Tensor Decomposition, Low Rank Structured Matrix Approximation and Applications

B. Mourrain
GALAAD, INRIA Méditerranée, Sophia Antipolis
Bernard.Mourrain@inria.fr

16h-16h25, Thursday, August 1
Generalized Waring problem (1770)

Given a homogeneous polynomial T of degree d in the variables $\mathbf{x} = (x_0, x_1, \ldots, x_n)$:

$$T(\mathbf{x}) = \sum_{|\alpha| = d} T_\alpha \mathbf{x}^\alpha,$$

find a minimal decomposition of T of the form

$$T(\mathbf{x}) = \sum_{i=1}^{r} \gamma_i (\zeta_{i,0} x_0 + \zeta_{i,1} x_1 + \cdots + \zeta_{i,n} x_n)^d$$

for $\zeta_i = (\zeta_{i,0}, \zeta_{i,1}, \ldots, \zeta_{i,n}) \in \mathbb{C}^{n+1}$, $\gamma_i \in \mathbb{C}$.

The minimal r in such a decomposition is called the rank of T.
Geometric point of view

Definition (Veronese variety)

\[\nu_d : \mathbb{P}(E) \rightarrow \mathbb{P}(S^d(E)) \]
\[[v] \mapsto [v(x)^d] \]

Its image is the **Veronese** variety, denoted \(\chi_1(S^d(E)) \).

Definition (Secant of the Veronese variety)

\[\chi_{r,0}^d = \{ [T] \in \mathbb{P}(S^d) \mid \exists w_1, \ldots, w_r \in \chi_1(S_d(E)) \text{ s.t. } T = \sum_{i=1}^r w_i \} \]
\[\chi_r^d = \overline{\chi_{r,0}^d} \]

\[r(T) = \text{smallest } r \text{ s.t. } T \in \chi_{r,0}^d, \text{ called the rank of } T. \]
\[r_\sigma(T) = \text{smallest } r \text{ s.t. } T \in \chi_r^d, \text{ called the border rank of } T. \]

Example:

\[T_\varepsilon := \frac{1}{d\varepsilon} \left((x_0 + \varepsilon x_1)^d - x_0^d \right), \]
\[T_0 := x_0^{d-1}x_1. \]

\[r(T_\varepsilon) = r_\sigma(T_0) = 2 \text{ but } r(T_0) = d. \]
Algebraic point of view

Apolar product: For \(f = \sum_{|\alpha| = d} f_\alpha \binom{d}{\alpha} x^\alpha \), \(g = \sum_{|\alpha| = d} g_\alpha \binom{d}{\alpha} x^\alpha \in S^d \),

\[\langle f, g \rangle = \sum_{|\alpha| = d} f_\alpha g_\alpha \binom{d}{\alpha}. \]

For homogeneous polynomials \(g(x_0, \ldots, x_n) \) of degree \(d \) and \(k(x) = k_0 x_0 + \cdots + k_n x_n \),

\[\langle g(x), k(x)^d \rangle = g(k_0, \ldots, k_n) = g(k). \]

If \(T = k_1(x)^d + \cdots + k_r(x)^d \) and \(g(k_i) = 0 \) for \(i = 1, \ldots, r \), then for all \(h \) with \(\deg(h) = d - \deg(g) \)

\[\langle g h, T \rangle = 0. \]

Find the polynomials apolar to \(T \) and compute their roots.
Algebraic point of view

\[S := \mathbb{K}[x_0, \ldots, x_n]; \quad S^d := \{ f \in S; \deg(f) = d \}; \]

Definition (Apolar ideal)

\[(T^\perp) = \{ g \in S | \forall h \in S^{d - \deg(g)}, \langle g \ h, \ T \rangle = 0 \} \supset S^{d+1}. \]

Problem: find an ideal \(I \subset S \) such that

- \(I \subset (T^\perp) \);
- \(I \) is saturated zero dimensional;
- \(I \) defines a minimal number \(r \) of simple points.

