
Modulation Tomography

10.1 Ultrasound Modulation Tomography

The preceding chapter analyzed inverse problems related to the photo-acoustic effect.
In this chapter, we consider another physical mechanism that couples optical waves with
ultrasound, namely the ultrasound modulation effect. To simplify the presentation, and
because most results are known in this simplified setting, we assume that the elliptic
equations involve an unknown diffusion coefficient but that the absorption coefficient is
assumed to vanish. We refer the reader to [20] to generalizations to the practically phys-
ical setting of an elliptic equation with unknown diffusion and absorption coefficients.

Consider thus the following elliptic equation

−∇ · γ(x)∇u = 0 in X, u = f on ∂X. (10.1)

Here, γ is the unknown diffusion coefficient, which we assume for the moment is a real-
valued, scalar, function defined on a domain X ⊂ Rn for n = 2 or n = 3. We assume that
γ is bounded above and below by positive constants so that the above equation admits
a unique solution. We also assume that γ is sufficiently smooth so that the solution to
the above equation is continuously differentiable on X̄, the closure of X [30]. As before,
we denote by f(x) the imposed (sufficiently smooth) Dirichlet boundary conditions.

As we have seen already, the coefficient γ(x) may model the electrical conductivity
in the setting of electrical impedance tomography (EIT) or a diffusion coefficient of
particles (photons) in the setting of optical tomography (OT). Both EIT and OT are
modalities with high contrast, in the sense that γ(x) takes different values in different
tissues and allows one to discriminate between healthy and non-healthy tissues. In OT,
high contrasts are mostly observed in the absorption coefficient, which we recall is not
modeled here; see [20].

A methodology to couple high contrast with high resolution consists of perturbing the
diffusion coefficient acoustically. Let an acoustic signal propagate through the domain.
We assume here that the sound speed is constant and that the acoustic signal is a plane
wave of the form p cos(k · x + ϕ) where p is the amplitude of the acoustic signal, k its
wave-number and ϕ an additional phase. The acoustic signal modifies the properties of

175
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the diffusion equation. We assume that such an effect is small and that the coefficient
in (10.1) is modified as

γε(x) = γ(x)(1 + ζεc), (10.2)

where we have defined c = c(x) = cos(k · x+ ϕ) and where ε = pΓ is the product of the
acoustic amplitude p ∈ R and a measure Γ > 0 of the coupling between the acoustic
signal and the modulations of the constitutive parameter in (10.1). We assume that
ε� 1 so that the influence of the acoustic signal on γε admits an asymptotic expansion
that we truncated at the second order as displayed in (10.2). The size of the terms in
the expansion are physically characterized by ζ and depend on the specific application.

Let u and v be solutions of (10.1) with fixed boundary conditions g and h, respec-
tively. When the acoustic field is turned on, the coefficients are modified as described
in (10.2) and we denote by uε and vε the corresponding solutions. Note that u−ε is the
solution obtained by changing the sign of p or equivalently by replacing ϕ by ϕ+ π.

By the standard continuity property of the solution to (10.1) with respect to changes
in the coefficients and regular perturbation arguments, we find that uε = u0+εu1+O(ε2).
Let us multiply the equation for uε by v−ε and the equation for v−ε by uε, subtract the
resulting equalities, and use standard integrations by parts. We obtain that∫

X

(γε − γ−ε)∇uε · ∇v−εdx =

∫
∂X

γ−ε
∂v−ε
∂ν

uε − γε
∂uε
∂ν

v−εdµ(x). (10.3)

Exercise 10.1.1 Verify the above result.

Here, dµ(x) is the standard surface measure on ∂X. We assume that γε∂νuε and γε∂νvε
are measured on ∂X, at least on the support of vε = h and uε = g, respectively, for
all values ε of interest. Note that the above equation holds if the Dirichlet boundary
conditions are replaced by Neumann boundary conditions. Let us define

Jε :=
1

2

∫
∂X

γ−ε
∂v−ε
∂ν

uε − γε
∂uε
∂ν

v−εdµ(x) = εJ1 + ε2J2 +O(ε3). (10.4)

We assume that the real valued functions Jm = Jm(k, ϕ) are known (measured func-
tions). Notice that such knowledge is based on the physical boundary measurement of
the Cauchy data of the form (uε, γε∂νuε) and (vε, γε∂νvε) on ∂X.

Equating like powers of ε, we find at the leading order that∫
X

[
ζγ(x)∇u0 · ∇v0(x)

]
cos(k · x+ ϕ)dx = J1(k, ϕ). (10.5)

This may be acquired for all k ∈ Rn and ϕ = 0, π
2
, and hence provides the Fourier

transform of
H[u0, v0](x) = ζγ(x)∇u0 · ∇v0(x). (10.6)

Note that when vε = uε, then we find from the expression in (10.3) that J2 = 0 in
(10.4) so that the expression for J1 may be obtained from available measurements in
(10.4) with an accuracy of order O(ε2). Note also that

H[u0, v0](x) =
1

4

(
H[u0 + v0, u0 + v0]−H[u0 − v0, u0 − v0]

)
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by polarization. In other words, the limiting measurements (for small ε) in (10.6) may
also be obtained by considering expressions of the form (10.3) with uε = vε.

In the setting of optical tomography, the coefficient γε in (10.2) takes the form

γε(x) =
γ̃ε
cn−1
ε

(x),

where γ̃ε is the diffusion coefficient, cε is the light speed, and n is spatial dimension.
When the pressure field is turned on, the location of the scatterers is modified by
compression and dilation. Since the diffusion coefficient is inversely proportional to the
scattering coefficient, we find that

1

γε(x)
=

1

γ(x)

(
1 + εc(x)

)
.

Moreover, the pressure field changes the index of refraction (the speed) of light as follows

cε(x) = c(x)(1 + zεc(x)),

where z is a constant (roughly equal to 1
3

for water). This shows that

ζ = −(1 + (d− 1)z). (10.7)

In the setting of electrical impedance tomography, we simply assume that ζ models the
coupling between the acoustic signal and the change in the electrical conductivity of the
underlying material. The value of ζ thus depends on the application.

10.2 Inverse problems in ultrasound modulation.

Assuming the validity of the above derivation, the objective of ultrasound modulated
tomography is to reconstruct the coefficient γ(x) from knowledge of the interior func-
tionals

Hij(x) = γ(x)∇ui(x) · ∇uj(x), 1 ≤ i, j ≤ m, (10.8)

where uj is the solution to the equation

∇ · (γ∇uj) = 0 in X, uj = fj on ∂X, 1 ≤ j ≤ m, (10.9)

for appropriate choices of the boundary conditions fj on ∂X. In practice, the ultrasound
modulation effect is extremely weak because the coupling coefficient Γ is small. However,
its mathematical analysis shows that UMOT and UMEIT are well posed problems unlike
the (non ultrasound-modulated) OT and EIT problems.

We need some notation to introduce the main result of this chapter. We first define
the UMT measurement operator. We again define f = (f1, . . . , fm) the vector of illumi-
nations at the domain’s boundary. The corresponding solutions to (10.9) are denoted by
uj. The measurement operator Mf is then defined as the following collection of internal
functionals:

Mf :
X → Mσ(Rm;Y)

γ 7→ Mfγ = (γ∇ui · ∇uj)1≤i,j≤m.
(10.10)
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Here, X is a subset of a Banach space in which the unknown coefficients are defined, Y
is a subset of H1(X) where the solutions to (10.9) are defined, and Mσ(Rm;Y) is the
space of symmetric second-order tensors of order m with values in Y.

Again, we observe that Mf is parameterized by the illuminations f.

Remark 10.2.1 Note that for m = 1, the internal functional is of the form H =
γ|∇u|2. The unknown coefficient γ can then be eliminated and formally, u solves the
following non-linear equation

∇ · H

|∇u|2
∇u = 0 in X, u = f on ∂X. (10.11)

This nonlinear problem is in fact hyperbolic in nature rather than elliptic and its solution
is therefore far from guaranteed.

In some sense, the UM inverse problem has two unknowns (γ, u). In the one-
functional setting, eliminationg of γ to get an equation for u is rather trivial. How-
ever, the resulting equation is difficult to analyze and may not have unique solutions.
The multi-functional setting when m ≥ 2 aims to simplify the solution of the result-
ing (redundant system of) equation(s). However, the elimination of unknowns becomes
significantly more challenging.

We first perform the change of unknown functions Si = γ
1
2∇ui for every i and define

F (x) := ∇ log γ(x). (10.12)

Let (e1, . . . , en) be the canonical basis in Rn. For a given vector field V = V iei defined
on X, we define the corresponding one-form V [ := V idxi, where dxi is the dual basis
(of 1-forms) to ei in the sense that dxi(ej) = δij, i.e., 0 if i 6= j and 1 if i = j. With this
notation, we obtain that the vector fields Sj satisfy the system of equations

∇ · Sj = −1

2
F · Sj, (10.13)

dS[j =
1

2
F [ ∧ S[j , 1 ≤ j ≤ m, (10.14)

where ∧ and d denote the usual exterior product and exterior derivative, respectively.
The first equation stems directly from (10.9) whereas the second one states that the

one-form γ−
1
2S[j = duj is exact, therefore closed, and hence d(γ−

1
2S[j) = 0. In dimension

n = 3, this means that ∇u = γ−
1
2S is a gradient so that its curl vanishes. The above

equations are generalizations to arbitrary dimensions.
When n = 2, 3, equation (10.14) is recast as:

n = 2 : [∇, Sj]− α[F, Sj] = 0, n = 3 : curl Sj − αF × Sj = 0,

where for n = 2, we define [A,B] := AxBy − AyBx and [∇, A] := ∂xAy − ∂yAx and for
n = 3, × denotes the standard cross-product.

Exercise 10.2.1 Check the above formulas.
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The strategy now is the following: we wish to eliminate F from the above equations.
This will result in an overdetermined system of equations for the vector fields S that we
will prove admits a unique solution. Once all vector fields Sj are known, we obtain an
explicit expression for F , from which the reconstruction of γ is relatively straightforward.
The elimination of F requires that a certain system be invertible. As for condition (H3)
of (H3’) in chapter 8, we therefore need to find well-chosen illuminations f for which
such an invertibility condition holds. We will again see that a large class of illuminations
are well-chosen in two dimensions n = 2. In dimensions n ≥ 3, the construction of well-
chosen illuminations will again be based on CGO solutions.

The invertibility condition is that the m gradients ∇uj have maximal rank in Rn

at every point x ∈ X. This hypothesis can be formalized by the somewhat stronger
statement: there exists a finite open covering O = {Ωk}1≤k≤N of X (i.e. X ⊂ ∪Nk=1Ωk),
an indexing function τ : [1, N ] 3 i 7→ τ(i) = (τ(i)1, . . . , τ(i)n) ∈ [1,m]n and a positive
constant c0 such that

min
1≤i≤N

inf
x∈Ωi

det(Sτ(i)1(x), . . . , Sτ(i)n(x)) ≥ c0 > 0. (10.15)

This assumption is equivalent to imposing the following condition on the data

min
1≤i≤N

inf
x∈Ωi

detHτ(i)(x) ≥ c2
0 > 0, (10.16)

where Hτ(i) stands for the n× n matrix of elements H
τ(i)
kl = Sτ(i)k · Sτ(i)l . We state that

f is a well-posed set of illuminations when (10.15) or equivalently (10.16) holds.

This complicated expression simply states that at each point x ∈ X, we can find n
linearly independent vectors ∇uj(x) with determinant bounded from below uniformly in
x ∈ X. The elimination of F is then guaranteed and can be done in a stable fashion as
the following lemma indicates.

Lemma 10.2.2 Let Ω ⊂ X open where, up to renumbering of solutions, we have

inf
x∈Ω

det(S(x)) ≥ c0 > 0, S(x) := (S1(x)| . . . |Sn(x)).

Let us define H(x) := {Si(x) · Sj(x)}1≤i,j≤n and D(x) =
√

detH(x). Then we have:

F =
cF
D

n∑
i,j=1

(∇(DH ij) · Si)Sj = cF

(
∇ logD +

n∑
i,j=1

(∇H ij · Si)Sj
)
,

cF := (
1

2
(n− 2) + 1)−1.

(10.17)

Here H ij denotes the element (i, j) of the matrix H−1.

Once F is eliminated, we can write a system of equations for the vectors Sj that
admits a unique solution provided that γ and all Sj’s are known at one point x0 ∈ X̄,
for instance at the domain’s boundary ∂X. This leads to well-posed reconstructions as
stated in the following:
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Theorem 10.2.3 Let X ⊂ Rn, n ≥ 2 be an open convex bounded domain, and let two
sets of m ≥ n solutions of (10.9) generate measurements (H = Mf(γ), H̃ = Mf(γ̃))
whose components belong to W 1,∞(X), and who jointly satisfy condition (10.16) with
the same triple (O, τ, c0). In other words, we assume that f is well-chosen for both γ
and γ̃.

Let x0 ∈ Ωi0 ⊂ X and γ(x0), γ̃(x0) and {Sτ(i0)i(x0), S̃τ(i0)i(x0)}1≤i≤n be given.Then
we have the stability estimate:

‖ log γ − log γ̃‖W 1,∞(X) ≤ C
(
ε0 + ‖H − H̃‖W 1,∞(X)

)
, (10.18)

where ε0 is the error at x0:

ε0 := | log γ(x0)− log γ̃(x0)|+
n∑
i=1

‖Sτ(i0)i(x0)− S̃τ(i0)i(x0)‖.

10.3 Eliminations and redundant systems of ordi-

nary differential equations

The proof of Theorem 10.2.3, which we complete in this section, involves first proving
Lemma 10.2.2 and next solving a redundant system of equations for the vectors Sj.

10.3.1 Elimination of F

We now prove Lemma 10.2.2 and first recall some notation from tensor calculus. For
0 ≤ k ≤ n, Λk denotes the space of k− forms. We recall the definition of the Hodge
star operator ? : Λk 7→ Λn−k for 0 ≤ k ≤ n, such that for any elementary k-form
dxI = dxi1 ∧ · · · ∧ dxik , we have

?dxI = σdxJ , where σ = sign((1 . . . n) 7→ (I, J)). (10.19)

Here, J is implicitly defined by the fact that (1 . . . n) 7→ (I, J) is a permutation. Note
that σdxJ is independent of the ordering of the n−k indices in J . We recall the following
useful identities:

?? = (−1)k(n−k) on Λk, ?(u[ ∧ ?v[) = u · v, ?d ? u[ = ∇ · u, u, v ∈ Λ1.

