1. Consider the functions defined by

\[g_a(z) = \frac{e^{i\pi z/2} - 1}{e^{i\pi z/2} + 1} \quad \text{and} \quad g_b(z) = \frac{e^{\pi z/2} - 1}{e^{\pi z/2} + 1}. \]

Show that \(g_a \) maps the set

\[\Omega_a := \{ z \in \mathbb{C} \mid -1 < \text{Re} z < 1 \} \]

to \(D(0, 1) \) while \(g_b \) maps the set

\[\Omega_b := \{ z \in \mathbb{C} \mid -1 < \text{Im} z < 1 \} \]

to \(D(0, 1) \). Hence or otherwise, prove the following.

\textbf{Solution.} Note that

\[|g_b(z)| < 1 \iff \left| \frac{e^{\pi z/2} - 1}{e^{\pi z/2} + 1} \right| < 1 \]
\[\iff |e^{\pi z/2} - 1|^2 < |e^{\pi z/2} + 1|^2 \]
\[\iff [\text{Re}(e^{\pi z/2}) - 1]^2 + [\text{Im}(e^{\pi z/2})] < [\text{Re}(e^{\pi z/2}) + 1]^2 + [\text{Im}(e^{\pi z/2})]^2 \]
\[\iff \text{Re}(e^{\pi z/2}) - 2 \text{Re}(e^{\pi z/2}) + 1 < \text{Re}(e^{\pi z/2}) + 2 \text{Re}(e^{\pi z/2}) + 1 \]
\[\iff \text{Re}(e^{\pi z/2}) > 0. \]

But \(\text{Re}(e^{\pi z/2}) = \text{Re}(e^{i\pi/2 \text{Re} z + i\pi/2 \text{Im} z}) = \exp(i\pi/2 \text{Re} z) \cos(i\pi/2 \text{Im} z) > 0 \) iff \(\cos(i\pi/2 \text{Im} z) > 0 \) — in particular this holds when \(-1 < \text{Im} z < 1\), i.e. when \(z \in \Omega_b \). To deduce the analogous result for \(g_a \) and \(\Omega_a \), just note that

\[g_a(z) = g_b(iz) \quad \text{and} \quad \Omega_a = i\Omega_b. \]

(a) Let \(f : D(0, 1) \rightarrow \mathbb{C} \) be an analytic function that satisfies \(f(0) = 0 \). Suppose

\[|\text{Re} f(z)| < 1 \]
for all \(z \in D(0, 1) \). By considering the function \(g_a \circ f \) or otherwise, prove that

\[|f'(0)| \leq \frac{4}{\pi}. \]

\textbf{Solution.} Note that \(g_a \) maps \(\Omega_a \) onto \(D(0, 1) \), \(g_a \) is analytic on \(\Omega_a \), and \(g_a(0) = 0 \). The composition \(F = g_a \circ f : D(0, 1) \rightarrow \mathbb{C} \) is analytic on \(D(0, 1) \); \(F(0) = g_a(f(0)) = g_a(0) = 0 \); for any \(z \in D(0, 1) \), \(|\text{Re} f(z)| < 1 \) and so \(f(z) \in \Omega_a \) and so \(g_a(f(z)) \in D(0, 1) \), i.e.

\[|F(z)| = |g_a(f(z))| < 1 \]
for all \(z \in D(0, 1) \). By Schwarz’s Lemma, we have \(|F'(0)| \leq 1 \). Since

\[F'(z) = g_a'(f(z))f'(z) = \frac{\pi i e^{\pi i f(z)/2} f'(z)}{(e^{\pi i f(z)/2} + 1)^2} \]

and \(f(0) = 0 \), we get

\[|f'(0)| \leq \frac{4}{\pi}. \]
(b) Let \(S \) be the set of functions defined by
\[
S = \{ f : \Omega_b \to \mathbb{C} \mid f \text{ analytic, } |f| < 1 \text{ on } \Omega_b, \text{ and } f(0) = 0 \}.
\]
By considering the function \(f \circ g_b^{-1} \) or otherwise, prove that
\[
\sup_{f \in S}|f(1)| = \frac{e^{\pi/2} - 1}{e^{\pi/2} + 1}.
\]

