For a real-valued function of two real variables, \(u : \Omega_\mathbb{R} \to \mathbb{R} \), we say that \(u \) is \textit{twice continuously differentiable} if all second-order partial derivatives \(u_{xx}, u_{yy}, u_{xy}, u_{yx} \) exist and are continuous on \(\Omega_\mathbb{R} \). The set of all twice continuously differentiable functions on \(\Omega_\mathbb{R} \) is denoted \(C^2(\Omega_\mathbb{R}) \).

1. We mentioned Tauberian theorems in class. Here is an example of an easy one (easy relative to other Tauberian theorems). Let \(\sum_{n=0}^{\infty} a_n z^n \) be a power series with radius of convergence 1 and suppose
\[
\lim_{n \to \infty} n a_n = 0.
\]

(a) Show that
\[
\lim_{m \to \infty} \sum_{n=0}^{m} n |a_n| = 0.
\]

(Hint: Problem 4(a), Problem Set 3, Math 104, Spring 2009.)

Solution. Let \(\varepsilon > 0 \) be given. Since \(\lim_{n \to \infty} n a_n = 0 \), there exists \(N_1 \in \mathbb{N} \) such that
\[
|a_1| + 2|a_2| + \cdots + N_1|a_{N_1}| < \frac{\varepsilon}{2}
\]
whenever \(n > N_1 \). Now by the Archimedean property, there exists \(N_2 \in \mathbb{N} \) such that
\[
\frac{|a_1| + 2|a_2| + \cdots + N_1|a_{N_1}|}{N_2} < \frac{\varepsilon}{2}
\]
Hence
\[
\frac{|a_1| + 2|a_2| + \cdots + N_1|a_{N_1}|}{m} < \frac{\varepsilon}{2}
\]
whenever \(m > N_2 \). Now for \(m > \max\{N_1, N_2\} \),
\[
\sum_{n=0}^{m} n |a_n| = \sum_{n=0}^{N_1} n |a_n| + \sum_{n=N_1+1}^{m} n |a_n| < \varepsilon + \frac{m - N_1}{2} \varepsilon < \varepsilon.
\]
Hence
\[
\lim_{m \to \infty} \sum_{n=0}^{m} n |a_n| = 0.
\]

(b) Define a function \(f \) by
\[
f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{for all } |z| < 1.
\]

Let \(x \) be a real variable and suppose the following left limit exists
\[
\lim_{x \to 1^-} f(x) = A.
\]

Show that the series \(\sum_{n=0}^{\infty} a_n \) converges to \(A \).
SOLUTION. Let \(x \in \mathbb{R} \) and \(0 \leq x < 1 \). We have
\[
\left| \sum_{n=0}^{m} a_n - f(x) \right| = \left| \sum_{n=0}^{m} a_n(1 - x^n) - \sum_{n=m+1}^{\infty} a_n x^n \right|
\leq (1 - x) \sum_{n=0}^{m} |a_n| (1 + x + \cdots + x^{n-1}) + \sum_{n=m+1}^{\infty} |a_n| x^n
\leq m(1 - x) \sum_{n=0}^{m} |a_n| + \sum_{n=m+1}^{\infty} n |a_n| \frac{x^n}{n}.
\]
Let \(\varepsilon > 0 \). Since \(\lim_{n \to \infty} n a_n = 0 \), there exists \(M_1 \in \mathbb{N} \) such that
\[
m |a_m| < \frac{\varepsilon}{2}
\]
whenever \(m > M_1 \). By (a), there exists \(M_2 \in \mathbb{N} \) such that
\[
\sum_{n=0}^{m} n |a_n| < \frac{\varepsilon}{2}
\]
for \(m > M_2 \). Hence when \(m > \max\{M_1, M_2\} \),
\[
\left| \sum_{n=0}^{m} a_n - f(x) \right| < m(1 - x) \frac{\varepsilon}{2} + \frac{\varepsilon}{2m} \sum_{n=m+1}^{\infty} x^n
= \frac{\varepsilon}{2} \left[m(1 - x) + \frac{1}{m} \left(\frac{x^{m+1}}{1 - x} \right) \right]
< \frac{\varepsilon}{2} \left[m(1 - x) + \frac{1}{m(1 - x)} \right].
\]
Then for \(1 - x = 1/m \) and \(m > \max\{M_1, M_2\} \), we get
\[
\left| \sum_{n=0}^{m} a_n - f \left(\frac{1}{m} \right) \right| < \varepsilon,
\]
which implies that
\[
\lim_{m \to \infty} \sum_{n=0}^{m} a_n = \lim_{m \to \infty} f \left(\frac{1}{m} \right).
\]
Since \(\lim_{x \to 1^-} f(x) = A \) exists, we must have
\[
\lim_{m \to \infty} f \left(\frac{1}{m} \right) = A
\]
and so we get
\[
\sum_{n=0}^{\infty} a_n = A.
\]