Because S1(x), . . . , Sn(x) forms a basis of Rn, a vector V can be represented in this basis
by the following representation

V = H ij(V · Si)Sj. (10.20)

For j = 1, . . . , n, let us introduce the following 1-forms:

X[
j := (−1)n−1σj ∗ (S[i1 ∧ · · · ∧ S

[
in−1

), (i1, . . . , in−1) = (1, . . . , ĵ, . . . , n), (10.21)
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where the hat indicates an omission and σj = (−1)j−1. We now show that the vector
fields Xj satisfy a simple divergence equation. We compute

∇ ·Xj = ?d ? X[
j = σj ? d(S[i1 ∧ · · · ∧ S

[
in−1

) = σj ?
n−1∑
k=1

(−1)kS[i1 ∧ · · · ∧ dS
[
ik
∧ · · · ∧ S[in−1

= σj ?
n−1∑
k=1

(−1)kS[i1 ∧ · · · ∧
1

2
(F [ ∧ S[ik) ∧ · · · ∧ S

[
in−1

=
1

2
(n− 1) ? (F [ ∧ ?X[

j).

Using the identity ?(u[ ∧ ?v[) = u · v, we deduce that

∇ ·Xj =
1

2
(n− 1)F ·Xj, j = 1 . . . n. (10.22)

We now decompose Xj in the basis (S1, . . . , Sn). For k 6= j, there is an l such that il = k
and we have

Xj · Sk = det(S1, . . . , Sj−1, Sk, Sj+1, . . . , Sn) = 0,

by repetition of the term Sk in the determinant. Now for k = j, we have

Xj · Sj = det(S1, . . . , Sn) = detS = D.

Using formula (10.20), we deduce that Xj admits the expression

Xj = DH ijSi.

Plugging this expression into equation (10.22), and using ∇ · (ϕV ) = ∇ϕ · V + ϕ∇ · V ,
we obtain

∇(DH ij) · Si +DH ij∇ · Si = 1
2
(n− 1)F · (DH ijSi)

⇔ ∇(DH ij) · Si −DH ij 1
2
F · Si = 1

2
(n− 1)DH ijF · Si

⇔ ∇(DH ij) · Si = c−1
F DH ijF · Si.

Finally, using the representation (10.20) for F itself yields

F = (H ijF · Si)Sj =
cF
D

(∇(DH ij) · Si)Sj. (10.23)

We can also recast the previous expression as

F = cF
[
∇ logD + ((∇H ij) · Si)Sj

]
, (10.24)

and the proof of the lemma is complete.
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10.3.2 System of ODEs for Sj

In this section, we obtain a redundant system of ordinary differential equations for the
matrix S. Let S be the matrix formed with the column vectors Sj. Then H = STS is
known from the measurement operator. Moreover, we have just found an equation of
the form dS[j = F [(S) ∧ S[j , with F = F (S) given above. We thus possess information
about the symmetric part of S and the skew-symmetric part of S. It remains to know
whether this is enough to write an equation of the form ∇⊗ Sj = Fj(S). The answer
is affirmative as we now show.

We first need to introduce other standard geometric notation, without which the
derivations become quickly intractable. Let us denote the Euclidean orthonormal frame
ei = ∂xi and ei = dxi. We work on a convex set Ω ⊂ Rn with the Euclidean metric
g(X, Y ) ≡ X · Y = δijX

iY j on Rn. Following [42], we denote by ∇ the Euclidean
connection, which here has the expression we can take as a definition:

∇Xf = X · ∇f = X i∂if, and ∇XY = (X · ∇Y j)ej = X i(∂iY
j)ej,

for given vector fields X = X iei and Y = Y iei. An important identity for the sequel is
the following characterization of the exterior derivative of a one-form ω:

dω(X, Y ) = ∇X(ω(Y ))−∇Y (ω(X))− ω([X, Y ]), (10.25)

or equivalently in the Euclidean metric, writing ω = S[i , X = Sj and Y = Sk,

Si · [Sj, Sk] = Sj · ∇(Si · Sk)− Sk · ∇(Si · Sj)− dS[i (Sj, Sk), (10.26)

where the Lie bracket (commutator) of X and Y may be “defined” here as [X, Y ] =
∇XY −∇YX = X · ∇Y − Y · ∇X seen as a vector field.

Exercise 10.3.1 Verify (10.26) directly.

Note that the right-hand side in (10.26) involves no derivatives in the unknown S since
Si · Sk = Hik is known and dS[i is a known functional of S by (10.14) and (10.17).

The following relation between inner products and Lie brackets of a given frame (see
e.g. [42, Eq. 5.1 p. 69]) is very useful

2(X · ∇Y ) · Z = X · ∇(Y · Z) + Y · ∇(Z ·X)− Z · ∇(X · Y )

−Y · [X,Z]− Z · [Y,X] +X · [Z, Y ].
(10.27)

Exercise 10.3.2 Check the above expression directly.

We thus find using (10.14) and (10.26) that

2(Si · ∇Sj) · Sk = Si · ∇Hjk − Sj · ∇Hik + Sk · ∇Hij − 2F · SkHij + 2F · SjHik. (10.28)

Note that the right-hand-side no longer involves any derivative of Sj. Moreover, Sj forms
a frame. We can therefore extract the full gradient of Sj from the terms 2(Si ·∇Sj) ·Sk.
Geometrically, gradients generalize to tensors via the total covariant derivative, which
maps a vector field X to a tensor of type (1, 1) defined by

∇X(ω, Y ) = ω(∇YX). (10.29)
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S is a frame provided that the determinant condition infx∈Ω detS ≥ c0 > 0 holds. In
the frame S, we may express ∇Si in the basis {Sj ⊗ S[k}nj,k=1 of such tensors by writing

∇Si = aijkSj ⊗ S[k and identifying the coefficients aijk by writing

∇Si(S[p, Sq) = S[p(∇SqSi) = Sq · ∇Si · Sp,

and also

∇Si(S[p, Sq) = aijkSj ⊗ S[k(S[p, Sq) = aijkHjpHkq.

Equating the two, we obtain the representation

∇Si = HqkHjp[(Sq · ∇Si) · Sp]Sj ⊗ S[k, (10.30)

where H ij denote the coefficients of the matrix H−1.

Exercise 10.3.3 Seeing ∇⊗ Sj as the matrix with components (i, k) given by ∂xi(Sj)k
and Si ⊗ Sm as the matrix with components (j, k) given by (Si)k(Sm)k, show that

∇⊗ Sj =
∑
i,k,l,m

H ik(Sk · ∇Sj) · SlH lmSi ⊗ Sm = Fj(S).

Now plugging (10.28) into (10.30), and using HijH
jk = δik, we obtain

2∇Si = 2HqkHjp(∇SqSi · Sp)Sj ⊗ S[k
= HqkHjp (∇Hiq · Sp +∇Hip · Sq −∇Hpq · Si + (Hpq(F · Si)−Hqi(F · Sp)))Sj ⊗ S[k
= (HjpUik · Sp +HqkUij · Sq +∇Hjk · Si + (Hjk(F · Si)−Hjpδik(F · Sp)))Sj ⊗ S[k,

where we have used ∇Hjk = −Hjp(∇Hpq)H
qk and have defined

Ujk := (∇Hjp)H
pk = −Hjp∇Hpk, 1 ≤ j, k ≤ n. (10.31)

Using formulas HjkSj ⊗ S[k = ei ⊗ ei and Hkl(V · Sk)Sl = V for any smooth vector
field V , we obtain for 1 ≤ i ≤ n

∇Si =
1

2

(
Uik ⊗ S[k + Sk ⊗ U [

ik + (∇Hjk · Si)Sj ⊗ S[k
)

+
1

2
(F · Si)In −

1

2
F ⊗ S[i .

(10.32)

Using (10.23), we observe that∇Si is equal to a polynomial of degree at most three in the
frame S with coefficients involving the known inner products Hij. For each 1 ≤ i, k ≤ n,
∂kSi is nothing but ∇ekSi = ∇Si(·, ek), which can be obtained from (10.32). Denoting
S := (ST1 , . . . , S

T
n )T , we are then able to construct the system of equations

∂kS =
∑
|β|≤3

Qk
βS

β, Sβ =
n2∏
i=1

Sβii , 1 ≤ k ≤ n, (10.33)

where Qk
β depends only on the data and β is an n2-index. This redundant system can

then be integrated along any curve (where it becomes a system of ordinary differential
equations with Lipschitz right-hand sides ensuring uniqueness of the solution) in order
to solve for the matrix-valued function S.
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10.3.3 ODE solution and stability estimates

Once (10.33) has been obtained, the derivation of Theorem 10.2.3 follows rapidly. We
leave this step as an exercise.

Exercise 10.3.4 Prove the stability estimates in Theorem 10.2.3 from (10.33), (10.24),
and the definition (10.12).

10.4 Well-chosen illuminations

It remains to find boundary conditions such that (10.15) holds. As in the preceding
chapter, we need to distinguish dimension n = 2 from dimensions n ≥ 3.

10.4.1 The case n = 2

In dimension n = 2, the critical points of u (points x where ∇u(x) = 0) are necessarily
isolated as is shown in, e.g., [2]. From this and techniques of quasiconformal mappings
that are also restricted to two dimensions of space, we can show the following results.

Lemma 10.4.1 ([3]) Let u1 and u2 be the solutions of (10.1) on X simply connected
with boundary conditions f1 = x1 and f2 = x2 on ∂X, respectively, where x = (x1, x2)
are Cartesian coordinates on X. Assume that γ is sufficiently smooth. Then (x1, x2) 7→
(u1, u2) from X to its image is a diffeomorphism. In other words, det(∇u1,∇u2) > 0
uniformly on X̄.

In other words, in two dimensions of space, there are explicit boundary conditions, such
as those above with fj the trace of xj on ∂X for j = 1, 2 that guarantees that (10.15)
holds uniformly on the whole domain X. It is shown in [24] that the appropriate
extension of this result is false in dimension n ≥ 3.

10.4.2 The case n ≥ 3

In dimension n ≥ 3, we have the following result:

Lemma 10.4.2 Let n ≥ 3 and γ ∈ H n
2

+3+ε(X) for some ε > 0 be bounded from below
by a positive constant. Then for n even, there exists a open set G of illuminations
{f1, . . . , fn} such that for any f ∈ G, the condition (10.15) holds with O = {X} for
some constant c0 > 0.
For n odd, there exists an open set G of illuminations {f1, .., fn+1} such that for any
f ∈ G there exists an open cover of X of the form {Ω2i−1,Ω2i}1≤i≤N and a constant
c0 > 0 such that

inf
x∈Ω2i−1

det(S1, . . . , Sn−1, εiSn) ≥ c0 and inf
x∈Ω2i

det(S1, . . . , Sn−1, ε̃iSn+1) ≥ c0,

(10.34)

for 1 ≤ i ≤ N and with εi, ε̃i = ±1.
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In other words, this lemma indicates that for appropriate boundary conditions fj, we
can always find n corresponding solutions whose gradients form a basis of Rn.

Proof. Consider the problem ∇ · γ(x)∇u = 0 on Rn with γ(x) extended in a con-
tinuous manner outside of X and such that γ equals 1 outside of a large ball. Let
q(x) = −∆

√
γ

γ
on Rn. Then q ∈ H n

2
+1+ε(Rn) since γ − 1 ∈ H n

2
+3+ε(Rn) for some ε > 0.

By Sobolev imbedding, γ is of class C3(X) while q is of class C1(X). With the above
hypotheses, we can apply Corollary 8.3.3.

Let v =
√
γu so that ∆v + qv = 0 on Rn. Let % ∈ Cn be of the form % = ρ(ϑ+ iϑ⊥)

with ϑ, ϑ⊥ ∈ Sn−1, ϑ · ϑ⊥ = 0, and ρ = |%|/
√

2 > 0. Now, as we showed in Corollary
8.3.3, we have

v% =
√
γu% = e%·x(1 + ψ%), ρψ%|X = O(1) in C1(X),

with (∆ + q)v% = 0 and hence ∇ · γ∇u% = 0 in Rn. We have used again the Sobolev
imbedding stating that functions in H

n
2

+k+ε(Y ) are of class Ck(Y ) for a bounded domain
Y . Taking gradients of the previous equation and rearranging terms, we obtain that

√
γ∇u% = e%·x(%+ ϕ%), with ϕ% := ∇ψ% + ψ%%− (1 + ψ%)∇

√
γ.

Because ∇√γ is bounded and ρψ%|X = O(1) in C1(X), the Cn-valued function ϕ% satis-

fies supX |ϕ%| ≤ C independent of %. Moreover, the constant C is in fact independent of
γ provided that the norm of the latter is bounded by a uniform constant in H

n
2

+3+ε(X)
according to Corollary 8.3.3.

Both the real and imaginary parts of u%, denoted u<% and u=% , are solutions of the
free-space conductivity equation. Thus,

√
γ∇u<% and

√
γ∇u=% can serve as vectors Si.

More precisely, we have

√
γ∇u<% = ρeρϑ·x

(
(ϑ+ ρ−1ϕ<% ) cos(ρϑ⊥ · x)− (ϑ⊥ + ρ−1ϕ=% ) sin(ρϑ⊥ · x)

)
,

√
γ∇u=% = ρeρϑ·x

(
(ϑ⊥ + ρ−1ϕ=% ) cos(ρϑ⊥ · x) + (ϑ+ ρ−1ϕ<% ) sin(ρϑ⊥ · x)

)
.

(10.35)

Case n even: Set n = 2p, define %l = ρ(e2l + ie2l−1) for 1 ≤ l ≤ p, and construct

S2l−1 =
√
γ∇u<%l and S2l =

√
γ∇u=%l , 1 ≤ l ≤ p.

Using (10.35), we obtain that

det(S1, . . . , Sn) = ρne2ρ
∑p
l=1 x2l(1 + f(x)),

where limρ→∞ supX |f | = 0. Letting ρ so large that supX |f | ≤ 1
2

and denoting

γ0 := minx∈X(ρne2ρ
∑p
l=1 x2l) > 0, we have infx∈X det(S1, . . . , Sn) ≥ γ0

2
> 0.