Solution. Note that \(g_b \) maps \(\Omega_b \) into \(D(0, 1) \), \(g_b \) is analytic on \(\Omega_b \), and \(g_b(0) = 0 \). Furthermore, note that \(g_b \) is injective on \(\Omega_b \) \(\longrightarrow g_b(z) = g_b(w) \) iff
\[
(e^{\pi z/2} - 1)(e^{\pi w/2} + 1) = (e^{\pi z/2} + 1)(e^{\pi w/2} - 1)
\]
iff \(e^{\pi(z-w)/2} = 1 \) iff \(\text{Re}(z - w) = 0 \) and \(\text{Im}(z - w) \) is an integer multiple of 4; so when \(z, w \in \Omega_b \), this is only possible if \(z = w \). Hence \(g_b \) is an invertible map and \(g_b^{-1} \) maps \(D(0, 1) \) onto \(\Omega_b \), \(g_b^{-1} \) is analytic on \(D(0, 1) \), and \(g_b^{-1}(0) = 0 \). Given any \(f \in S \), the composition \(F = f \circ g_b^{-1} : D(0, 1) \to \mathbb{C} \) is analytic on \(D(0, 1) \); \(F(0) = f(g_b^{-1}(0)) = f(0) = 0 \); for any \(z \in D(0, 1), g_b^{-1}(z) \in \Omega_b \) and so \(f(g_b^{-1}(z)) \in D(0, 1) \), ie.
\[
|F(z)| < 1
\]
for all \(z \in D(0, 1) \). By Schwarz’s Lemma, we have \(|F(z)| \leq |z| \) for all \(z \in D(0, 1) \). In particular, if we pick
\[
z_0 = \frac{e^{\pi/2} - 1}{e^{\pi/2} + 1} \in D(0, 1),
\]
we get
\[
|f(1)| = |f(g_b^{-1}(z_0))| = |F(z_0)| \leq |z_0| = z_0.
\]
Since this is true for arbitrary \(f \in S \), we have that
\[
\sup_{f \in S}|f(1)| \leq \frac{e^{\pi/2} - 1}{e^{\pi/2} + 1}.
\]
But note that equality is attained by
\[
f(z) = e^{i\theta}g_b(z)
\]
for any \(\theta \in \mathbb{R} \). So
\[
\sup_{f \in S}|f(1)| = \frac{e^{\pi/2} - 1}{e^{\pi/2} + 1}.
\]

2. Let \(f : D(0, 1) \to \mathbb{C} \) be analytic and \(|f(z)| < 1 \) for all \(z \in D(0, 1) \). Recall that \(\varphi_a(z) = (z - \alpha)/(1 - \overline{\alpha}z) \).
(a) By considering the function \(\varphi_{f(a)} \circ f \circ \varphi_{-a} \) or otherwise, show that
\[
\frac{|f'(z)|}{1 - |f(z)|^2} \leq \frac{1}{1 - |z|^2}.
\]

Solution. Let \(a \in D(0, 1) \). Then \(f(a) \in D(0, 1) \). We consider \(\varphi_{-a} \) and \(\varphi_{f(a)} \). Define \(g = \varphi_{f(a)} \circ f \circ \varphi_{-a} : D(0, 1) \to \mathbb{C} \). Note that \(g \) is analytic. If \(z \in D(0, 1) \), then \(\varphi_{-a}(z) \in D(0, 1) \), so \(f(\varphi_{-a}(z)) \in D(0, 1) \), and so \(\varphi_{f(a)}(f(\varphi_{-a}(z))) \in D(0, 1) \), ie.
\[
|g(z)| < 1
\]
for all \(z \in D(0, 1) \). Also \(g(0) = \varphi_{f(a)}(f(\varphi_{-a}(0))) = \varphi_{f(a)}(f(a)) = 0 \). Schwartz’s Lemma then implies that \(|g'(0)| \leq 1 \). But using chain rule and Lemma 4.18 in the lectures, we get
\[
|g'(0)| = |\varphi_{f(a)}(f(a))f'(a)\varphi_{-a}'(0)| = \frac{|f'(a)|}{1 - |f(a)|^2} \times (1 - |a|^2)
\]
and so
\[
\frac{|f'(a)|}{1 - |f(a)|^2} \leq \frac{1}{1 - |a|^2}.
\]

Now just observe that this works for arbitrary \(a \in D(0, 1) \).