2. Recall that \(\mathbb{C} \) is both a real vector space of dimension 2 and a complex vector space of dimension 1. A function \(\varphi : \mathbb{C} \to \mathbb{C} \) is called \(\mathbb{R} \)-linear if \(\varphi \) is a linear transformation of real vector spaces, ie.
\[
\varphi(\lambda_1 z_1 + \lambda_2 z_2) = \lambda_1 \varphi(z_1) + \lambda_2 \varphi(z_2) \quad \text{for all } \lambda_1, \lambda_2 \in \mathbb{R} \text{ and } z_1, z_2 \in \mathbb{C}. \quad (2.1)
\]
It is called \(\mathbb{C} \)-linear if \(\varphi \) is a linear transformation of complex vector spaces, ie.
\[
\varphi(\lambda_1 z_1 + \lambda_2 z_2) = \lambda_1 \varphi(z_1) + \lambda_2 \varphi(z_2) \quad \text{for all } \lambda_1, \lambda_2 \in \mathbb{C} \text{ and } z_1, z_2 \in \mathbb{C}. \quad (2.2)
\]
(a) Prove that if \(\varphi \) is \(\mathbb{C} \)-linear, then it is \(\mathbb{R} \)-linear. Give an example to show that the converse is false.

SOLUTION. This is obvious since \(\mathbb{R} \subset \mathbb{C} \) and so (2.1) is a special case of (2.2). For a counterexample to the converse, consider the complex conjugate function, \(\varphi : \mathbb{C} \to \mathbb{C} \),
\(\varphi(z) = \overline{z}\). For \(\lambda_1, \lambda_2 \in \mathbb{R}\),
\[
\varphi(\lambda_1 z_1 + \lambda_2 z_2) = \overline{\lambda_1 z_1 + \lambda_2 z_2} = \overline{\lambda_1 \overline{z}_1 + \lambda_2 \overline{z}_2} = \lambda_1 \overline{z}_1 + \lambda_2 \overline{z}_2 = \lambda_1 \varphi(z_1) + \lambda_2 \varphi(z_2)
\]
and so \(\varphi\) is \(\mathbb{R}\)-linear. However, for \(\lambda_1 = i, z_1 = 1, \lambda_2 = z_2 = 0\), we see that
\[
\varphi(i) = -i \neq i = i \varphi(1)
\]
and so it is not \(\mathbb{C}\)-linear.

(b) Let \(\varphi : \mathbb{C} \rightarrow \mathbb{C}\). Prove that the following statements are equivalent.
(i) \(\varphi\) is \(\mathbb{R}\)-linear.
(ii) \(\varphi\) satisfies
\[
\varphi(z) = \varphi(1)x + \varphi(i)y
\]
for all \(z = x + iy \in \mathbb{C}\).
(iii) \(\varphi\) satisfies
\[
\varphi(z) = \left[\frac{\varphi(1) - i\varphi(i)}{2}\right] z + \left[\frac{\varphi(1) + i\varphi(i)}{2}\right] \overline{z}
\]
for all \(z = x + iy \in \mathbb{C}\).
(iv) \(\varphi\) is given by
\[
\varphi(x + iy) = (ax + by) + i(cx + dy)
\]
for some \([a, b, c, d] \in \mathbb{R}^{2 \times 2}\).

Solution. (i) \(\Rightarrow\) (ii): If we let \(\lambda_1 = x, z_1 = 1, \lambda_2 = y, z_2 = i\) in (2.1), we get
\[
\varphi(z) = \varphi(x + yi) = x\varphi(1) + y\varphi(i) = \varphi(1)x + \varphi(i)y
\]
as required.
(ii) \(\Rightarrow\) (iii): Note that if \(z = x + iy\), then \(x = (z + \overline{z})/2\) and \(y = (z - \overline{z})/2i\). Hence
\[
\varphi(z) = \varphi(1)x + \varphi(i)y
\]
\[
= \varphi(1) \left[\frac{z + \overline{z}}{2}\right] + \varphi(i) \left[\frac{z - \overline{z}}{2i}\right]
\]
\[
= \left[\frac{\varphi(1) - i\varphi(i)}{2}\right] z + \left[\frac{\varphi(1) + i\varphi(i)}{2}\right] \overline{z}.
\]
(iii) \(\Rightarrow\) (iv): Let \(a = \text{Re} \varphi(1), c = \text{Im} \varphi(1), b = \text{Re} \varphi(i), d = \text{Im} \varphi(i)\). Then
\[
\varphi(x + iy) = \left[\frac{\varphi(1) - i\varphi(i)}{2}\right] (x + iy) + \left[\frac{\varphi(1) + i\varphi(i)}{2}\right] (x - iy)
\]
\[
= \varphi(1)x + \varphi(i)y
\]
\[
= (a + ic)x + (b + id)y
\]
\[
= (ax + by) + i(cx + dy).
\]
(iv) \(\Rightarrow\) (i): With respect to the standard basis \(B = \{1, i\}\) of \(\mathbb{C}\) as a real vector space, (2.5) implies that \(\varphi\) has the matrix representation
\[
[\varphi]_{B,B} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]
and is thus a \(\mathbb{R}\)-linear function.

