Secant varieties of Segre-Veronese varieties

Dustin Cartwright

October 6, 2011

1 joint with Daniel Erman and Luke Oeding
Tensor rank for matrices

\(U, V \) : finite dimensional vector spaces
\(x \in U \otimes V \)

The rank of \(x \) is the smallest integer \(r \) such that \(x \) can be written

\[x = u_1 \otimes v_1 + \cdots + u_r \otimes v_r \text{ where } u_i \in U, v_i \in V. \]
Tensor rank for matrices

\[U, V : \text{finite dimensional vector spaces} \]
\[x \in U \otimes V \]

The rank of \(x \) is the smallest integer \(r \) such that \(x \) can be written

\[x = u_1 \otimes v_1 + \cdots + u_r \otimes v_r \text{ where } u_i \in U, v_i \in V. \]

- The rank can jump down but never up at special points.
Tensor rank for matrices

\(U, V: \) finite dimensional vector spaces
\(x \in U \otimes V \)

The rank of \(x \) is the smallest integer \(r \) such that \(x \) can be written
\[
x = u_1 \otimes v_1 + \cdots + u_r \otimes v_r \text{ where } u_i \in U, v_i \in V.
\]

- The rank can jump down but never up at special points.
- The rank is the same if we pass to a bigger field.
Tensor rank for matrices

\[U, V : \text{finite dimensional vector spaces} \]
\[x \in U \otimes V \]

The rank of \(x \) is the smallest integer \(r \) such that \(x \) can be written

\[x = u_1 \otimes v_1 + \cdots + u_r \otimes v_r \text{ where } u_i \in U, v_i \in V. \]

- The rank can jump down but never up at special points.
- The rank is the same if we pass to a bigger field.
- The set of possible decompositions is a homogeneous space.
Partially symmetric tensors

U: m-dimensional \mathbb{C}-vector space
V: n-dimensional \mathbb{C}-vector space

$x \in U \otimes S^2 V$

The rank of x is the smallest integer r such that x can be written in the form:

$$x = u_1 \otimes v_1 \otimes v_1 + \cdots + u_r \otimes v_r \otimes v_r$$
Partially symmetric tensors

\(U : m \)-dimensional \(\mathbb{C} \)-vector space
\(V : n \)-dimensional \(\mathbb{C} \)-vector space
\(x \in U \otimes S^2 V \)

The rank of \(x \) is the smallest integer \(r \) such that \(x \) can be written in the form:

\[
x = u_1 \otimes v_1 \otimes v_1 + \cdots + u_r \otimes v_r \otimes v_r
\]

The rank can jump both down and up for special tensors.
Partially symmetric tensors

\[U: \text{ } m\text{-dimensional } \mathbb{C}\text{-vector space} \]
\[V: \text{ } n\text{-dimensional } \mathbb{C}\text{-vector space} \]
\[x \in U \otimes S^2 V \]

The **border rank** of \(x \) is the smallest integer \(r \) such that \(x \) can be approximated arbitrarily closely by expressions of the form:

\[x \approx u_1 \otimes v_1 \otimes v_1 + \cdots + u_r \otimes v_r \otimes v_r \]
Partially symmetric tensors

\[U: m\text{-dimensional } \mathbb{C}\text{-vector space} \]
\[V: n\text{-dimensional } \mathbb{C}\text{-vector space} \]
\[x \in U \otimes S^2 V \]

The border rank of \(x \) is the smallest integer \(r \) such that \(x \) can be approximated arbitrarily closely by expressions of the form:

\[x \approx u_1 \otimes v_1 \otimes v_1 + \cdots + u_r \otimes v_r \otimes v_r \]

The set of such decompositions will in general be a finite set of points, possibly defined over a larger field than \(x \).
Equations for bounded border rank

When $U = \mathbb{C}e_1 \oplus \mathbb{C}e_2$, we can write

$$x = e_1 \otimes A + e_2 \otimes B$$

where A and B are symmetric matrices.
Equations for bounded border rank

When \(U = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \), we can write

\[
x = e_1 \otimes A + e_2 \otimes B
\]

where \(A \) and \(B \) are symmetric matrices.

Theorem

The ideal of partially symmetric tensors whose border rank is at most \(r \) is generated by the \((r + 1) \times (r + 1)\)-minors of the block matrix

\[
\begin{pmatrix}
A & B
\end{pmatrix}
\]
Equations for small border rank

When $U = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_3$, we can write

$$x = e_1 \otimes A + e_2 \otimes B + e_3 \otimes C$$
Equations for small border rank

When \(U = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_3 \), we can write

\[
x = e_1 \otimes A + e_2 \otimes B + e_3 \otimes C
\]

Theorem (C.-Erman-Oeding 2010)

If \(r \leq 5 \), the ideal of tensors whose border rank is at most \(r \) is generated by the \((r + 1) \times (r + 1)\)-minors and \((2r + 2) \times (2r + 2)\)-Pfaffians respectively of

\[
\begin{pmatrix} A & B & C \end{pmatrix}
\text{ and }
\begin{pmatrix} 0 & A & -B \\ -A & 0 & C \\ B & -C & 0 \end{pmatrix}
\]

Remark

The \(n = 4 \), \(r = 5 \) case is due to Emil Toeplitz in 1869.
Equations for small border rank

When \(U = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_3 \), we can write

\[
x = e_1 \otimes A + e_2 \otimes B + e_3 \otimes C
\]

Theorem (C.-Erman-Oeding 2010)

If \(r \leq 5 \), the ideal of tensors whose border rank is at most \(r \) is generated by the \((r + 1) \times (r + 1)\)-minors and \((2r + 2) \times (2r + 2)\)-Pfaffians respectively of

\[
\begin{pmatrix}
A & B & C
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{pmatrix}
\]