(b) Suppose there exist two distinct points \(a, b \in D(0, 1) \) such that \(f(a) = a \) and \(f(b) = b \). By considering the function \(\varphi_a \circ f \circ \varphi_a \) or otherwise, show that \(f(z) = z \) for all \(z \in D(0, 1) \).

SOLUTION. Since \(a \neq b \), at least one of them must be non-zero, wlog, let \(a \neq 0 \). Define \(g = \varphi_a \circ f \circ \varphi_a : D(0, 1) \to C \). Note that \(g \) is analytic. If \(z \in D(0, 1) \), then \(\varphi_a(z) \in D(0, 1) \), so \(f(\varphi_a(z)) \in D(0, 1) \), and so \(\varphi_a(f(\varphi_a(z))) \in D(0, 1) \), ie.

\[
|g(z)| < 1
\]

for all \(z \in D(0, 1) \). Also \(g(0) = \varphi_a(f(\varphi_a(0))) = \varphi_a(f(a)) = \varphi_a(a) = 0 \). Schwartz’s Lemma then implies that \(|g(z)| \leq |z| \) for all \(z \in D(0, 1) \). Before we proceed further, we observe that for \(\alpha \in D(0, 1) \), \(\varphi_a(\varphi_a(z)) = \alpha \). \(\varphi_a(z) \) for all \(z \in D(0, 1) \), ie. \(\varphi_a \) is an invertible map and \(\varphi_a^{-1} = \varphi_a \). Let \(c = \varphi_a(b) \in D(0, 1) \). So \(b = \varphi_a(c) \). Now note that

\[
g(c) = \varphi_a(f(\varphi_a(c))) = \varphi_a(f(b)) = \varphi_a(c) = c
\]

and so equality is attained in \(|g(z)| \leq |z| \) by \(z = c \in D(0, 1) \). By Schwartz’s Lemma again, we get \(g(z) = e^{i\theta}z \) for all \(z \in D(0, 1) \). But \(e^{i\theta}c = g(c) = c \) and so \(e^{i\theta} = 1 \). Hence

\[
\varphi_a \circ f \circ \varphi_a = \text{id}
\]

and so

\[
f = \varphi_a \circ \text{id} \circ \varphi_a = \text{id}.
\]

(c) Suppose there exist \(a \in D(0, 1) \), \(a \neq 0 \), such that \(f(a) = 0 = f(-a) \). By considering the function

\[
g(z) = \frac{f(z)}{\varphi_a(z)\varphi_a(-z)}
\]

or otherwise, show that \(|f(0)| \leq |a|^2 \). What can you conclude if \(|f(0)| = |a|^2 \)?

SOLUTION. Note that \(g \) is analytic on \(D(0, 1) \) except possibly at \(z = a \) and \(z = -a \) where the denominator vanishes. However since

\[
\lim_{z \to a} (z - a)g(z) = \lim_{z \to a} \frac{(1 - \overline{a}z)(1 + \overline{a}z)}{(z + a)} f(z) = \frac{1}{2a} f(a) = 0,
\]

\[
\lim_{z \to -a} (z + a)g(z) = \lim_{z \to -a} \frac{(1 - \overline{a}z)(1 + \overline{a}z)}{(z - a)} f(z) = \frac{|a|^2 - 1}{2a} f(a) = 0,
\]