Case n odd: Set n = 2p − 1, define %l = ρ(e2l + ie2l−1) for 1 ≤ l ≤ p − 1, and
%p = ρ(en + ie1) and construct

S2l−1 =
√
γ∇u<%l and S2l =

√
γ∇u=%l , 1 ≤ l ≤ p.
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Using (10.35), we obtain that

det(S1, . . . , Sn−1, Sn) = ρneρ(xn+2
∑p−1
l=1 x2l) (− cos(ρx1) + f1(x)) ,

det(S1, . . . , Sn−1, Sn+1) = ρneρ(xn+2
∑p−1
l=1 x2l) (− sin(ρx1) + f2(x)) ,

where limρ→∞ supX |f1| = limρ→∞ supX |f2| = 0. Letting ρ so large that supX(|f1|, |f2|) ≤
1
4

and denoting γ1 := minx∈X(ρneρ(xn+2
∑p−1
l=1 x2l)) > 0, we have that | det(S1, . . . , Sn−1, Sn)| ≥

γ1
4

on sets of the form X ∩ {ρx1 ∈]−π
3
, π

3
[+mπ} and | det(S1, . . . , Sn−1, Sn+1)| ≥ γ1

4
on

sets of the form X∩{ρx1 ∈]π
6
, 5π

6
[+mπ}, where m is a signed integer. Since the previous

sets are open and a finite number of them covers X (because X is bounded and ρ is
finite), we therefore have fulfilled the desired requirements of the construction. Upon
changing the sign of Sn or Sn+1 on each of these sets if necessary, we can assume that
the determinants are all positive.

Note that as in the preceding paragraph, we have obtained the existence of an
open set of illuminations f such that appropriate determinants remain strictly posi-
tive throughout the domain X. However, these illuminations f are not characterized
explicitly.

10.5 Remarks on hybrid inverse problems

In the past two chapters, we have briefly presented two hybrid inverse problems based
on the photo-acoustic effect (with a similar theory for the imaging modality Transient
Elastography) and the ultrasound modulation effect. What characterizes these hybrid
inverse problems is that after a preliminary step (involving and inverse wave problem in
photoacoustics and an inverse Fourier transform in ultrasound modulation) we obtain
an inverse problem with internal functionals of the unknown parameters.

These internal functionals have an immediate advantage: singularities of the un-
known coefficients no longer need to be propagated to the boundary of the domain
by an elliptic operator that severely damps high frequencies. The main reason for ill-
posedness of invertible operators, namely the smoothing property of such operators, is
therefore no longer an issue. However, injectivity of the measurement operator is not
guaranteed. We have seen in QPAT that only two out of three coefficients could be
reconstructed in QPAT. QPAT data acquired at one frequency are thus not sufficient to
reconstruct three coefficients. With appropriate prior information about the dependency
of coefficients with respect to a frequency parameter, then injectivity of the measure-
ment operator can be restored [18]. But again, this requires prior information that one
may not wish to make. The alternative is then to come up with other prior models that
restore injectivity or to combine QPAT measurements with additional measurements.
Hybrid inverse problems face the same shortcomings as any other inverse problem.

Once injectivity is guaranteed, then stability of the reconstructions are guaranteed
in principle by the fact that singularities no longer need to propagate. We have seen a
few such stability results. Note that these results typically require a certain degree of
smoothness of the unknown coefficients. This is a shortcoming of the theories presented
above. The reason why we have recourse to hybrid inverse problems is to obtain high
resolution. The reason we typically need high resolution is because coefficients may
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vary rapidly and we wish to quantify such variations. It would therefore be useful to
understand how stability estimates degrade when the coefficients are not smooth.

That said, numerical experiments conducted in e.g. [18, 17, 19] show that recon-
structions based on algorithms similar to those presented above do allow us to obtain
very accurate reconstructions even for highly discontinuous coefficients, and this even
in the presence of relatively significant noise.

For additional general references to hybrid inverse problems, we refer the reader to
[4, 52].
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Chapter 11

Priors and Regularization

As we have mentioned several times in these notes, the influence of “noise” is largely
subjective: we either find it acceptable or unacceptable. Mathematically, this influence
is typically acceptable in a given norm while it may be unacceptable in another (more
constraining) norm. In which norms that influence is controlled for a given problem is
characterized by stability estimates, which we have presented for the problems consid-
ered in these notes.

Once we have decided that “noise” had too large an effect in a setting of interest,
something must be done. That something inescapably requires that we add prior in-
formation. Several techniques have been developed to do so. The simplest and most
developed is the regularization methodology. Typically, such a regularization assumes
that the object we are interested in reconstructing has a prior smoothness. We may for
instance assume that the object belongs to Hs(X) for some s > 0. This assumption
indicates that the Fourier transform object of interest decreases rapidly as frequency
increases. High frequencies, which are not present, thus do not need to be reconstructed
with high accuracy. This allows us to mitigate the effect of high frequency noise in the
reconstructions.

The main drawback of regularization theory is that objects of interest may not
necessarily be smooth. Smooth means that the first coefficients in a Fourier series
expansion are big while the other coefficients are small. In several settings of interest,
the objects may be represented by a few big coefficients and a large number of small
coefficients, but not in the basis of Fourier coefficients. In other words, the object may
be sparse in a different, known basis. The objective of sparse regularization is to devise
methods to find these coefficients.

In some settings, the problems are so ill-posed that looking even for the first co-
efficients in a given basis may not provide sufficient accuracy. Other sorts of prior
information may be necessary, for instance assuming that the objects of interest are
small inclusions with specific structures, or that next to a blue pixel in an image, red
pixels are extremely unlikely. In such situations, reconstructions are typically not very
accurate and it is often important to characterize this inaccuracy. A very versatile set-
ting to do so is the statistical Bayesian framework. In such a setting, objects of interest
are modeled by a set of possible outcomes with prior probabilities of happening. This is
the prior probability distribution. Then data are acquired with a given noise model. The
probability of such data happening conditioned on given parameters is called the like-

189
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lihood probability distribution. Using the Bayes rule, a posterior probability distribution
gives the probability density of the parameters based on availability of the data.

We now briefly consider these three settings, the smoothness regularization method-
ology, the sparsity regularization methodology, and the Bayesian framework and show
their relations.

11.1 Smoothness Regularization

We have seen that many of the inverse problems we have considered were either mildly
ill-posed (with α > 0 in the sense of Chapter 1) or severely ill-posed (as for instance
the Calderón problem or the Cauchy problems for elliptic equations). We present here
some techniques to regularize the inversion. Such techniques typically work for mildly
ill-posed problems but are often not sufficient for severely ill-posed problems. But this
the influence of “noise” is subjective anyway, these regularization techniques should be
applied first as they are the simplest both theoretically and computationally. We refer
the reader to [29, 39, 61] for additional information on these regularization techniques.

11.1.1 Ill-posed problems and compact operators

Let A be an injective and compact operator defined on an infinite dimensional (separa-
ble) Hilbert space H with range Range(A) in H:

A : H → Range(A) ⊂ H. (11.1)

We recall that compact operators map the unit ball in H to a subset of H whose closure
(with respect to the usual norm in H) is compact, i.e., verifies that every bounded (with
respect to the usual norm in H) family of points admits a converging (with respect to
the usual norm in H) subsequence in the compact set.

Since A is injective (i.e., Ax = 0 implies x = 0), we can define the inverse operator
A−1 with domain of definition Range(A) and Range H:

A−1 : D(A−1) = Range(A) → H. (11.2)

The problem is that A−1 is never a continuous operator from Range(A) to H when both
spaces are equipped with the usual norm in H:

Lemma 11.1.1 For A as above, there exists a sequence xn such that

‖xn‖H = 1, ‖Axn‖H → 0. (11.3)

The same holds true with ‖xn‖H →∞.

Proof. The proof holds in more complicated settings than Hilbert spaces. The Hilbert
structure gives us a very simple proof and is based on the existence of an orthonormal
basis in H, i.e., vectors xn such that ‖xn‖H = 1 and (xn, xm)H = 0 for n 6= m. Since
these vectors belong to the unit ball, we deduce that yn = Axn is a converging sequence
(up to taking subsequences), say to y ∈ H. Take now x̃n = 2−1/2(xn − xn+1). We verify

that x̃n satisfies (11.3). Now define zn = x̃n/‖Ax̃n‖
1
2
H when the latter denominator does
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not vanish and zn = nx̃n otherwise. Then Azn still converges to 0 while ‖zn‖H converges
to ∞.
This simple lemma shows that inverting a compact operator can never be a well-posed
problem in the sense that A−1 is not continuous from D(A−1) to H with the H norm.
Indeed take the sequence yn = Axn/‖Axn‖ in D(A−1), where xn is the sequence in
(11.3). Then ‖yn‖H = 1 while ‖A−1yn‖H tends to ∞.

The implication for inverse problems is the following. If δyn is the measurement
noise for n large, then δA−1yn models the error in the reconstruction, which may thus
be arbitrarily larger than the norm of the true object we aim to reconstruct. More
precisely, if Ax = b is the real problem and Ax̃ = b̃ is the exact reconstruction from
noisy data, then arbitrarily small errors ‖b− b̃‖ in the measurements is still compatible
with arbitrary large errors ‖x − x̃‖ in the space of parameters. This shows that the
problem needs to be regularized before any inversion is carried out.

11.1.2 Regularity assumptions and error bound

The calculations we have carried out in the preceding section show that an ill-posed
inverse problem cannot satisfactorily be solved if no other assumptions on the problem
are added. A sometimes reasonable and practically useful assumption is to impose,
before we start the reconstruction process, that the object we want to reconstruct is
sufficiently smooth. This allows us to filter out high frequencies that may appear in the
reconstruction because we know they are part of the noise and not of the object we want
to reconstruct. We present two mathematical frameworks for such a regularization.

In the first framework, we introduce the adjoint operator A∗ to A, defined from H
to Range(A∗) by the relation

(Ax, y)H = (x, A∗y)H , for all x, y ∈ H.

Since A is compact and injective, then so is A∗. We can also define the inverse operator
A−∗ = (A∗)−1 from Range(A∗) to H.

We may now assume that x, the object we aim at reconstructing, is sufficiently
smooth that is belongs to the range of A∗, i.e., there exists y such that x = A∗y. Since
A and A∗ are compact operators, hence smoothing operators, the above hypothesis
means that we assume a priori that x is smoother than being merely an element in H.
We then define the stronger norm

‖x‖1 = ‖A−∗x‖H . (11.4)

We may also assume that the object x is even smoother than being in the range of
A∗. For instance let us assume that x belongs to the range of A∗A, i.e., there exists y
such that x = A∗Ay. Note that since both A and A∗ are smoothing operators (because
they are compact), the assumption on x is stronger than simply being in the range of
A∗. We define the even stronger norm

‖x‖2 = ‖(A∗A)−1x‖H . (11.5)

We want to use these definitions to show that if the solution x is a priori bounded
for the ‖ · ‖1 or the ‖ · ‖2 norm and “noise” is small, then the error in the reconstruction



192 CHAPTER 11. PRIORS AND REGULARIZATION

is small. For instance, assume that yj = Axj for j = 1, 2 so that y = Ax for y = y1− y2

and x = x1 − x2. If both xj, j = 1, 2 are bounded and y is small, then how small is x?
For such questions, we have the following result:

Theorem 11.1.2 Let x ∈ H such that ‖x‖1 ≤ E and ‖Ax‖H ≤ δ. Then we have:

‖x‖H ≤
√
Eδ. (11.6)

If we now assume that ‖x‖2 ≤ E instead, we obtain the better bound

‖x‖H ≤ E
1
3 δ

2
3 . (11.7)

Proof. Let y = A−∗x so that ‖y‖H ≤ E. We have then

‖x‖2
H = (x, A∗y) = (Ax, y) ≤ ‖Ax‖H‖y‖H ≤ δE.

This proves (11.6). For the second bound let z = (A∗A)−1x so that ‖z‖H ≤ E and
compute:

‖x‖2
H = (x, A∗Az) = (Ax, Az) ≤ δ‖Az‖ = δ(Az, Az)

1
2 ≤ δ(z, x)

1
2 ≤ δE

1
2‖x‖

1
2
H .

This proves the second bound (11.7).
The theorem should be interpreted as follows. Consider that Ax is the noise level in the
measured data and that ‖x‖1 < E or ‖x‖2 < E is a priori smoothness information we
have on the object we want to reconstruct. Then the worst error we can make on the
reconstruction (provided we find an appropriate inversion method; see below) is given

by the bounds (11.6) and (11.7). Note that the latter bound is better (since δ
2
3 � δ

1
2 ).

This results from a more stringent assumption on the image x.
Let us now consider smoothing operators in the (second) framework of the Hilbert

scale Hs(R) we have introduced in Chapter 1. Then we have the following result:

Theorem 11.1.3 Let us assume that the operator A is mildly ill-posed of order α > 0
so that

‖Af‖L2(R) ≥ m‖f‖H−α(R). (11.8)

Suppose now that the measurement error is small and that the function we want to
reconstruct is regular in the sense that

‖Af‖L2(R) ≤ δm, and ‖f‖Hβ(R) ≤ E, (11.9)

for some δ > 0, β > 0, and E > 0. Then we have

‖f‖L2(R) ≤ δ
β

α+βE
α

α+β . (11.10)

Proof. The proof is a simple but interesting exercise in interpolation theory. Notice
that the hypotheses are

‖f‖Hβ(R) ≤ E, and ‖f‖H−α(R) ≤ δ,
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and our objective is to find a bound for ‖f‖L2(R). Let us denote 〈ξ〉 = (1 + |ξ|2)
1
2 . We

have

(2π)n‖f‖2
L2(R) =

∫
Rn
|f̂(ξ)|2θ〈ξ〉2γ|f̂(ξ)|2(1−θ)〈ξ〉−2γdξ

≤
(∫

Rn
|f̂(ξ)|2〈ξ〉2γ/θdξ

)θ(∫
Rn
|f̂(ξ)|2〈ξ〉−2γ/(1−θ)dξ

)1−θ
,

thanks to Hölder’s inequality∣∣∣ ∫
R
f(x)g(x)dx

∣∣∣ ≤ ‖f‖Lp(R)‖g‖Lq(R),

which holds for all p ≥ 1 and q ≥ 1 such that p−1 + q−1 = 1, where we have defined for
all p ≥ 1,

‖f‖Lp(R) =
(∫

R
|f(x)|pdx

)1/p

. (11.11)

Choosing θ = α
α+β

and γ = αβ
α+β

gives (11.10).