\(\iff \) **necessary and sufficient conditions** that \(T \) is of rank \(r \).
Sylvester approach (1886)

Theorem

The binary form \(T(x_0, x_1) = \sum_{i=0}^{d} t_i \binom{d}{i} x_0^{d-i} x_1^i \) can be decomposed as a sum of \(r \) distinct powers of linear forms

\[
T = \sum_{k=1}^{r} \lambda_k (\alpha_k x_0 + \beta_k x_1)^d
\]

iff there exists a polynomial \(q \) such that

\[
\begin{bmatrix}
 t_0 & t_1 & \ldots & t_r \\
 t_1 & t_{r+1} \\
 \vdots & \vdots \\
 t_{d-r} & \ldots & t_{d-1} & t_d
\end{bmatrix}
\begin{bmatrix}
 q_0 \\
 q_1 \\
 \vdots \\
 q_r
\end{bmatrix} = 0
\]

and of the form

\[q(x_0, x_1) := \mu \prod_{k=1}^{r} (\beta_k x_0 - \alpha_k x_1). \]
Interpolation point of view

For $T = T(x) = \sum_{\alpha \in \mathbb{N}^n; \; |\alpha| \leq \delta} T_{\alpha} x^{\alpha} \in \mathcal{T}$, let

$$T^*(d) = \sum_{\alpha \in \mathbb{N}^n; \; |\alpha| \leq \delta} \frac{1}{\alpha!} T_{\alpha} d^{\alpha} \in R^* = \mathbb{K}[[d]]$$

such that $\forall T' \in R_{\delta}$,

$$\langle T | T' \rangle = T^*(T').$$

Property: Given $T \in R_{\delta}$, find $\gamma_i \neq 0, \zeta_i \in \mathbb{K}^n, \; i = 1, \ldots, r$, such that

$$T = \sum_{i=1}^{r} \gamma_i \langle \zeta_i, x \rangle^d$$

iff

$$T^* \equiv \sum_{i=1}^{r} \gamma_i 1_{\zeta_i}.$$

on R_{δ}.
Flat extension point of view

Flattening map ϕ: For $x^A \subset R$, $B, B' \subset A$ with $B \cdot B' \subset A$, and $\Lambda := T^* \in \langle x^A \rangle^*$: $p = \sum_{\alpha \in A} p_{\alpha} x^\alpha \mapsto \sum_{\alpha \in A} p_{\alpha} T_\alpha$, we define

$$H_{T^*}^{B', B} : \langle x^{B'} \rangle \to \langle x^{B} \rangle^*$$

$$p = \sum_{\beta \in B'} p_{\beta} x^\beta \mapsto p \cdot T^*$$

with $p \cdot \Lambda : q \in \langle B \rangle \mapsto T^*(p \cdot q) = \langle T, pq \rangle \in K$.

Its matrix is $H_{T}^{B', B} := [T_{\beta' + \beta}]_{\beta' \in B', \beta \in B}$.

Problem: Given $T^* \in R_\delta^*$, find $\tilde{\Lambda} \in R^*$ such that

$$H_{\tilde{\Lambda}} : R \to R^*$$

$$p \mapsto p \cdot \tilde{\Lambda}$$

- extends $H_{T^*}^{B, B'}$
- has minimal rank and
- $I_{\tilde{\Lambda}} = \ker H_{\tilde{\Lambda}}$ is a radical ideal.
Flat extension

\[B^+ = B \cap x_1 B \cap \cdots \cap x_n B. \]
\[B \text{ connected to } 1 \text{ if } b \in B \text{ is either } 1 \text{ or } x_i b', b' \in B. \]

Theorem (LM’09, BCMT’10, BBCM’11)

Let \(B, B' \) be connected to 1 of size \(r \), \(E, E' \) connected to 1 with \(B^+ \subset E \), \(B'^+ \subset E' \) and \(\Lambda \in \langle E \cdot E' \rangle^* \). The following conditions are equivalent:

1. there exists a unique element \(\tilde{\Lambda} \in R^* \) which extends \(\Lambda \) and such that \(B \) and \(B' \) are basis of \(A_\Lambda = R/I_\Lambda \).
2. \(\text{rank} H^{E,E'}_{\Lambda} = \text{rank} H^{B,B'}_{\Lambda} = r. \)
3. \(H^{B,B'}_{\Lambda} \) is invertible and the matrices \(M_i := H^{B,B'}_{\Lambda} (H^{B,B'}_{\Lambda})^{-1} \) satisfy

\[
M_i \circ M_j = M_j \circ M_i \quad (1 \leq i, j \leq n).
\]

In this case,

- \(I_\Lambda = (\ker H^{E,E'}_{\Lambda}) \),

- \(\tilde{\Lambda} \) is supported on the points \(\mathcal{V}^\Lambda_{C} = \mathcal{V}^C(I_\Lambda) = \{\zeta_1, \ldots, \zeta_{r'}\} \) with \(r' < r \).
Recovering the decomposition