\(g \) has removable singularity by Theorem 5.2. We thus may assume that \(g \) is analytic on \(D(0, 1) \). If \(|z| = 1 \), ie. \(z = e^{i\theta} \) for some \(\theta \), then

\[
\left| \frac{1}{\varphi_a(z)\varphi_a(-z)} \right| = \frac{|1 - \overline{a}z|(1 + \overline{a}z)}{|z - a|(z + a)}
\]

\[
= \frac{1 - \overline{a}z}{e^{2i\theta} - a^2}
\]

\[
= \frac{e^{2i\theta}(e^{-2i\theta} - \overline{a}^2)}{e^{2i\theta} - a^2}
\]

\[
= \frac{|e^{-2i\theta} - \overline{a}^2|}{|e^{2i\theta} - a^2|}
\]

\[
= 1.
\]

Since \(|f(z)| < 1 \) for all \(z \in D(0, 1) \) and \(f \) is analytic, we must have \(|f(z)| \leq 1 \) for \(|z| = 1 \).

Hence

\[
|F(z)| \leq 1
\]
for \(|z| = 1\) and thus for \(|z| \leq 1\) by Maximum Modulus Theorem. If we take \(z = 0\), \(|F(0)| \leq 1\) gives
\[|f(0)| \leq |\varphi_a(0)\varphi_{-a}(0)| = |a|^2.\]
If equality is attained, then \(|F(0)| = 1\) means that \(F\) attains its maximum on \(\overline{D(0,1)}\) at the interior point \(z = 0\). Maximum Modulus Theorem then implies that \(F\) is constant throughout \(D(0,1)\) and so \(F \equiv e^{i\theta}\) for some \(\theta \in \mathbb{R}\). Hence
\[f(z) = e^{i\theta} \frac{z - a}{1 - \overline{a}z} \frac{z + a}{1 + \overline{a}z}\]
for all \(z \in D(0,1)\).

3. Recall the \(L\)-shaped path that we used in lectures to establish the existence of antiderivative for an analytic function, i.e. \(L(z_1, z_2)\) is a path that goes from \(z_1\) to \(z_2\) comprising two line segments one parallel to the imaginary axis and the other to the real axis.

(a) Let \(f : \Omega \to \mathbb{C}\) be a continuous function on an open set \(\Omega\). Suppose
\[\int_{\partial R} f(z) \, dz = 0\]
along the boundary of any closed rectangle \(R \subseteq \Omega\). Let \(D(z_0, r) \subseteq \Omega\). Show that the function \(F : D(z_0, r) \to \mathbb{C}\) defined by
\[F(z) = \int_{L(z_0, z)} f(\zeta) \, d\zeta\]
is an antiderivative of \(f\). Hence deduce that \(f\) is analytic in \(\Omega\).

Solution. See proof of Morera’s Theorem on pp. 85–86 in the textbook.

(b) Let \(f : D(0,1) \to \mathbb{C}\) be analytic and \(f(z) \neq 0\) for all \(z \in D(0,1)\). By considering the function \(h : D(0,1) \to \mathbb{C}\) defined by
\[h(z) = \int_{L(0,z)} \frac{f' (\zeta)}{f(\zeta)} \, d\zeta,\]
show that there exists an analytic function \(g : D(0,1) \to \mathbb{C}\) such that
\[f(z) = e^{g(z)}\]
for all \(z \in D(0,1)\).

Solution. Since \(f(z) \neq 0\) for all \(z \in D(0,1)\), \(f'(z)/f(z)\) is analytic on \(D(0,1)\). Let \(L(0,z)\) is an \(L\)-shaped curve from 0 to \(z\). Recall from the proof of Theorem 3.13 that the function \(h : D(0,1) \to \mathbb{C}\) defined by
\[h(z) = \int_{L(0,z)} \frac{f' (\zeta)}{f(\zeta)} \, d\zeta\]
is analytic and is an antiderivative of the integrand, i.e.
\[h'(z) = \frac{f'(z)}{f(z)}\]
for all \(z \in D(0,1)\). Now apply chain rule to the analytic function \(f(z)e^{-h(z)}\) to get
\[
\frac{d}{dz} f(z)e^{-h(z)} = e^{-h(z)} \left[f'(z) - h'(z)f(z) \right] \\
= e^{-h(z)} \left[f'(z) - f'(z) \right] \\
= 0.
\]
In other words \(f(z)e^{-h(z)}\) is constant and so
\[f(z)e^{-h(z)} = f(0)e^{-h(0)} = f(0)\] (3.1)
for all $z \in D(0,1)$. Since $f(0) \neq 0$, we have $f(0) = re^{i\theta}$ for some $r > 0$ and some $\theta \in [0,2\pi)$. Since $r > 0$, we may write $r = e^{\ln r}$ and thus $f(0) = e^{\ln r + i\theta}$. Let $c = \ln r + i\theta \in \mathbb{C}$. Then (3.1) becomes