Let us briefly recall the proof of the Hölder’s inequality [60]. We first verify that

x
1
p ≤ x

p
+

1

q
, x > 0,

for p−1 + q−1 = 1 and p ≥ 1, since x
1
p − x

p
attains its maximum at x = 1 where it is

equal to q−1. For y > 0 we use the above inequality for x/y and multiply by y to obtain

x
1
py

1
q ≤ x

p
+
y

q
, x > 0, y > 0. (11.12)

Choosing x = |tf(x)|p and y = |t−1g(x)|q, we deduce that∫
Rn
|f(x)g(x)|dx ≤ 1

p
‖tf‖pLp(R) +

1

q
‖t−1g‖qLq(R) =

tp

p
‖f‖pLp(R) +

tq

q
‖g‖qLq(R),

for all t > 0. Maximizing over t gives the Hölder inequality.
The last theorem applies to a less general class of operators than compact operators
(although it applies to operators that are not necessarily compact) but it gives us an ac-
curate result. We should still consider δ as the noise level and E as an a priori bound we
have on the object we want to reconstruct. Then depending on the a priori smoothness
of the object, we obtain different possible accuracies in the reconstructions. What is
important is the relative regularity of the object compared to the smoothing effect of the
operator A. When β = α, this corresponds to assuming the same regularity as ‖x‖1 ≤ E

in Theorem 11.1.2. We thus obtain an accuracy of order δ
1
2 in the reconstruction. When

β = 2α, this corresponds to ‖x‖2 ≤ E since f = (A∗A)−1g for some g ∈ L2(R) means
that f is twice as regular as A is smoothing. We thus recover the accuracy of order
δ

2
3 as in Theorem 11.1.2. Theorem 11.1.3 allows us to deal with arbitrary values of β.

Notice that as β →∞, we recover that the problem is almost well-posed since the error
in the reconstruction is asymptotically of the same order δ as the noise level.
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11.1.3 Regularization methods

Now that we know how noise can optimally be controlled in the reconstruction based on
the regularity of the object we want to reconstruct, we need to devise algorithms that
indeed control noise amplification in the reconstruction.

Since A−1 is an unbounded operator with domain of definition Range(A), a proper
subset of H, we first need to introduce approximations of the inverse operator. We
denote by Rγ defined from H to H for γ > 0 a sequence of regularizations of A−1 such
that

lim
γ→0

RγAx = x for all x ∈ H. (11.13)

Under the hypotheses of Lemma 11.1.1, we can show that the sequence of operators Rγ

is not uniformly bounded. A uniform bound would indeed imply that A−1 is bounded.
Thus, RγA converges to identity strongly (since (11.13) is the definition of strong con-
vergence of operators) but not uniformly in the sense that ‖RγA− I‖ does not converge
to 0.

Exercise 11.1.1 Prove this.

One of the main objectives of the regularization technique is to handle noise in an
optimal fashion. Let us denote by yδ our measurements and assume that ‖yδ−Ax‖H ≤ δ.
We then define

xγ,δ = Rγy
δ. (11.14)

We want to find sequences Rγ that deal with noise in an optimal fashion. For instance
assuming that ‖x‖1 ≤ E and that ‖yδ − Ax‖H ≤ δ, we want to be able to show that

‖x− xγ,δ‖ ≤ C
√
Eδ,

at least for some values of γ. We know from Theorem 11.1.3 that such a bound is
optimal. We will consider three regularization techniques: singular value decomposition,
Tikhonov regularization, and Landweber iterations.

The choice of a parameter γ is then obviously of crucial importance as the above
bound will not hold independently of γ. More precisely, the reconstruction error can be
decomposed as

‖xγ,δ − x‖H ≤ δ‖Rγ‖H + ‖RγAx− x‖H . (11.15)

Exercise 11.1.2 Prove this. The operator norm ‖Rγ‖H is defined as the supremum of
‖Rγx‖H under the constraint ‖x‖H ≤ 1.

We thus observe that two competing effects enter (11.15). The first effect comes from
the ill-posedness: as γ → 0, the norm ‖Rγ‖H tends to ∞ so γ should not be chosen too
small. The second effect comes from the regularization: as γ increases, RγA becomes
a less accurate approximation of identity so γ should not be chosen too large. Only
intermediate values of γ will provide an optimal reconstruction.
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Singular Value Decomposition

For a compact and injective operator A defined on an infinite dimensional Hilbert space
H, let us assume that we know it singular value decomposition defined as follows. Let
A∗ be the adjoint operator to A and λj > 0, j ∈ N the eigenvalues of the symmetric
operator A∗A. Then, the sequence µj =

√
λj for j ∈ N are called the singular values of

A. Since µj ≤ ‖A‖H , we order the singular values such that

µ1 ≥ µ2 ≥ · · · ≥ µn ≥ · · · > 0.

Multiple eigenvalues are repeated as many times as their multiplicity (which is neces-
sarily finite since the associated eigenspace for A∗A needs to be compact).

Then there exist two orthonormal systems (xj)j∈N and (yj)j∈N in H such that

Axj = µjyj and A∗yj = µjxj, for all j ∈ J. (11.16)

We call (µj, xj, yj) the singular system for A. Notice that

Ax =
∞∑
j=1

µj(x, xj)yj, A∗y =
∞∑
j=1

µj(y, yj)xj.

Here (x, xj) is the inner product in H, (x, xj)H . We then have the very useful charac-
terization of the Range of the compact and injective operator A:

Lemma 11.1.4 (Picard) The equation Ax = y is solvable in H if and only if∑
j∈N

1

µ2
j

|(y, yj)|2 <∞, (11.17)

in which case the solution is given by

x = A−1y =
∑
j∈N

1

µj
(y, yj)xj. (11.18)

The ill-posedness of the inverse problem appears very clearly in the singular value de-
composition. As j →∞, the singular values µj tend to 0. And they do so all the faster
that the inverse problem is ill-posed. We can extend the definition of ill-posed problems
in the sense that a compact operator generates a mildly ill-posed inverse problem of
order α > 0 when the singular values decay like j−α and generates a severely ill-posed
problem when the singular values decay faster than any j−m for m ∈ N.

So in order to regularize the problem, all we have to do is to replace too small
singular values by larger values. Let us define q(γ, µ) for γ > 0 and µ ∈ [0, ‖A‖] such
that

|q(γ, µ)| < 1, |q(γ, µ)| ≤ c(γ)µ, and q(γ, µ)− 1→ 0 as γ → 0, (11.19)

(not uniformly in µ obviously). Then we define the regularizing sequence

Rγy =
∑
j∈N

q(γ, µj)

µj
(y, yj)xj. (11.20)
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Compare to (11.18). As γ → 0, Rγ converges to A−1 pointwise. We are interested in
estimating (11.15) and showing that the error is optimal based on the assumed regularity
of x. The total error is estimated by using

‖Rγ‖H ≤ c(γ), ‖RγAx− x‖H =
∞∑
j=1

(
q(γ, µj)− 1

)2|(x, xj)|2. (11.21)

Exercise 11.1.3 Prove these relations.

We can now prove the following results:

Theorem 11.1.5 (i) Let us assume that x = A∗z with ‖z‖H ≤ E and that ‖yδ−Ax‖ ≤
δ, where yδ is the measurements. Choose q(γ, µ) and γ such that

|q(γ, µ)− 1| ≤ C1

√
γ

µ
, c(γ) ≤ C2√

γ
, γ =

C3δ

E
. (11.22)

Then we have that

‖xγ,δ − x‖H ≤
( C2√

C3

+ C1

√
C3

)√
δE. (11.23)

(ii) Let us assume that x = A∗Az with ‖z‖H ≤ E and that ‖yδ − Ax‖ ≤ δ, where yδ is
the measurements. Choose q(γ, µ) and γ such that

|q(γ, µ)− 1| ≤ C4
γ

µ2
, c(γ) ≤ C5√

γ
, γ = C6

( δ
E

) 2
3
. (11.24)

Then we have that

‖xγ,δ − x‖H ≤
( C5√

C6

+ C4C6

)
δ

2
3E

1
3 . (11.25)

Proof. Since x = A∗z, we verify that (x, xj) = µj(y, yj) so that

‖RγAx− x‖2
H =

∞∑
j=1

(
q(γ, µj)− 1

)2|(z, yj)|2 ≤ C2
1γ‖z‖2

H .

This implies that

δ‖Rγ‖H + ‖RγAx− x‖H ≤
C2δ√
γ

+ C1
√
γE.

Using (11.15) and the expression for γ yields (11.23).

Exercise 11.1.4 Using similar arguments, prove (11.25).

This concludes the proof.
We have thus defined an optimal regularization scheme for the inversion of Ax = y.
Indeed from the theory in Theorem 11.1.2 we know that up to some multiplicative
constants, the above estimates are optimal.
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It remains to find filters q(γ, µ) satisfying the above hypotheses. We propose two:

q(γ, µ) =
µ2

γ + µ2
, (11.26)

q(γ, µ) =

 1, µ2 ≥ γ,

0, µ2 < γ.
(11.27)

Exercise 11.1.5 Show that the above choices verify the hypotheses of Theorem 11.1.5.

Tikhonov Regularization

One of the main drawbacks of the theory presented in the preceding section is that in
most cases, the singular value decomposition of the operator is not analytically available
(although it is for the Radon transform; see [45, 46]), and is quite expensive to compute
numerically once the continuous problem has been discretized. It is therefore useful to
consider regularization techniques that do not depend on the SVD. One of the most
popular regularization techniques is the Tikhonov-Phillips regularization technique.

Solving Ax = y corresponds to minimizing ‖Ax − y‖H . Instead one may want to
minimize the regularized Tikhonov functional

Jγ(x) = ‖Ax− y‖2
H + γ‖x‖2

H , x ∈ H. (11.28)

For γ > 0 and A a linear bounded operator on H, we can show that the above functional
admits a unique minimizer xγ solving the following normal equations

A∗Axγ + γxγ = A∗y. (11.29)

Exercise 11.1.6 Prove the above statement.

We can thus define the regularizing sequence

Rγ = (γ + A∗A)−1A∗. (11.30)

The operator is bounded in H by ‖Rγ‖H ≤ Cγ−1/2 for all γ > 0. Notice that for a
compact operator A with singular system (µi, xi, yi), we verify that the singular value
decomposition of Rγ is

Rγy =
∞∑
j=1

µj
γ + µ2

j

(y, yj)xj. (11.31)

This means that the Tikhonov regularization corresponds to the SVD regularization with
filter given by (11.26) and implies that the Tikhonov regularization is optimal to inverse
problem with a priori regularity ‖x‖1 ≤ E or ‖x‖2 ≤ E. It is interesting to observe
that the Tikhonov regularization is no longer optimal when the a priori regularity of x
is better than ‖x‖2 ≤ E (see [39]).
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Let us make this observation more explicit. Let us consider the operator A given in
the Fourier domain by multiplication by 〈ξ〉−α for some α > 0. We verify that A∗ = A
and that Rγ is given in the Fourier domain by

Rγ = F−1
ξ→x

〈ξ〉−α

〈ξ〉−2α + γ
Fx→ξ, so that ‖Rγ‖ ≤

1

2
√
γ
.

Indeed, we check that x/(x2 + γ) ≤ 1/(2
√
γ) and attains its maximum at x =

√
γ. We

now verify that

I −RγA = F−1
ξ→x

γ

〈ξ〉−2α + γ
Fx→ξ,

so that for a function f ∈ Hβ(Rn), we have

‖f −RγAf‖ ≤ sup
〈ξ〉≥1

γ〈ξ〉−β

〈ξ〉−2α + γ
‖f‖Hβ(Rn).

Moreover the inequality is sharp in the sense that there exists functions f such that the
reverse inequality holds (up to a multiplicative constant independent of γ; Check this).
For β > 2α, the best estimate we can have for the above multiplier is that it is of order
O(γ) (choose for instance 〈ξ〉 = 1).

Exercise 11.1.7 Using (11.12) show that

γ〈ξ〉−2αθ

〈ξ〉−2α + γ
≤ γθ, 0 ≤ θ ≤ 1.

Show that the above inequality is sharp.

Let Af = g be the problem we want to solve and gδ the measurements so that ‖Af −
gδ‖L2(Rn) ≤ δ. Let us assume that f belongs to Hβ(Rn). We verify using (11.15) that
the error of the regularized problem is given by

‖f −Rγg
δ‖ ≤ δ

2
√
γ

+ γ
β
2α
∧1‖f‖Hβ(Rn). (11.32)

Here, a ∧ b = min(a, b). This implies that

‖f −Rγg
δ‖ ≤ Cδ

β
α+β
∧ 2

3‖f‖
α

α+β
∧ 1

3

Hβ(Rn)
, (11.33)

for a universal constant C. We therefore obtain that the Tikhonov regularization is
optimal according to Theorem 11.1.3 when 0 < β ≤ 2α. However, for all β > 2α, the
error between the Tikhonov regularization and the exact solution will be of order δ

2
3

instead of δ
β

β+α .

Exercise 11.1.8 More generally, consider an operator A with symbol a(ξ), i.e.,

A = F−1
ξ→xa(ξ)Fx→ξ,

such that 0 < a(ξ) ∈ C∞(Rn) and for some α > 0 and a∞ 6= 0,

a(ξ)

〈ξ〉α
→ a∞, as |ξ| → ∞. (11.34)
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(i) Show that A∗, the adjoint of A for the L2(Rn) inner product, satisfies the same
hypothesis (11.34).
(ii) Show that Rγ and Sγ = RγA− I are bounded operator with symbols given by

rγ(ξ) = (|a(ξ)|2 + γ)−1ā(ξ), sγ(ξ) = γ(|a(ξ)|2 + γ)−1,

respectively.
(iii) Assuming that f ∈ Hβ(R), show that (11.33) holds.

These results show that for the Radon transform, an a priori regularity of the func-
tion f(x) in H1(R2) is sufficient to obtain an error of order δ

2
3 . When the function is

smoother, a different technique from Tikhonov regularization is necessary to get a more
accurate reconstruction.