Remark

The \(n = 4, r = 5 \) case is due to Emil Toeplitz in 1869.
Outline of the proof

Assume $n = r$ and A is the identity matrix. Then

\[
\begin{pmatrix}
0 & I & -B \\
-l & 0 & C \\
B & -C & 0
\end{pmatrix}
\sim
\begin{pmatrix}
0 & I & 0 \\
l & 0 & 0 \\
0 & 0 & BC - CB
\end{pmatrix}
\]

The $2r + 2$-Pfaffians of this matrix are the entries of the commutator $BC - CB$, which is a prime, Gorenstein ideal, defining the variety of commuting symmetric matrices.
Outline of the proof

- Assume \(n = r \) and \(A \) is the identity matrix. Then

\[
\begin{pmatrix}
0 & I & -B \\
-I & 0 & C \\
B & -C & 0
\end{pmatrix}
\sim
\begin{pmatrix}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & BC - CB
\end{pmatrix}
\]

The \(2r + 2 \)-Pfaffians of this matrix are the entries of the commutator \(BC - CB \), which is a prime, Gorenstein ideal, defining the variety of commuting symmetric matrices.

- Now just assume \(n = r \). We need to bound the dimension of the set of tensors where \(A \) is singular. This is computational and is only true for \(r \leq 5 \).
Outline of the proof

- Assume $n = r$ and A is the identity matrix. Then

$$
\begin{pmatrix}
0 & I & -B \\
-I & 0 & C \\
B & -C & 0
\end{pmatrix}
\sim
\begin{pmatrix}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & BC - CB
\end{pmatrix}
$$

The $2r + 2$-Pfaffians of this matrix are the entries of the commutator $BC - CB$, which is a prime, Gorenstein ideal, defining the variety of commuting symmetric matrices.

- Now just assume $n = r$. We need to bound the dimension of the set of tensors where A is singular. This is computational and is only true for $r \leq 5$.

- Arbitrary n. Here the minors come in.
Unifying framework for these equations

Given decomposable \(u \otimes v \otimes v \in U \otimes S^2 V \), we have linear map

\[
\psi_{j, u \otimes v \otimes v} : V^* \otimes \bigwedge^j U \to V \otimes \bigwedge^{j+1} U
\]

\[
v^* \otimes (u'_1 \wedge \cdots \wedge u'_j) \mapsto \langle v^*, v \rangle v \otimes u'_1 \wedge \cdots \wedge u'_j \wedge u
\]
Unifying framework for these equations

Given decomposable \(u \otimes v \otimes v \in U \otimes S^2 V \), we have linear map

\[
\psi_{j,u \otimes v \otimes v} : V^* \otimes \bigwedge^j U \rightarrow V \otimes \bigwedge^{j+1} U \\
v^* \otimes (u'_1 \wedge \cdots \wedge u'_j) \mapsto \langle v^*, v \rangle v \otimes u'_1 \wedge \cdots \wedge u'_j \wedge u
\]

For arbitrary \(x \in U \otimes S^2 V \), define \(\psi_{j,x} \) by extending linearly.
Unifying framework for these equations

Given decomposable $u \otimes v \otimes v \in U \otimes S^2 V$, we have linear map

$$\psi_{j,u\otimes v\otimes v} : V^* \otimes \bigwedge^j U \rightarrow V \otimes \bigwedge^{j+1} U$$

$$v^* \otimes (u'_1 \wedge \cdots \wedge u'_j) \mapsto \langle v^*, v \rangle v \otimes u'_1 \wedge \cdots \wedge u'_j \wedge u$$

For arbitrary $x \in U \otimes S^2 V$, define $\psi_{j,x}$ by extending linearly.

If U is 3-dimensional,

- The $j = 0$ and $j = 2$ cases give the rectangular matrix
- The $j = 1$ case gives the skew-symmetric square matrix
Robust testing of determinantal equations

Let
\[\sigma_1 \geq \cdots \geq \sigma_4 \quad \text{and} \quad \sigma'_1 \geq \cdots \geq \sigma'_{12} \]
be the singular values of
\[
\begin{pmatrix}
A & B & C
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{pmatrix}
\]
respectively.
Robust testing of determinantal equations

Let
\[\sigma_1 \geq \cdots \geq \sigma_4 \quad \text{and} \quad \sigma'_1 \geq \cdots \geq \sigma'_{12} \]
be the singular values of

\[
\begin{pmatrix}
A & B & C \\
& & \\
& & \\
& & \\
& & \\
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{pmatrix}
\]

respectively.
The functions

\[
\gamma_r^2 = \sum_{i=r+1}^{4} \sigma_i^2 \\
\delta_r^2 = \sum_{i=2r+1}^{12} (\sigma'_i)^2
\]
Robust testing of determinantal equations

Let

$$\sigma_1 \geq \cdots \geq \sigma_4 \quad \text{and} \quad \sigma'_1 \geq \cdots \geq \sigma'_{12}$$

be the singular values of

$$\begin{pmatrix} A & B & C \\ \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & A & -B \\ -A & 0 & C \\ B & -C & 0 \end{pmatrix}$$

respectively.

The functions

$$\gamma_r^2 = \sum_{i=r+1}^{4} \sigma_i^2 \quad \text{and} \quad \delta_r^2 = \sum_{i=2r+1}^{12} (\sigma'_i)^2$$

are continuous, non-negative functions which are both zero if and only if the tensor has rank at most r.
Bounded real rank is a semi-algebraic set

Tensors with *real* border rank at most r characterized by same equalities, but additional inequalities
Bounded real rank is a semi-algebraic set

Equalities are more important than inequalities for detecting deviations
Thank you