$$f(z) = f(0)e^{h(z)} = e^{c+h(z)}.$$

Hence $g(z) = h(z) + c$ is an analytic function satisfying

$$f(z) = e^{g(z)}$$

for all $z \in D(0,1)$. Note that (a) is a converse to Cauchy’s theorem while (b) establishes the existence of logarithms.

4. Let $\Omega \subseteq \mathbb{C}$ be a region and let $f : \Omega \to \mathbb{C}$. Suppose there exists $n \in \mathbb{N}$ such that $g(z) = [f(z)]^n$ and $h(z) = [f(z)]^{n+1}$ are both analytic on Ω. Show that f is analytic on Ω.

Solution. Note that $g(z) = 0$ if and only if $h(z) = 0$. So the zeros of g and h are in common. Let $Z \subseteq \Omega$ be these common zeros. If Z contains a limit point, then g and h are identically zero by the identity theorem and $f \equiv 0$ is of course analytic. We will assume that all zeros in Z are isolated. Let $z_0 \in Z$. So there exist analytic functions g_1 and h_1 and some $\varepsilon > 0$ such that for all $z \in D(z_0, \varepsilon)$,

$$g(z) = (z - z_0)^k g_1(z), \quad g_1(z_0) \neq 0,$$

$$h(z) = (z - z_0)^l h_1(z), \quad h_1(z_0) \neq 0,$$

where k and l are the orders of zero of g and h respectively at z_0. But $g^{n+1} = f^{n(n+1)} = h^n$ and so

$$(z - z_0)^{(n+1)k} g_1(z)^{n+1} = (z - z_0)^{nl} h_1(z)^n.$$

So we get

$$\frac{g_1(z)^{n+1}}{h_1(z)^n} = (z - z_0)^{(n+1)k-nl}.$$

Since the LHS is non-zero for $z = z_0$, the RHS is also non-zero for $z = z_0$ and this is only possible if $(n+1)k - nl = 0$. In other words, $l > k$, i.e. the order of zero of h is larger than the order of zero of g. So h/g has a removable singularity at z_0. Since this is true for all $z_0 \in Z$, h/g may be extended to an analytic function \tilde{f} on Ω. But since for all $z \in \Omega \setminus Z$,

$$\tilde{f}(z) = \frac{h(z)}{g(z)} = f(z),$$

and $\Omega \setminus Z$ clearly has limit points, $\tilde{f} \equiv f$ by the identity theorem.

5. Show that each of the following series define a meromorphic function on \mathbb{C} and determine the set of poles and their orders.

$$f(z) = \sum_{n=0}^{\infty} \sin(nz) \frac{1}{n!(z^2 + n^2)}, \quad g(z) = \sum_{n=0}^{\infty} \left[\frac{1}{(z-z_n)^2} - \frac{1}{z_n^2} \right]$$

where $\{z_n\}_{n=0}^{\infty} \subseteq \mathbb{C}^{\times}$ is a sequence of distinct complex numbers (i.e. $z_n \neq z_m$ if $n \neq m$) such that

$$\sum_{n=0}^{\infty} \frac{1}{|z_n|^3} < \infty. \quad (5.2)$$

Solution. We claim that f is meromorphic on \mathbb{C} with poles of order 1 at

$$z \in P_f := i\mathbb{Z}^{\times} = \{\ldots, -3i, -2i, -i, i, 2i, 3i, \ldots\},$$