Landweber iterations

The drawback of the Tikhonov regularization is that it requires to invert the regulariza-
tion of the normal operator γ+A∗A. This inversion may be computationally expensive
in practice. The Landweber iteration method is an iterative technique in which no
inversion is necessary. It is defined to solve the equation Ax = y as follows

x0 = 0, xn+1 = (I − rA∗A)xn + rA∗y, n ≥ 0, (11.35)

for some r > 0. By induction, we verify that xn = Rny, where

Rn = r
n−1∑
k=0

(I − rA∗A)kA∗, n ≥ 1. (11.36)

Consider a compact operator A with singular system (µj, xj, yj). We thus verify that

Rny =
∞∑
j=1

1

µj

(
1− (1− rµ2

j)
n
)
(y, yj)xj. (11.37)

Exercise 11.1.9 Check (11.37).

This implies that Rn is of the form Rγ in (11.20) with γ = n−1 and

q(γ, µ) = 1− (1− rµ2)1/γ.

Exercise 11.1.10 Show that the above filter verifies the hypotheses (11.19) and those
of Theorem 11.1.5.

This implies that the Landweber iteration method is an optimal inversion method by
Theorem 11.1.5.
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Exercise 11.1.11 Show that the hypotheses of Theorem 11.1.5 are met provided that
the number of iterations n is chosen as

n = c
E

δ
, n = c

(E
δ

) 2
3
,

when ‖x‖1 ≤ E and ‖x‖2 ≤ E, respectively.

The above result shows that the number of iterations should be chosen carefully: when
n is too small, then RγA is a poor approximation of I, and when n is too large, then
‖Rγ‖H is too large. Unlike the Tikhonov regularization, we can show that the Landweber
iteration method is also optimal for stronger regularity assumptions on x than those
given in Theorem 11.1.5 (see [39] for instance).

Let us come back to the operator A with symbol a(ξ) = 〈ξ〉−α. We verify that Rn

and Sn = RnA− I have respective symbols

rn(ξ) =
1− (1− r〈ξ〉−2α)n

〈ξ〉−α
, sn(ξ) = −(1− r〈ξ〉−2α)n.

Exercise 11.1.12 (i) Show that sn(ξ)〈ξ〉−β is bounded by Cn−β/(2α) for 〈ξ〉 of order
n1/(2α). Deduce that for f ∈ Hβ(Rn), we have

‖Snf‖ ≤ Cn−
β
2α‖f‖Hβ(Rn).

(ii) Show that provided that n is chosen as

n = Cδ
−2α
α+β ‖f‖

2α
α+β

Hβ(Rn)
,

we have the estimate

δ‖Rn‖+ ‖Snf‖ ≤ Cδ
β

α+β ‖f‖
α

α+β

Hβ(Rn)
. (11.38)

(iii) Deduce that the Landweber iteration method is an optimal regularization technique
for all β > 0.
(iv) Generalize the above results for the operators described in Exercise 11.1.8.

We have thus obtained the interesting result that unlike the Tikhonov regularization
method described in (11.33), the Landweber iteration regularization can be made opti-
mal (by choosing the appropriate number of iterations n) for all choices on the regularity
in Hβ(Rn) of the object f .

Let us conclude this section by the following summarizing remark. The reason why
regularization was necessary was because the user decided that noise was too amplified
during the not-regularized inversions. Smoothness priors were then considered to restore
well-posedness. This corresponds to a choice of the factor β and a bound E. In addition,
we need to choose a regularization parameter, γ in the Tikhonov regularization algorithm
and the stopping iteration n in the Landweber iteration. How these choices are made
depends on the bound E but also on the estimated error δ. Various techniques have
been developed to choose γ or n a posteriori (Morozov principle, L-curve). All these
techniques require that δ be known. There is no free lunch. Regularization does require
prior information about the solution to mitigate the perceived lack of information in the
available data.
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11.2 Sparsity and other Regularization Priors

The regularization methods considered in the preceding section have a huge advantage:
the replace ill-posed linear systems of equations by well-posed, at least better-posed
(better-conditioned), linear systems as well. For instance, the inversion of A has been
replaced by that of A∗A+ γI in the simplest version of Tikhonov regularization. Their
main disadvantage is that they render the regularized solution typically smoother than
the “exact” solution. Such a smoothing is unavoidable with such regularizations.

The reason why smooth objects are well reconstructed by the smoothing regular-
ization method is that such objects can be represented by a small number of large
coefficients (e.g., the first Fourier modes in a Fourier series expansion). It turns out
that some objects are better represented in other bases. For instance, an image tends
to have sharp discontinuities, for instance between a bright area and a dark area. Some
bases, such as for instance those based on wavelets, will be much better than Fourier
bases to represent this type of information.

A general framework to account for such prior information is to recast the inverse
problem as seeking the minimum of an appropriate functional. Solving the inverse
problem then amounts to solving a optimization problem. Let us assume that we have
a problem of the form

M(u) = v,

and assume that vd are given data. Let us assume that a functional u 7→ R(u) incor-
porates the prior information about u in the sense that R(u) is small when u satisfies
the constraints. Let us assume also that ρ(u, v) is a function that we wish to use to
quantify the error between the available data vd and the forward model M(u). Then we
want to minimize ρ(v, vd) and at the same time minimize R(u). Both constraints can
be achieved by introducing a regularization parameter α and minimizing the sum

Fα(u) = ρ
(
M(u), vd

)
+ αR(u). (11.39)

Solving the inverse problem consists of minimizing the above functional to get

ûα = argmin Fα(u). (11.40)

These minimization problems often go by the name of Tikhonov regularization and may
be seen as generalizations of (11.28).

The main objective of regularization (or sparsity) theory is then to devise functions
ρ, R and a regularization parameter α, that best fits our prior information about the
problem of interest. Once such a problem has been formulated, it remains to devise a
method to solve such an optimization problem numerically. There is a vast literature
on the subject; for recent references see the two books [52, 53].

11.2.1 Smoothness Prior and Minimizations

The simplest class of regularizations consists of choosing ρ(u, v) = 1
2
‖D(u− v)‖2

H in the
H = L2 sense for an operator D that may be identity or an operator of differentiation if
small errors on derivatives of the solution matter in practice, and choosing R(u) also as
a quadratic functional, for instance R(u) = 1

2
‖Ru‖2

H , again for an operator R that may
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be identity or a differential operator. Then associated to the linear problem Au = v, we
have the minimization problem:

Fα(u) =
1

2
‖D(Au− vd)‖2

H +
α

2
‖Ru‖2

H . (11.41)

The main advantage of the above quadratic expression is that the Euler-Lagrange equa-
tions associated to the above minimization problem is the following linear system of
equations (

(DA)∗(DA) + αR∗R
)
u = (DA)∗Dvd. (11.42)

When D = R = I, this is nothing but (11.29). Provided that R is an invertible matrix,
then the above problem can be solved for all α > 0. We have seen in the preceding
section how the method converged (at least when D = R = I) as the noise in the data
and the regularization parameter α tend to 0.

11.2.2 Sparsity Prior and Minimizations

Choosing ρ(u, v) = 1
2
‖D(u − v)‖2

H for the misfit to the data may appear as relatively
“natural” as it corresponds to measuring noise in the H = L2 sense. The quadratic
functional R(u) = 1

2
‖Ru‖2

H is, however, much less justified in many settings.
Sometimes, prior knowledge about the object we wish to reconstruct shows that the

latter is sparse in a given representation (a given basis, say). Sparse means here that
the object is represented by a small number of large coefficients. For instance, an audio
signal may be represented by a finite number of frequencies. Images typically display
sharp edges that can be represented in a more economical fashion than pixel by pixel
values.

Let us assume that u is discrete and A a matrix to simplify the presentation. Let us
also assume that Bu is sparse, where B is a known matrix. Sparsity will be encoded by
the fact that the l1 norm of Bu is small. Penalizing the residual and the l1 norm yields
the minimization of

Fµ(u) = ‖Bu‖l1 +
µ

2
‖Au− vd‖2

l2
. (11.43)

This and similar minimization problems have been applied very successfully for a large
class of imaging problems.

However, minimizing Fµ above is computationally more intensive than solving (11.42).
Several algorithms have been developed to solve such minimization problems. We
present one strategy, called the split Bregman iteration, that is both efficient and rela-
tively easy to explain. The main idea is that when B and A are the identity operators,
then the above minimization can be performed for each component of u separately. In
the general case, we introduce

d = Bu,

and replace the above minimization by

min
u,d
‖d‖l1 +

µ

2
‖Au− vd‖2

l2
+
λ

2
‖d−Bu‖2

l2
. (11.44)

Choosing λ sufficiently large provides a good approximation of the problem we wish to
solve. Alternatively, we can solve a series of problems of the above form and show that



11.3. BAYESIAN FRAMEWORK AND REGULARIZATION 203

we minimize (11.43) in the limit; we do not present the details here and refer the reader
to [32].

Now the minimization of (11.44) can be performed iteratively by successively min-
imizing for u and for d. The minimization for u becomes a linear problem while the
minimization for d can be performed for each coordinate independently (this is called
soft shrinkage). The iterative algorithm then converges [32]. More precisely, the solution
of

min
u

µ

2
‖Au− vd‖2

l2
+
λ

2
‖d−Bu‖2

l2
,

is given by

(µA∗A+ λB∗B)u = µA∗vd + λd. (11.45)

This is a linear problem that admits a unique solution. Now the solution of

min
d
‖d‖l1 +

λ

2
‖d−Bu‖2

l2
= min

d

J∑
j=1

|dj|+
λ

2
|dj−(Bu)j|2 =

J∑
j=1

min
dj
|dj|+

λ

2
|dj−(Bu)j|2.

Each element in the sum can then be minimized separately. We find that the solution
of

min
d
|d|+ λ

2
|d− a|2, (11.46)

is given by the soft thresholding

d = sgn(a) max
(
|a| − 1

λ
, 0
)
.

We have presented this algorithm to show that replacing a smoothness regularization
as in (11.41) by a sparsity regularization as in (11.43) increased the computational
complexity of the reconstruction algorithm: instead of solving one linear system, we have
to iteratively solve linear systems of the form (11.45) and soft thresholdings given by
(11.46). When the sparsity assumptions are valid, however, these methods have shown
to be greatly beneficial in many practical settings of medical imaging; see [52, 53].

11.3 Bayesian framework and regularization

The penalty regularization framework seen in the preceding two sections is very efficient
when the data are sufficiently informative. When the data are very informative and noise
relatively small, then no real regularization is necessary. When data are less informative
but still quite informative, prior information becomes necessary and smoothness and
sparsity type priors allow us to still obtain very accurate reconstructions. When data
are even less informative, for instance because noise is very large, or because the problem
is severely ill-posed, then sparsity priors are typically no longer sufficient. What one
typically obtains as a result is a function that resembles the minimum of the penalization
term. In some cases, that may not be desirable. Also, additional prior information may
occasionally be known, for instance that next to a black pixel, there is never a blue
pixel. Such information is difficult to include in a penalization method.
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A fairly versatile methodology to include various prior informations is the Bayesian
framework. To simplify the presentation slightly, let us assume that the problem of
interest is

y = M(x) + n, (11.47)

where M is the measurement operator, x the unknown set of coefficients, y the mea-
surements and n models additive noise in the data.

The main assumption of Bayesian inversions is to assume that x belongs to a class of
possible models X and that each x ∈ X is given an a priori probability of being the “true”
coefficient. The associated probability (density) π(x) is called the prior distribution. A
second ingredient in the Bayesian framework is the model for the noise n. We denote
by πn(n) the probability distribution of n.

Let us now define

π(y|x) =
π(x, y)

π(x)

the conditional probability density of y knowing x with π(x, y) the probability density
of x and y. Note that π(x) =

∫
π(x, y)dy as a marginal density so that the above

conditional probability density is indeed a probability density (integrating to 1 in y).
Note that knowledge of π(y|x) is equivalent to knowledge of πn since

π(y|x) = πn(y −M(x)) for each fixed x.

Bayes’ rule then essentially states that

π(x|y)π(y) = π(y|x)π(x) = π(x, y). (11.48)

In our inverse problem where y is the measured data and x the unknown coefficients,
this means

π(x|y) =
1

π(y)
π(y|x)π(x) ∝ π(y|x)π(x), (11.49)

where ∝ means proportional to, i.e., up to a normalizing constant (here 1/π(y)). In
other words, if we know the prior density π(x) and the likelihood function π(y|x), then
by Bayes’ rule, we know π(x|y), which is the posterior probability (density).

Let us recapitulate the main ingredients of the Bayesian formalism. We assume the
prior distribution π(x) known as an indication of our prior beliefs about the coefficients
before data are acquired. We assume knowledge of the likelihood function π(y|x), which
as we have seen is a statement about the noise model in the experiment. From these
two prior assumptions, we use Bayes’ rule to infer the posterior distribution π(x|y) for
x knowing the data.

11.3.1 Penalization methods and Bayesian framework

Before going into the advantages and drawbacks of the method, we first show that
penalization methods can be seen as an application of the Bayesian framework. Let
R(x) be a given function and assume that the prior is given by the Gibbs distribution:

π(x) ∝ e−R(x).
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Now assume that the likelihood function is of the form

π(y|x) ∝ e−ρ(y−M(x)),

where ρ is a distance function. Then by Bayes’ rule, we find that

π(x|y) ∝ e−
(
ρ(y−M(x))+R(x)

)
.

The Maximum A Posteriori (MAP) xMAP is the parameter that maximizes the pos-
terior distribution, or equivalently the minimum of the functional

F(x) = ρ(y −M(x)) +R(x).

Therefore, for appropriate choices of the prior and likelihood function, we retrieve the
penalization methods seen in the preceding section.

Note that the minimization problem is solved by linear algebra when both ρ and R
are quadratic functionals. For instance if πn(n) ∼ N (0,Σ) a multivariate Gaussian with

correlation matrix Σ, then we have ρ(n) ∝ e−
1
2
ntΣ−1n. Similarly, for π(x) ∼ N (0,Γ),

then R(x) ∝ e−
1
2
xtΓ−1x so that we need to minimize

F(x) =
1

2
(y −Mx)tΣ−1(y −Mx) +

1

2
xtΓ−1x. (11.50)

If M is a linear operator, then the solution to the minimization problem is, as we already
saw, solution of

(M∗Σ−1M + Γ−1)x = M∗Σ−1y. (11.51)

The Bayesian framework can then be used to recover the Tikhonov regularization of
linear equations. Moreover, it gives an explicit characterization of the correlation ma-
trices Σ and Γ as the co-variance functions of the measurement noise and of the prior
assumptions on the coefficients, respectively.