If the flat extension problem has a solution $\tilde{\Lambda}$, then:

- $r = \text{rank } H_{\tilde{\Lambda}} = \dim R/(\ker H_{\tilde{\Lambda}})$ where $r = |B| = |B'|$;

- Let B, B' be maximal sets of monomials $\subset R$ s.t. $H_{\tilde{\Lambda}}^{B',B}$ invertible, then

$$M_i^{B',B}_{i} := H_{\tilde{\Lambda}}^{B',x_i B}(H_{\tilde{\Lambda}}^{B',B})^{-1}.$$

is the matrix of multiplication by x_i in $A_{\tilde{\Lambda}} = R/(\ker H_{\tilde{\Lambda}})$.

- If the decomposition is of size r, the eigenvectors of the operators $(M_i^t)_i$ are simple and equal (up to scalar) to $\{1_{\zeta_1}, \ldots, 1_{\zeta_r}\}$.

- $\ker H_{\tilde{\Lambda}} = (\ker H_{\tilde{\Lambda}}^{B'^+,B^+})$ where $B^+ = B \cup x_1 B \cup \cdots x_n B$;

- For each $x^\alpha \in \partial B = B^+ \setminus B$, there exists a unique

$$f_\alpha = x^\alpha - \sum_{\beta} z_{\alpha,\beta} x^\beta \in \ker H_{\tilde{\Lambda}}^{B'^+,B^+}.$$

The $(f_\alpha)_{\alpha \in \partial B}$ form a border basis of $I_{\tilde{\Lambda}} = \ker H_{\tilde{\Lambda}}$ with respect to B.
Example in \(\chi_6(S^4(\mathbb{K}^3)) \)

The tensor:

\[
T = 79 x_0 x_1^3 + 56 x_0^2 x_2^2 + 49 x_1^2 x_2^2 + 4 x_0 x_1 x_2^2 + 57 x_0^3 x_1.
\]

The \(15 \times 15\) Hankel matrix:
Extract a \((6 \times 6)\) principal minor of full rank:

\[
H^B_\Lambda = \begin{bmatrix}
0 & \frac{57}{4} & 0 & 0 & 0 & \frac{28}{3} \\
\frac{57}{4} & 0 & 0 & \frac{79}{4} & 0 & \frac{1}{3} \\
0 & 0 & \frac{28}{3} & 0 & \frac{1}{3} & 0 \\
0 & \frac{79}{4} & 0 & 0 & 0 & \frac{49}{6} \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{28}{3} & \frac{1}{3} & 0 & \frac{49}{6} & 0 & 0
\end{bmatrix}
\]

The columns (and the rows) of the matrix correspond to the monomials \(\{1, x_1, x_2, x_1^2, x_1 x_2, x_2^2\}\).
The shifted matrix $H^{B,B}_{x_1 \cdot \Lambda}$ is

$$H^{B,B}_{x_1 \cdot \Lambda} = H^{B,x_1 B}_{\Lambda} = \begin{bmatrix}
\frac{57}{4} & 0 & 0 & \frac{79}{4} & 0 & \frac{1}{3} \\
0 & \frac{79}{4} & 0 & 0 & 0 & \frac{49}{6} \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{79}{4} & 0 & 0 & h_{500} & h_{410} & h_{320} \\
0 & 0 & \frac{49}{6} & h_{410} & h_{320} & h_{230} \\
\frac{1}{3} & \frac{49}{6} & 0 & h_{320} & h_{230} & h_{140}
\end{bmatrix}$$

The columns of the matrix correspond to the monomials

$$\{x_1, x_1^2, x_1x_2, x_1^3, x_1^2x_2, x_1x_2^2\} = \{1, x_1, x_2, x_1^2, x_1x_2, x_2^2\} \times x_1.$$

Similarly,

$$H^{B,B}_{x_2 \cdot \Lambda} = H^{B,x_2 B}_{\Lambda} = \begin{bmatrix}
0 & 0 & \frac{28}{3} & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{28}{3} & \frac{1}{3} & 0 & \frac{49}{6} & 0 & 0 \\
0 & 0 & \frac{49}{6} & h_{410} & h_{320} & h_{230} \\
\frac{1}{3} & \frac{49}{6} & 0 & h_{320} & h_{230} & h_{140} \\
0 & 0 & 0 & h_{230} & h_{140} & h_{050}
\end{bmatrix}$$
We form (all) the possible matrix equations:

\[M_{x_i} M_{x_j} - M_{x_j} M_{x_i} = H_{x_1} \Lambda H_{x_1}^{-1} H_{x_2} \Lambda H_{x_2}^{-1} - H_{x_2} \Lambda H_{x_2}^{-1} H_{x_1} \Lambda H_{x_1}^{-1} = 0. \]

Many of the resulting equations are trivial. We have 6 unknowns: \(h_{500}, h_{410}, h_{320}, h_{230}, h_{140}, h_{050} \) and 15 non-trivial equations.