5
and a removable singularity at $z = 0$. For any fixed $R > 0$, there exists an integer N such that $N > 2R$. We will consider f on the disc $D(0, R)$. We may write

$$f(z) = \sum_{n=0}^{N} \frac{\sin(nz)}{n!(z^2 + n^2)} + \sum_{n=N+1}^{\infty} \frac{\sin(nz)}{n!(z^2 + n^2)}. \quad (5.3)$$

Note that the zeroes of $\sin(nz)$ are

$$\{..., -\frac{2\pi}{n}, -\frac{\pi}{n}, 0, \frac{\pi}{n}, \frac{2\pi}{n}, ..., \}$$

and so the zeroes of $\sin(nz)$ and $z^2 + n^2 = (z + in)(z - in)$ are disjoint for all $n \geq 1$. So the first sum in (5.3) has poles of order 1 for each $\pm nz$ and so the zeroes of $\sin(nz)$ are $\{0, \frac{\pi}{n}, \frac{2\pi}{n}, \ldots\}$ and a removable singularity at $z = 0$. We will consider g on the disc $D(0, R)$ with poles of order 1 at $z = 0$. For any fixed $R > 0$, we have

$$\left|\sin(nz)\right| \leq e^{n|z|}$$

by considering the power series expansions of sin and exp; and we also have

$$\left|\frac{1}{z^2 + n^2}\right| \leq \frac{1}{n^2 - |z|^2} \leq \frac{1}{n^2 - R^2} = \frac{1}{n^2} \times \frac{1}{1 - (R/n)^2} \leq \frac{4}{3n^2}$$

since $n > N > 2R$ (and so $1 - R^2/n^2 \geq 1 - 1/4 = 3/4$). Hence

$$\left|\frac{\sin(nz)}{n!(z^2 + n^2)}\right| \leq \frac{4 e^{n|z|}}{3n!n^2} =: M_n.$$

Since

$$\sum_{n=N+1}^{\infty} M_n = \frac{4}{3} \sum_{n=N+1}^{\infty} \frac{e^{nR}}{n!n^2}$$

is convergent converge by the ratio test, the series of function

$$\sum_{n=N+1}^{\infty} \frac{\sin(nz)}{n!(z^2 + n^2)}$$

is uniformly convergent. Since this argument is true for arbitrary $R > 0$, f is a meromorphic on \mathbb{C} with poles of order 1 at $z \in P_f$.

Let $R > 0$ be fixed but arbitrary. We will show that g defines a meromorphic function on the $D(0, R)$. By (5.2), we must have $\lim_{n \to \infty} |z_n|^{-3} = 0$ and therefore $\lim_{n \to \infty} |z_n| = \infty$. So since the z_n’s are all distinct, there can only be finitely many n such that $z_n \in D(0, R)$. Hence there exists $N \in \mathbb{N}$ such that $|z_n| > 2R$ for all $n > N$. Each $z_n \in D(0, R)$ is a pole of order 2 of g. We write

$$g(z) = \sum_{n=0}^{N} \left[\frac{1}{(z - z_n)^2} - \frac{1}{z_n^2} \right] + \sum_{n=N+1}^{\infty} \left[\frac{1}{(z - z_n)^2} - \frac{1}{z_n^2} \right].$$

The first sum contains all the poles of g in $D(0, R)$. We claim that the second sum is analytic on $D(0, R)$. For $n > N$,

$$\left|\frac{1}{(z - z_n)^2} - \frac{1}{z_n^2}\right| = \left|\frac{z_n^2 - 2zz_n}{z_n^2(z - z_n)^2}\right| = \frac{1}{|z_n|^3} \frac{|z^2 + 2z|}{|z_n| |z_n - 1|^2} \leq \frac{1}{|z_n|^3} \frac{R^2/2R + 2R}{1 - R/2R} = \frac{5R}{|z_n|^3} =: M_n.$$
Since
\[\sum_{n=N+1}^{\infty} M_n = 5R \sum_{n=N+1}^{\infty} \frac{1}{|z_n|^\beta} < \infty. \]

The Weierstrass M-test implies that the second sum converges uniformly and is thus analytic on $D(0, R)$. So g is meromorphic on $D(0, R)$. Since R is arbitrary, g is meromorphic on \mathbb{C}.