Note that the l1 minimization corresponds to a choice R(x) =
∑

i |xi|. This corre-
sponds to assuming that each pixel value satisfies independent and identically distributed
random variables with a Laplace distribution. We thus also recover the sparsity regular-
izations using the Bayesian framework. If we expect nearby pixels to be correlated, then
more complex prior models or functionals R(x) need to be constructed. This is a very
active area of research. Although the derivation of the “best” functional is often more
an art than grounded in first principles, the Bayesian framework sometimes allows for
very “pleasing” reconstructions (we recall that the ill-posedness of an inverse problem
is a subjective notion).

11.3.2 Computational and psychological costs of the Bayesian
framework

We have seen that the Bayesian framework reduced to an optimization problem when
the Maximum A Posteriori (MAP) xMAP is what we are looking for. The Bayesian
framework allows one to obtain much more information, at least in theory, since the
output of the procedure is the full posterior distribution π(x|y) and not only its argmax.
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In practice, however, we are faced with daunting tasks: first of all, how do we sample
what is often a very high dimensional distribution π(x|y)? And second of all, even if
sampling is possible, how does one represent such a huge object practically? These two
questions severely limit the applicability of Bayesian frameworks in practice.

A third, and in some sense more fundamental and structural, question pertains to the
choice of the prior π(x). Where should that prior information come from? There is no
“good” answer to this fundamental yet ill-formulated question. In some sense, we have
already partially answered it: since the user decided that adding no prior information
was not working in the sense that “noise” had too large an effect on the reconstruction,
then the user has to come up with another model. There is no such a thing as a “non-
informative” prior, since the user decided that a prior was necessary. (If data alone were
sufficient to obtain “good” reconstructions, then the Bayesian framework would not be
necessary.) If data are not sufficient, then the Bayesian framework provides a very
versatile framework for the user to provide information about the problem that helps to
compensate for what is not present in the data. Some researchers will not be satisfied
with this way of addressing the inverse problem and the notion of “compensating” for the
lack of data. This is a perfectly reasonable position. However, the Bayesian framework
at least has this very appealing feature: it provides a logical mapping from the prior
information, namely the prior distribution and the likelihood function, to the outcome of
the procedure, namely the posterior distribution. If nothing else, it can therefore serve as
a very valuable tool to guide intuition and to search what types of prior informations are
necessary for a given set of constraints on the posterior distribution. Moreover, nothing
prevents us from estimating how the posterior distribution is sensitive to variations in
the prior information. This strategy, sometimes referred to as Robust Bayesian analysis,
allows one understand which features of the reconstructed parameters strongly or weakly
depend on the choices of the prior density and likelihood functions.

Now that the psychological cost of the Bayesian framework has been taken into ac-
count, let us come back to its computational cost, which still poses enormous challenges.
Let us first address the representation of the posterior distribution. Typically, moments
of the posterior distribution are what we are interested in. For instance, one may be
interested in the first moment (a vector) and the variance (a matrix)

xm =

∫
xπ(x|y)dx, Γx =

∫
x⊗ x π(x|y)dx− xm ⊗ xm. (11.52)

Of interest are also various quantiles of the posterior distribution, for instance the prob-
ability that xj be larger than a number γ:

∫
π(x|y)χ(xj > γ)dx, where χ(X) is the

indicatrix function of the set X equal to 1 on X and to 0 otherwise.
For each of these moments of the posterior distribution, we need to be able to sample

π(x|y)dx. In a few cases, the sampling of π(x|y)dx may be straightforward, for instance
when π(y|x) has a Gaussian structure. In most cases, however, sampling is a difficult
exercise. The most versatile method to perform such a sampling is arguably the Markov
Chain Monte Carlo (MCMC) method. The objective of MCMC samplers is to generate
a Markov chain X i for i ∈ N whose invariant distribution (distribution at convergence
when the algorithm converges) is the posterior distribution. There are two main MCMC
samplers, the Gibbs sampler and the Metropolis-Hastings sampler. The latter is defined
as follows. We assume that we want to sample a distribution π(x|y).
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Let q(x, x′) be a given, positive, transition density from the vector x to the vector x′

(it thus sums to 1 integrated in all possible vectors x′ for each x). Let us then define

α(x, x′) := min
(q(x, x′)π(x′|y)

q(x′, x)π(x|y)
, 1
)
. (11.53)

Note that the above quantity, which is all we need about π(x|y) in the Metropolis-

Hastings sampler, depends only on π(x′|y)
π(x|y)

and thus is independent of the normalizing

constant of π(x|y), which is typically not known in the Bayesian framework, and whose
estimation is typically expensive computationally.

Let X i the current state of the Markov chain. Let X̃ i+1 be drawn from the transition
kernel q(X i, x′). Then with probability α(X i, X̃ i+1), we accept the transition and set
X i+1 = X̃ i+1 while with probability 1 − α(X i, X̃ i+1), we reject the transition and set
X i+1 = X i.

The transition probability of the chain from x to x′ is thus p(x, x′) = α(x, x′)q(x, x′)
while the probability to stay put at x is 1 −

∫
p(x, x′)dx′. The construction is such

that π(x|y)p(x, x′) = p(x′, x)π(x′|y), which means that π(x|y)dy is indeed the invariant
distribution of the Markov chain. In practice, we want independent samples of π(x|y)
so that the following Monte Carlo integration follows from an application of the law of
large numbers (ergodicity), for instance:∫

f(x)π(x|y)dx ∼ 1

|I|
∑
i∈I

f(X i), (11.54)

for any reasonable (continuous) functional f . Such a rule is accurate if the X i are
sampled according to π(x|y)dy and are sufficiently independent. This is for instance
achieved by choosing I = {1 ≤ i ≤ imax, i = Nj, j ∈ N}. For instance, we can take
imax = 107 and N = 1000 so that I is composed of |I| = 104 points chosen every 1000
points in the Metropolis-Hastings Markov chain. For an accuracy equal to

√
|I| = 0.01

(as an application of the central limit theorem to estimate the error in (11.54)), we thus
need 107 evaluations of π(x|y). Using Bayes’ rule, this is proportional to π(x)π(y|x),
where the latter likelihood function requires that we solve a forward problem (for a given
x drawn from the prior π(x)) to estimate the law of the “data” y. In other words, the
construction of the above statistical moment with an accuracy of order 10−2 requires that
we solve 107 forward problems. In many practical situations, this is an unsurmountable
computational cost. Moreover, this assumes that the transition q(x, x′) has been chosen
in such a way that every 1000 samples X i are indeed sufficiently independent. This is
very difficult to achieve in practice and is typically obtained by experienced users rather
than from sound, physics- or mathematics- based principles.

Note that in practice, it has been observed that I in (11.54) should be the set of
all runs 1 ≤ i ≤ imax. In other words, there is no gain in throwing away points X i in
the evaluation of the integrals. However, the above heuristics are correct: the error in
the approximation (11.54) is indeed proportional to the square root of the number of
independent components in {X i} and not

√
imax.

Many methodologies have been developed to improve the efficiency of MCMC algo-
rithms. It is however fair to say that even with nowadays computational capabilities,
many problems of interest are totally out of reach using the standard Bayesian frame-
work. That said, it is still a very versatile methodology that goes a long way to address
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the main problem of this chapter, which we recall is: the user decided that adding no
prior information was not working and thus something had to be done.

General references on the use of the Bayesian framework in inverse problems include
[37, 59].



Chapter 12

Geometric Priors and
Parameterizations

In this chapter, we consider a few other methods to include prior information one might
possess about the unknown objects of interest. The Bayesian framework introduced in
the preceding chapter is quite versatile, but it is computationally extremely expensive
because deterministic reconstructions are replaced by a probability measure on possible
reconstructions, which is often daunting to sample and visualize from a numerical point
of view.

Other physically motivated methods have been developed to incorporate prior infor-
mation. In one such method, we aim to reconstruct the support of an inclusion rather
than its full description and assume that such an inclusion is embedded in a known
medium. Several techniques have been developed to do this and we focus here on a
method called the factorization method. The factorization method is a functional ana-
lytical tool that allows us to separate the influence of the unknown inclusion from that
of the known background. It is considered in a simple setting in section 12.1.

In another method, we give up the hope to perform global reconstructions and replace
the unknown object by a low-dimensional parameterization. Any finite dimensional
problem that is injective is necessarily well-posed essentially as an application of the
Fredholm alternative. One such quite useful parameterization consists of assuming that
the inclusion has small volume. We then perform asymptotic expansions in its volume
to understand the leading influence of such an inclusion on available measurements.
The reconstruction then focuses on the first coefficients appearing in the asymptotic
expansion assuming the surrounding background to be known. The method is presented
in a very simple setting in section 12.2.

12.1 Reconstructing the domain of inclusions

The reconstruction of physical parameters in an elliptic equation from boundary mea-
surements, such as the Neumann-to-Dirichlet map, is a severely ill-posed problem. One
should therefore not expect to stably reconstruct more than a few coefficients modeling
the physical parameters, such as for instance the first Fourier modes in a Fourier series
expansion as we saw in the smoothness penalization considered in Chapter 11.

In certain applications, knowing the first few coefficients in a Fourier series expansion

209
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is not what one is interested in. In this chapter, we assume that the physical parameters
are given by a background, which is known, and an inclusion, from which we only know
that it differs from the background. Moreover, we are not so much interested in the
detailed structure of the inclusion as in its location. We thus wish to reconstruct an
interface separating the background from the inclusion.

To reconstruct this interface, we use the method of factorization. The method pro-
vides a constructive method to obtain the support of the inclusion from the Neumann-
to-Dirichlet (NtD) boundary measurements. Notice that the NtD measurements allow
us a priori to reconstruct much more than the support of the inclusion. However, be-
cause we restrict ourselves to this specific reconstruction, we can expect to obtain more
accurate results on location of the inclusion than by directly reconstructing the physical
parameters on the whole domain.

12.1.1 Forward Problem

We consider here the problem in impedance tomography. The theory generalizes to a
certain extent to problems in optical tomography.

Let γ(x) be a conductivity tensor in an open bounded domain X ∈ Rn with Lipschitz
boundary ∂X. We define Σ, a smooth surface in X, as the boundary of the inclusion. We
denote by D the simply connected bounded open domain such that Σ = ∂D. This means
that D is the domain “inside” the surface Σ. We also define Dc = X\D, of boundary
∂Dc = ∂X ∪ Σ. We assume that γ(x) is a smooth known background γ(x) = γ0(x) on
Dc, and that γ and γ0 are smooth but different on D. For γ0 a smooth known tensor
on the full domain X, this means that γ jumps across Σ so that Σ is the surface of
discontinuity of γ. More precisely, we assume that the n× n symmetric tensor γ0(x) is
of class C2(X) and positive definite such that ξiξjγ0ij(x) ≥ α0 > 0 uniformly in x ∈ X
and in {ξi}ni=1 = ξ ∈ Sn−1, the unit sphere in Rn. Similarly, the n× n symmetric tensor
γ(x) is of class C2(D)⊗C2(Dc) (in the sense that γ(x)|D can be extended as a function of
class C2(D) and similarly for γ(x)|Dc) and positive definite such that ξiξjγij(x) ≥ α0 > 0
uniformly in x ∈ X and in {ξi}ni=1 = ξ ∈ Sn−1.

The equation for the electric potential u(x) is given by

∇ · γ∇u = 0, in X

ν · γ∇u = g on ∂X∫
∂X

u dσ = 0.

(12.1)

Here, ν(x) is the outward unit normal to X at x ∈ ∂X. We also denote by ν(x)
the outward unit normal to D at x ∈ Σ. Finally g(x) is a mean-zero current, i.e.,∫
∂X
gdσ = 0, imposed at the boundary of the domain.
The above problem admits a unique solution H1

0 (X), the space of functions in u ∈
H1(X) such that

∫
∂X
udσ = 0. This results from the variational formulation of the

above equation

b(u, φ) ≡
∫
X

γ∇u · ∇φdx =

∫
∂X

gφdσ(x) ≡ l(φ), (12.2)
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holding for any test function φ ∈ H1
0 (X). Indeed from a Poincaré-like inequality, we

deduce that b(u, v) is a coercive and bounded bilinear form on H1
0 (X) and the existence

result follows from the Lax-Milgram theorem. Classical trace estimates show that u|∂X ∈
H

1
2
0 (∂X), the space of functions v ∈ H 1

2 (∂X) such that
∫
∂X
vdσ = 0.

We define the Neumann-to-Dirichlet operator ΛΣ, depending on the location of the
discontinuity Σ, as

ΛΣ : H
− 1

2
0 (∂X) −→ H

1
2
0 (∂X), g 7−→ u|∂X , (12.3)

where u(x) is the solution to (12.1) with boundary normal current g(x). Similarly, we
introduce the “background” Neumann-to-Dirichlet operator Λ0 defined as above with
γ replaced by the known background γ0. To model that the inclusion has a different
conductivity from the background, we assume that γ satisfies either one of the following
hypotheses

γ(x)− γ0(x) ≥ α1 > 0 on D, γ0(x) = γ(x), on Dc, (12.4)

γ0(x)− γ(x) ≥ α1 > 0 on D, γ0(x) = γ(x), on Dc, (12.5)

for some constant positive definite tensor α1. The tensor inequality γ1 ≥ γ2 is meant in
the sense that ξiξj(γ1,ij − γ2,ij) ≥ 0 for all ξ ∈ Rn.

12.1.2 Factorization method

The purpose of the factorization method is to show that

Λ0 − ΛΣ = L∗FL, (12.6)

where L and L∗ are operators in duality that depend only on γ|D = (γ0)|D and F or

−F is an operator that generates a coercive form on H
1
2
0 (Σ) when (12.4) or (12.5) are

satisfied, respectively. The operators are constructed as follows. Let v and w be the
solutions of

∇ · γ∇v = 0, in Dc

ν · γ∇v = φ on ∂X

ν · γ∇v = 0 on Σ∫
Σ

vdσ = 0,

∇ · γ∇w = 0, in Dc

ν · γ∇w = 0 on ∂X

ν · γ∇w = −φ on Σ∫
Σ

wdσ = 0.