A solution of the system is:

\[h_{500} = 1, h_{410} = 2, h_{320} = 3, h_{230} = 1.5060, h_{140} = 4.960, h_{050} = 0.056. \]
We substitute these values to $H_{x_1} \cdot \Lambda$ and solve the generalized eigenvalue problem $(H_{x_1} \cdot \Lambda - \zeta H_{\Lambda}) \mathbf{v} = 0$. The normalized eigenvectors are

$$\begin{bmatrix} 1 \\ -0.830 + 1.593 i \\ -0.326 - 0.0501 i \\ -1.849 - 2.645 i \\ 0.350 - 0.478 i \\ 0.103 + 0.0327 i \end{bmatrix}, \begin{bmatrix} 1 \\ -0.830 - 1.593 i \\ -0.326 + 0.050 i \\ -1.849 + 2.645 i \\ 0.350 + 0.478 i \\ 0.103 - 0.032 i \end{bmatrix}, \begin{bmatrix} 1 \\ 1.142 \\ 0.836 \\ 1.305 \\ 0.955 \\ 0.699 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0.956 \\ -0.713 \\ 0.914 \\ -0.682 \\ 0.509 \end{bmatrix}, \begin{bmatrix} 1 \\ -0.838 + 0.130 i \\ 0.060 + 0.736 i \\ 0.686 - 0.219 i \\ -0.147 - 0.610 i \\ -0.539 + 0.089 i \end{bmatrix}, \begin{bmatrix} 1 \\ -0.838 - 0.130 i \\ 0.060 - 0.736 i \\ 0.686 + 0.219 i \\ -0.147 + 0.610 i \\ -0.539 - 0.089 i \end{bmatrix}.$$

As the coordinates of the eigenvectors correspond to the evaluations of \{1, x_1, x_2, x_1^2, x_1 x_2, x_2^2\}, we can recover the values of (x_1, x_2).
After solving the over-constrained linear system obtained by expansion and looking coefficient-wise, we deduce the decomposition:

\[
(0.517 + 0.044 \, i) \left(x_0 - (0.830 - 1.593 \, i) x_1 - (0.326 + 0.050 \, i) x_2 \right)^4 \\
+ (0.517 - 0.044 \, i) \left(x_0 - (0.830 + 1.593 \, i) x_1 - (0.326 - 0.050 \, i) x_2 \right)^4 \\
+ 2.958 \left(x_0 + (1.142) x_1 + 0.836 x_2 \right)^4 \\
+ 4.583 \left(x_0 + (0.956) x_1 - 0.713 x_2 \right)^4 \\
-(4.288 + 1.119 \, i) \left(x_0 - (0.838 - 0.130 \, i) x_1 + (0.060 + 0.736 \, i) x_2 \right)^4 \\
-(4.288 - 1.119 \, i) \left(x_0 - (0.838 + 0.130 \, i) x_1 + (0.060 - 0.736 \, i) x_2 \right)^4
\]
Recovering branching structures

- At points, perform directional measurements (of water diffusion):

 - Approximate the set of measurements on the sphere by a (symmetric) tensor \(T = (T_{i,j,k,l}) \).

 - Decompose/approximate it as a minimal sum of tensors of rank 1:
 \[
 T = \sum_{i=1}^{r} \lambda_i v_i^4.
 \]

 to identify the main directions of diffusion.

- From the decomposition of tensors, deduce the geometric structure:

 cf. [T. Schultz, H.P. Seidel’08], [A. Ghosh, R. Deriche, …’09]
Concluding remarks/questions

- What about nearest r-decomposition(s) and SVD-like properties?
- Applies to multi-symmetric tensors. Can we extend it to anti-symmetric tensors?
- Can we extend it to minimal decomposition over the real? to minimal positive decomposition?

References:

- J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas.
 Symmetric tensor decomposition.

 General tensor decomposition, moment matrices and applications.

 A comparison of different notions of ranks of symmetric tensors.

Thanks for your attention