(12.7)

These equations are well-posed in the sense that they admit solutions in H1(Dc) with

traces in H
1
2 (Σ) and in H

1
2 (∂X) at the boundary of Dc. We then define the operator

L, which maps φ ∈ H−
1
2

0 (∂X) to v|Σ ∈ H
1
2
0 (Σ), where v is the unique solution to the left

equation in (12.7), and the operator L∗, which maps φ ∈ H−
1
2

0 (Σ) to w|∂X , where w is
the unique solution to the right equation in (12.7). We verify that both operators are
in duality in the sense that

(Lφ, ψ)Σ ≡
∫

Σ

ψLφ dσ =

∫
∂X

φL∗ψ dσ ≡ (φ, L∗ψ)∂X .
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Let us now define two operators GΣ and G∗Σ as follows. For any quantity f defined
on D ∪Dc, we denote by f+(x) for x ∈ Σ the limit of f(y) as y → x and y ∈ Dc, and
by f−(x) the limit of f(y) as y → x and y ∈ D. Let v and w be the unique solutions to
the following problems

∇ · γ∇v = 0, in X\Σ

[v] = 0, on Σ

[ν · γ∇v] = 0 on Σ

ν · γ∇v = g on ∂X∫
Σ

v dσ = 0

∇ · γ∇w = 0, in X\Σ

[w] = φ, on Σ

[ν · γ∇w] = 0 on Σ

ν · γ∇w = 0 on ∂X∫
∂X

w dσ = 0.

(12.8)

We define GΣ as the operator mapping g ∈ H−
1
2

0 (∂X) to GΣg = ν · γ∇v+
|Σ ∈ H

− 1
2

0 (Σ)

and the G∗Σ as the operator mapping φ ∈ H
1
2
0 (Σ) to G∗Σφ = w|∂X ∈ H

1
2
0 (∂X), where v

and w are the unique solutions to the above equations (12.8).
Except for the normalization

∫
Σ
v dσ = 0, the equation for v is the same as (12.1)

and thus admits a unique solution in H1(X), say. Moreover integrations by parts on Dc

imply that ∫
Σ

ν · γ∇v+ dσ =

∫
∂X

g dσ = 0.

This justifies the well-posedness of the operator GΣ as it is described above. The oper-
ator G∗Σ is more delicate. We first obtain that for any smooth test function ψ,∫

Dc
γ∇w · ∇ψ dx+

∫
Σ

ν · γ∇wψ+ dσ = 0∫
D

γ∇w · ∇ψ dx−
∫

Σ

ν · γ∇wψ− dσ = 0,

so that ∫
X

γ∇w · ∇ψ dx =

∫
Σ

(−ν · γ∇w) [ψ] dσ. (12.9)

It turns out that ‖ν ·γ∇w‖
H
− 1

2
0 (Σ)

is bounded by the norm of γ∇w in H(div,X) (see [31]).

This and a Poincaré-type inequality shows that the above right-hand side with ψ = w is
bounded by C‖φ‖2

H
1
2
0 (Σ)

. Existence and uniqueness of the solution w ∈ H1(D)⊗H1(Dc)

to (12.8) is then ensured by an application of the Lax-Milgram theorem. This also shows
that the operator G∗Σ as defined above is well-posed.

Integrations by parts in the equation for v in (12.8) by a test function ϕ yields∫
D

γ∇u · ∇ϕ dx−
∫

Σ

ν · γ∇vϕ−dσ = 0∫
Dc
γ∇v · ∇ϕ dx+

∫
Σ

ν · γ∇vϕ+dσ =

∫
∂X

gϕ dσ,
(12.10)

from which we deduce that∫
X

γ∇v · ∇ϕ =

∫
∂X

gϕ−
∫

Σ

(GΣg)[ϕ]. (12.11)
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That GΣ and G∗Σ are in duality in the sense that∫
Σ

GΣg φ dσ =

∫
∂X

g G∗Σφ dσ, (12.12)

follows from (12.11) with ϕ = w and (12.9) with ψ = v since [v] = 0.

We finally define FΣ as the operator mapping φ ∈ H
1
2
0 (Σ) to FΣφ = −ν · γ∇w ∈

H
− 1

2
0 (Σ), where w is the solution to (12.8). Based on the above results, this is a well-

posed operator. Moreover, we deduce from (12.9) that

(FΣ[w], [ψ])Σ =

∫
X

γ∇w · ∇ψ dx = ([w], FΣ[ψ])Σ, (12.13)

so that FΣ = F ∗Σ. Upon choosing [w] = [ψ], we find that FΣ is coercive on H
1
2
0 (Σ). This

implies among other things that FΣ is injective.
We now notice that

G∗Σ = L∗FΣ.

This follows from the uniqueness of the solution to the elliptic problem on Dc with
conditions defined on ∂Dc = Σ∪∂X. By duality, this also implies that GΣ = FΣL. The
operators G0 and F0 are defined similarly except that γ is replaced by γ0 in (12.8). Let

us finally define the operator M , which maps g ∈ H−
1
2

0 (∂X) to u|∂X ∈ H
1
2
0 (∂X), where

u is the solution to

∇ · γ∇u = 0, in Dc

ν · γ∇u = 0, on Σ

ν · γ∇u = g, on ∂X∫
∂X

u dσ = 0.

(12.14)

Except for the normalization, the operator M is the same as the operator L (so that
L − M is proportional to identity) and is thus well-posed. We now verify from the
linearity of the elliptic problems that

ΛΣ = M − L∗GΣ = M − L∗FΣL, Λ0 = M − L∗G0 = M − L∗F0L. (12.15)

We thus deduce the main factorization result of this section, namely that

Λ0 − ΛΣ = L∗FL, F = FΣ − F0. (12.16)

The above result would not be very useful if F did not have specific properties. We

now show that F or −F generates a coercive form on H
1
2
0 (Σ) and may be written as

B∗B for some surjective operator B∗. Note that F ∗ = F since both FΣ and F0 are
self-adjoint.

We denote by wΣ the solution w to (12.8) and by w0 the solution to the same equation
with γ replaced by γ0. Upon multiplying the equation for wΣ by w0 and subtracting the
equation for w0 multiplied by wΣ, we obtain since γ = γ0 on Dc that∫

D

(γ − γ0)∇w0 · ∇wΣ dx =

∫
Σ

(ν · γ∇wΣw
−
0 − ν · γ∇w0w

−
Σ)dσ

0 =

∫
Σ

(ν · γ∇wΣw
+
0 − ν · γ∇w0w

+
Σ)dσ.
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Notice that both γ and ∇wΣ jump across Σ but that ν · γ∇wΣ does not. This yields
that ∫

D

(γ − γ0)∇w0 · ∇wΣ dx =

∫
Σ

(FΣ − F0)φφ dσ =

∫
Σ

Fφφ dσ. (12.17)

Let us now introduce δw = w0−wΣ. Upon multiplying∇·γ0∇δw+∇·(γ0−γ)∇wΣ =
0 by δw and integrating by parts on Dc and D we deduce that∫

X

γ0∇δw · ∇δw dx+

∫
D

(γ − γ0)∇wΣ · ∇wΣ dx =

∫
D

(γ − γ0)∇w0 · ∇wΣ dx.

By exchanging the roles of the indices Σ and 0 we also obtain∫
X

γ∇δw · ∇δw dx+

∫
D

(γ0 − γ)∇w0 · ∇w0 dx =

∫
D

(γ0 − γ)∇w0 · ∇wΣ dx.

Combining these results with (12.17) we deduce that∫
Σ

Fφφ dσ =

∫
X

γ0∇δw · ∇δw dx+

∫
D

(γ − γ0)∇wΣ · ∇wΣ dx∫
Σ

−Fφφ dσ =

∫
X

γ∇δw · ∇δw dx+

∫
D

(γ0 − γ)∇w0 · ∇w0 dx.
(12.18)

Let us assume that (12.4) holds. Then F generates a coercive form on H
1
2
0 (Σ). Indeed,

let us assume that the right-hand side of the first equality above is bounded. Then by
a Poincaré-type inequality, we have δw ∈ H1(X) and wΣ|D ∈ H1(D) thanks to (12.4).

This implies that (ν ·γ∇wΣ)|Σ ∈ H−
1
2 (Σ) and thus based on (12.8) that wΣ|Dc ∈ H1(Dc).

This in turn implies that both w+
Σ and w−Σ belong to H

1
2 (Σ) so that their difference

φ ∈ H
1
2
0 (Σ). Thus, we have shown the existence of a positive constant C such that

‖φ‖
H

1
2
0 (Σ)
≤ C(Fφ, φ)

1
2
Σ. (12.19)

Exchanging the indices Σ and 0 also yields the existence of a constant C under hypothesis
(12.5) such that

‖φ‖
H

1
2
0 (Σ)
≤ C(−Fφ, φ)

1
2
Σ. (12.20)

In what follows, we assume that (12.4) and (12.19) hold to fix notation. The final results
are not modified when (12.5) and (12.20) hold instead.

The operator F is defined fromH
1
2
0 (Σ) toH

− 1
2

0 (Σ), which have not been identified yet.
So writing F = B∗B requires a little bit of work. Let I be the canonical isomorphism

between H
− 1

2
0 (Σ) and H

1
2
0 (Σ). Since it is positive definite, we can decompose it as

I = J ∗J , J : H
− 1

2
0 (Σ) → L2

0(Σ), J ∗ : L2
0(Σ) → H

1
2
0 (Σ).

Both J and J ∗ are isometries as defined above. We can thus recast the coercivity of F
as

(Fφ, φ) = (FJ ∗u,J ∗u) = (JFJ ∗u, u) ≥ α‖φ‖2

H
1
2
0 (Σ)

= α‖u‖2
L2
0(Σ).
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So JFJ ∗ as a self-adjoint positive definite operator on L2(Σ) can be written as C∗C,
where C and C∗ are bounded operators from L2

0(Σ) to L2
0(Σ). Since

‖Cu‖2
L2
0(Σ) ≥ α‖u‖2

L2
0(Σ),

we deduce that C∗ is surjective. We thus obtain that F = B∗B where B = C(J ∗)−1

maps H
1
2
0 (Σ) to L2

0(Σ) and its adjoint operator B∗ = J −1C∗ maps L2
0(Σ) to H

1
2
0 (Σ).

Since J is an isomorphism, we deduce that B∗ is surjective.
From the above calculations we obtain that

Λ0 − ΛΣ = L∗FL = L∗B∗(L∗B∗)∗ = A∗A, A = BL.

Since the Range of (A∗A)
1
2 for A acting on Hilbert spaces is equal to the Range of A∗,

we deduce that
R((Λ0 − ΛΣ)

1
2 ) = R(L∗B∗) = R(L∗) (12.21)

since B∗ is surjective. The latter is shown as follows. We always have that R(L∗B∗) ⊂
R(L∗). Now for y ∈ R(L∗) there is x such that y = L∗x and since B∗ is surjective u
such that y = L∗B∗x so that y ∈ R(L∗B∗); whence R(L∗) ⊂ R(L∗B∗).

When (12.5) and (12.20) hold instead of (12.4) and (12.19), we deduce that

R((ΛΣ − Λ0)
1
2 ) = R(L∗), (12.22)

instead of (12.21). In both cases, we have shown the following result.

Theorem 12.1.1 Provided that (12.4) or (12.5) holds, the range of the operator L∗

defined in (12.7) is determined by the Neumann-to-Dirichlet operator ΛΣ and (12.22)
holds.

12.1.3 Reconstruction of Σ

The above theorem gives us a method to reconstruct Σ: we need to find a family of
functions that belong to the Range of L∗ when some probe covers D and do not belong
to it when the probe covers Dc. Notice that the operator L∗ does not depend on the
domain D and thus depends only on the tensor γ0 and the surface Σ. Consequently,
the reconstruction of Σ is independent of γ on D, except for the existence of a positive
definite tensor α0 such that (12.4) or (12.5) holds.

Let us now introduce the family of functions N(·; y) indexed by the parameter y ∈ X
solution of

∇ · γ0∇N(·; y) = δ(· − y), in X

ν · γ0∇N(·; y) = 0 on ∂X∫
∂X

N(·; y) dσ = 0.

(12.23)

We define the family of functions gy(x) = N(x; y)|∂X on ∂X. Then we have the following
result:

Theorem 12.1.2 The function gy(x) belongs to R(L∗) when y ∈ D and does not belong
to R(L∗) when y ∈ Dc.



216 CHAPTER 12. GEOMETRIC PRIORS AND PARAMETERIZATIONS

This theorem provides us with a constructive method to image Σ = ∂D. For each
y ∈ X, all we have to do is to solve (12.23) and verify whether the trace on ∂X belongs

to the Range of (±(Λ0 − ΛΣ))
1
2 , which can be evaluated from the known boundary

measurements. Only when the verification is positive do we deduce that y ∈ D.
Proof. The proof of the theorem is as follows. When y ∈ D, we have that ν ·

γ∇N(x; y)|Σ ∈ H
− 1

2
0 (Σ) and ∇ · γ0∇N(·; y) = 0 on Dc so that gy ∈ R(L∗). Let us

now assume that y ∈ Dc and gy(x) ∈ R(L∗). Then there exists φ ∈ H−
1
2

0 (Σ) such that
gy = L∗φ = w|∂X , where w is the solution to (12.7).Let B(y; ε) be the ball of radius
ε centered at y for ε sufficiently small. On Dc\Bε, both w and gy satisfy the same
equation. By uniqueness of the solution to the Cauchy problem imposing Dirichlet
data and vanishing Neumann data on ∂X, we deduce that w = gy on Dc\Bε. On
ωε = Bε0\Bε for some fixed ε0 > 0, we verify that the H1(ωε) norm of w remains
bounded independently of ε, which is not the case for the fundamental solution gy;
whence the contradiction implying that gy is not in the Range of L∗ when y ∈ Dc.

The factorization method is one example in the class of so-called qualitative recon-
struction methodologies. The interested reader is referred to [25, 40, 48] for additional
information about such methods.

12.2 Reconstructing small inclusions

This second section concerns the reconstruction of small inclusions. We have seen that
the reconstruction of diffusion or absorption coefficients in an elliptic equation resulted
in a severely ill-posed problem. The previous section dealt with the issue by reconstruct-
ing the support of an inclusion instead of its detailed structure. Because the support of
the inclusion remains an infinite dimensional object, the stability of the reconstruction
is still a severely ill-posed problem. Here we further simplify the problem by assuming
that the inclusions have small support. This introduces a small parameter allowing us
to perform asymptotic expansions. We can then characterize the influence of the inclu-
sion on the boundary measurements by successive terms in the expansion. The interest
of such a procedure is the following. Since high-order terms in the expansion become
asymptotically negligible, the procedure tells us which parameters can be reconstruction
from a given noise level in the measurements and which parameters cannot possibly be
estimated. Moreover, each term in the asymptotic expansion is characterized by a finite
number of parameters. This implies that by truncating the expansion, we are param-
eterizing the reconstruction with a finite number of parameters. Unlike the previous
reconstructions, this becomes a well-posed problem since the ill-posedness comes from
the infinite dimensionality of the parameters we want to reconstruct, at least as long
as the mapping from the object to be reconstructed to the noise-free measurements is
one-to one (injective).

We consider in this chapter a mathematically very simple problem, namely the re-
construction of inclusions characterized by a variation in the absorption coefficient. We
also restrict ourselves to the reconstruction from the leading term in the aforementioned
asymptotic expansion. The interesting problem of variations of the diffusion coefficient
is mathematically more difficult, although the main conclusions are in the end very
similar. The presentation follows that in [7].



12.2. RECONSTRUCTING SMALL INCLUSIONS 217

12.2.1 First-order effects

Let us consider the problem of optical tomography modeled by a diffusion equation on
a domain X with current density g(x) prescribed at the boundary ∂X. We assume
here that the diffusion coefficient is known and to simplify, is set to γ ≡ 1. Our main
hypothesis on the absorption coefficient is that is is the superposition of a background
absorption, to simplify the constant σ0, and a finite number of fluctuations of arbitrary
size σm−σ0, with σm constant to simplify, but of small volume. Smallness of the volume
of the inclusions compared to the volume of the whole domain is characterized by the
small parameter ε � 1. The diffusion equation with small absorption inclusions then
takes the form

−∆uε(x) + σε(x)uε(x) = 0, X
∂uε
∂ν

= g, ∂X,
(12.24)

where absorption is given by

σε(x) = σ0 +
M∑
m=1

σmχzm+εBm(x). (12.25)

We have introduced here εBm as the shape of the mth inclusion centered at zm, and
χzm+εBm(x) = 1 if x − zm ∈ εBm and 0 otherwise. The inclusions are centered at zero
in the sense that ∫

Bm

xdx = 0 for all m, (12.26)

and are assumed to be at a distance greater than d > 0, independent of ε, of each-other
and of the boundary ∂X. The parameter ε is a measure of the diameter of the inclusions.
In the three-dimensional setting, which we assume from now on, this implies that the
volume of the inclusions is of order ε3.

We want to derive an asymptotic expansion for uε in powers of ε and observe which
information about the inclusions we can deduce from the first terms in the expansion.
Let us first define the Green function of the corresponding homogeneous problem

−∆G(x; z) + σ0G(x; z) = δ(x− z), X
∂G

∂ν
(x; z) = 0, ∂X,

(12.27)

and the homogeneous-domain solution U(x) of

−∆U(x) + σ0U(x) = 0, X
∂U

∂ν
(x) = g(x), ∂X.

(12.28)

As ε→ 0, the volume of the inclusions tends to 0 and uε converges to U . To show this,
we multiply (12.27) by uε and integrate by parts to obtain

uε(z) =

∫
∂X

g(x)G(x; z)dσ(x)−
M∑
m=1

∫
zm+εBm

σmG(x; z)uε(x)dx.
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Using the same procedure for U(x), we obtain

uε(z) = U(z)−
M∑
m=1

∫
zm+εBm

σmG(x; z)uε(x)dx. (12.29)

In three space dimensions, the Green function is given by

G(x; z) =
e−
√
σ0|z−x|

4π|z − x|
+ w(x; z), (12.30)

where w(x; z) is a smooth function (because it solves (12.28) with smooth boundary
conditions) provided that ∂X is smooth. For z at a distance greater than d > 0 away
from the inclusions xm + εBm, we then deduce from the L∞ bound on uε (because g
and ∂X are assumed to be sufficiently regular) that

uε(z) = U(z) +O(ε3).

In the vicinity of the inclusions, we deduce from the relation∫
zm+εBm

G(x; z)dx = O(ε2), z − zm ∈ εBm,

that uε(z) − U(z) is of order ε2 when z is sufficiently close to an inclusion. This also
shows that the operator

Kεuε(z) = −
M∑
m=1

∫
zm+εBm

σmG(x; z)uε(x)dx (12.31)

is a bounded linear operator in L(L∞(X)) with a norm of order ε2. This implies that
for sufficiently small values of ε, we can write

uε(z) =
∞∑
k=0

Kk
εU(z). (12.32)

The above series converges fast when ε is small. Notice however that the series does not
converge as fast as ε3, the volume of the inclusions, because of the singular behavior of
the Green function G(x; z) when x is close to z.

Let us now use that

uε(z) = U(z)−
M∑
m=1

∫
zm+εBm

σmG(x; z)U(x)dx

+
M∑
m=1

M∑
n=1

∫
zm+εBm

∫
zn+εBn

σmσnG(x; z)G(y;x)uε(y)dydx.

(12.33)

For the same reasons as above, the last term is of order ε5, and expanding smooth
solutions U(x) and G(x; z) inside inclusions of diameter ε, we obtain that

uε(x) = U(x)−
M∑
m=1

G(z; zm)CmU(zm) +O(ε5), (12.34)

where Cm is given by
Cm = ε3|Bm|σm. (12.35)

The reason why we obtain a correction term of order ε5 in (12.34) comes from the fact
that (12.26) holds so that the terms of order ε4, proportional to x ·∇U or x ·∇G, vanish.
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12.2.2 Stability of the reconstruction

The above analysis tells us the following. Provided that our measurement errors are of
order O(ε5), the only information that can possibly be retrieved on the inclusions is its
location zm and the product Cm = ε3σmBm of the absorption fluctuation with the volume
of the inclusion. More refined information requires data with less noise. Assuming that
the inclusions are sufficiently small so that the above asymptotic expansion makes sense,
no other information can be obtained in a stable fashion from the data.

Note that the problem we now wish to solve is finite-dimensional. Indeed, each inclu-
sion is represented by four real numbers, namely the three components of the position zm
and the product Cm. Assuming that only M inclusions are present, this leaves us with
4M parameters to reconstruct. The main advantage of reconstructing a finite number
of parameters is that it is natural to expect stability of the reconstruction. We can even
show stability of the reconstruction from boundary measurements corresponding to one
current density g(x) provided that the homogeneous solution U(x) is uniformly positive
inside the domain. Here is how it can be proved.

Let us assume that the boundary measurements have an accuracy of order O(ε5),
which is consistent with

uε(z) = U(z)−
M∑
m=1

Cm(G(zm; z)U(zm)) +O(ε5). (12.36)

We denote by uε and u′ε the solution of two problems with absorption coefficients σε
and σ′ε of the form (12.25). Using (12.36), we obtain that

uε(z)− u′ε(z) = F (z) +O(ε5),

with

F (z) = −
M∑
m=1

(
Cm(G(zm; z)U(zm))− C ′m(G(z′m; z)U(z′m))

)
. (12.37)

Here we use M = max(M,M ′) with a small abuse of notation; we will see shortly that
M = M ′. The function F (z) satisfies the homogeneous equation −∆F + σ0F = 0 on X
except at the points zm and z′m. Moreover, we have that ∂F

∂ν
= 0 at ∂X. If F = 0 on ∂X,

we deduce from the uniqueness of the Cauchy problem for the operator −∆ + σ0 that
F ≡ 0 in X. As ε→ 0 and uε−u′ε → 0, we deduce that F (z) becomes small not only at
∂X but also inside X (the continuation of F from ∂X to X\{zm ∪ z′m} is independent
of ε). However, the functions G(zm; z)U(zm) form an independent family. Each term
must therefore be compensated by a term from the sum over the prime coefficients. We
thus obtain that M = M ′ and that∣∣∣Cm(G(zm; z)U(zm))− C ′m(G(z′m; z)U(z′m))

∣∣∣ ≤ C‖uε − u′ε‖L∞(∂X) +O(ε5).

The left-hand side can be recast as

(Cm − C ′m)G(zm; z)U(zm) + C ′m(zm − z′m)∂zm(G(z̄m; z)U(z̄m))

where z̄m = θzm + (1− θ)z′m for some θ ∈ (0, 1). Again these two functions are linearly
independent and so we deduce that

|Cm − C ′m|+ |C ′m||zm − z′m| ≤ C‖uε − u′ε‖L∞(∂X) +O(ε5).
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Using (12.34) and (12.35), we then obtain assuming that ‖uε − u′ε‖L∞(∂X) ≈ ε5, that∣∣Bmσm −B′mσ′m
∣∣+ |zm − z′m| ≤ Cε−3‖uε − u′ε‖L∞(∂X) ≈ ε2. (12.38)

Assuming that the accuracy of the measured data is compatible with the expansion
(12.34), i.e. that the uε is known on ∂X up to an error term of order ε5, we can then
reconstruct the location zm of the heterogeneities up to an error of order ε2. The product
of the volume of the inclusion and the absorption fluctuation is also known with the
same accuracy.

The analysis of small volume expansions has been analyzed in much more general
settings than the one presented above. We refer the reader to [5] for additional details.
In the context of the reconstruction of absorbing inclusions as was considered above, the
expression of order O(ε5) and the additional information it provides about inclusions
may be found in [7].



Appendix A

Notation and results

A.1 Fourier transform

Let f(x) be a complex-valued function in L2(Rn) for some n ∈ N∗, which means a
(measurable) function on Rn that is square integrable in the sense that

‖f‖2 =

∫
Rn
|f(x)|2dx <∞. (A.1)

Here ‖f‖ is the L2(Rn)-norm of f and dx the Lebesgue (volume) measure on Rn. We
define the Fourier transform of f as

f̂(k) = [Fx→kf ](k) =

∫
Rn
e−ik·xf(x)dx. (A.2)

It is a well-known results about Fourier transforms that f̂(k) ∈ L2(Rn) and the Fourier
transform admits an inverse on L2(Rn) given by

f(x) = [F−1
k→xf̂ ](x) =

1

(2π)n

∫
Rn
eik·xf̂(k)dk. (A.3)

More precisely we have the Parseval relation

(f̂ , ĝ) = (2π)n(f, g) and ‖f̂‖ = (2π)
n
2 ‖f‖. (A.4)

where the Hermitian product is given by

(f, g) =

∫
Rn
f(x)g(x)dx. (A.5)

Here g is the complex conjugate to g. So up to the factor (2π)
n
2 , the Fourier transform

and its inverse are isometries.
Important properties of the Fourier transform for us here are how they interact with

differentiation and convolutions. Let α = (α1, · · · , αn) be a multi-index of non-negative
components αj ≥ 0, 1 ≤ j ≤ n and let |α| =

∑n
i=1 αj be the length of the multi-index.

We then define the differentiation Dα of degree |α| as

Dα =
n∏
i=1

∂αi

∂xαii
. (A.6)

221
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We then deduce from the definition (A.2) that

Fx→k[Dαf ](k) =
( n∏
j=1

(ikj)
αj
)

[Fx→kf ](k). (A.7)

Let us now define the convolution as

f ? g(x) =

∫
Rn
f(x− y)g(y)dy. (A.8)

We then verify that

Fx→k(f ? g) = Fx→kfFx→kg, i.e. f̂ ? g = f̂ ĝ,

F−1
k→x(f̂ ? ĝ) = (2π)nf g i.e. f̂ ? ĝ = (2π)d f̂ g.

(A.9)

So the Fourier transform diagonalizes differential operators (replaces them by multiplica-
tion in the Fourier domain). However Fourier transforms replace products by non-local
convolutions.

The Fourier transform is a well-posed operator from L2(Rn) to L2(Rn) since the
inverse Fourier transform is also defined from L2(Rn) to L2(Rn) and is bounded as
shown in (A.4). Let us assume that we measure

d̂(k) = f̂(k) + N̂(k),

where we believe that δ = ‖N̂‖ is relatively small. Then the error in the reconstruction
will also be of order δ in the L2(Rn) norm. Indeed let d(x) be the reconstructed function
from the data d(k) and f(x) be the real function we are after. Then we have

‖d− f‖ = ‖F−1
k→xd̂−F

−1
k→xf̂‖ = ‖F−1

k→x(d̂− f̂)‖ = (2π)−
n
2 δ. (A.10)

In other words, measurements errors can still be seen in the reconstruction. The resulting
image is not perfect. However the error due to the noise has not been amplified too
drastically.
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guliers d’une solution d’un opérateur elliptique. (French. English summary) [Haus-
dorff dimension and capacity of the singular points of a solution of an elliptic op-
erator], Bull. Sci. Math., 3 (1990), pp. 329–336. 163

[50] L. Ryzhik, G. C. Papanicolaou, and J. B. Keller, Transport equations for
elastic and other waves in random media, Wave Motion, 24(4) (1996), pp. 327–370.

[51] M. Salo, Calderón problem, Lecture Notes, Spring 2008, Department of Mathe-
matics and Statistics, University of Helsinki. 148

[52] O. Scherzer, Handbook of Mathematical Methods in Imaging, Springer Verlag,
New York, 2011. 187, 201, 203

[53] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and
F. Lenzen, Variational Methods in Imaging, Springer Verlag, New York, 2009.
201, 203

[54] V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht, the
Netherlands, 1994. 63

[55] C. D. Sogge, Fourier integrals in classical analysis, Cambridge University Press,
1993. 71

[56] P. Stefanov, Microlocal approach to tensor tomography and boundary and lens
rigidity, Serdica Math. J., 34(1) (2008), pp. 67–112. 74

[57] E. Stein, Singular Integrals and Differentiability Properties of Functions, vol. 30
of Princeton Mathematical Series, Princeton University Press, Princeton, 1970. 148

[58] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse
boundary value problem, Ann. of Math., 125(1) (1987), pp. 153–169. 142, 148

[59] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Esti-
mation, SIAM, Philadelphia, 2004. 208

[60] M. E. Taylor, Partial Differential Equations I, Springer Verlag, New York, 1997.
193

[61] A. V. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, Wiley,
New York, 1977. 190

[62] O. Tretiak and C. Metz, The exponential Radon transform, SIAM J. Appl.
Math., 39 (1980), pp. 341–354. 31



BIBLIOGRAPHY 227

[63] J.-N. Wang, Stability estimates of an inverse problem for the stationary transport
equation, Ann. Inst. Henri Poincaré, 70 (1999), pp. 473–495. 123
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