(c) Let \(\varphi : \mathbb{C} \rightarrow \mathbb{C}\). Prove that the following statements are equivalent.
(i) \(\varphi\) is \(\mathbb{C}\)-linear.
(ii) \(\varphi\) is \(\mathbb{R}\)-linear and \(\varphi(i) = i\varphi(1)\).
3. Let $\Omega \subseteq \mathbb{C}$ be a region and let $f : \Omega \to \mathbb{C}$. We will call f **complex differentiable** at $z \in \Omega$ if it is differentiable as defined in the lectures, i.e. the limit
\[
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h}
\]
exists. We will call f **real differentiable** at $z \in \Omega$ if there exists a \mathbb{R}-linear function $\varphi : \mathbb{C} \to \mathbb{C}$ such that
\[
\lim_{h \to 0} \frac{f(z + h) - f(z) - \varphi(h)}{h} = 0.
\]

(a) Prove that if f is complex differentiable at $z \in \Omega$, then f is real differentiable at z.

Solution. Let the limit in (3.9) be α. Then
\[
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h} = \alpha.
\]
Hence, for any $\varepsilon > 0$, there exists $\delta > 0$ such that when $|h| < \delta$,
\[
\left| \frac{f(z + h) - f(z)}{h} - \alpha \right| < \varepsilon,
\]
that is
\[
\left| \frac{f(z + h) - f(z) - \alpha h}{h} \right| < \varepsilon.
\]
Let $\varphi : \mathbb{C} \to \mathbb{C}$ be defined by $\varphi(z) = \alpha z$ for all $z \in \mathbb{C}$. This is \mathbb{C}-linear and is thus \mathbb{R}-linear by (a). Hence (3.10) holds with this choice of φ.

(b) Give an example to show that the converse of (a) is false.

Solution. Let $g : \Omega \to \mathbb{C}$ be $g(z) = \bar{z}$. Let $\varphi : \mathbb{C} \to \mathbb{C}$ be defined by $\varphi(x + iy) = x - iy$.

Note that φ is \mathbb{R}-linear by (2.5) with $a = 1, b = c = 0, d = -1$. It easy to see that g is real differentiable at any $z \in \Omega$ with respect to φ since
\[
\lim_{h \to 0} \frac{g(z + h) - g(z) - \varphi(h)}{h} = \lim_{h \to 0} \frac{z + \bar{h} - \bar{z} - \bar{h}}{h} = 0.
\]
Now \(g \) is not complex differentiable since if we write \(h = \xi + i\eta \) and let \(h \to 0 \) along the lines \(\eta = 0 \) and \(\xi = 0 \), we get

\[
\lim_{\xi \to 0} \frac{g(z + \xi) - g(z)}{\xi} = \lim_{\xi \to 0} \frac{\bar{z} + \xi - \bar{z}}{\xi} = 1
\]

and

\[
\lim_{\eta \to 0} \frac{g(z + i\eta) - g(z)}{i\eta} = \lim_{\xi \to 0} \frac{\bar{z} - i\eta - \bar{z}}{i\eta} = -1.
\]

So the limit

\[
\lim_{h \to 0} \frac{g(z + h) - g(z)}{h}
\]

cannot exist.

(c) Let \(f \) be real differentiable at \(z \in \Omega \). If the \(\mathbb{R} \)-linear function \(\varphi : \mathbb{C} \to \mathbb{C} \) in (3.10) is also \(\mathbb{C} \)-linear, prove that \(f \) is complex differentiable at \(z \). In this case, how is \(\varphi \) related to the limit in (3.9)?

SOLUTION. If the \(\varphi \) is also \(\mathbb{C} \)-linear, then by Problem 2(c), we have

\[
\varphi(h) = \varphi(1)h.
\]

Then

\[
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h} = \lim_{h \to 0} \frac{f(z + h) - f(z) - \varphi(h) + \varphi(h)}{h}
\]

\[
= \lim_{h \to 0} \frac{f(z + h) - f(z) - \varphi(h)}{h} + \lim_{h \to 0} \frac{\varphi(h)}{h}
\]

\[
= 0 + \lim_{h \to 0} \frac{\varphi(1)h}{h} = \varphi(1).
\]

Hence the limit in (3.9) exists and so \(f \) is complex differentiable at \(z \). Note that this also gives the relation between \(\varphi \) and the limit in (3.9).

(d) Let \(f \) be real differentiable at \(z \in \Omega \). Show that if the limit

\[
\lim_{h \to 0} \left| \frac{f(z + h) - f(z)}{h} \right|
\]

exists\(^1\), then either \(f \) or \(\bar{f} \) must be complex differentiable at \(z \). Give an example to show that \(f \) is not necessarily complex differentiable at \(z \). Here the function \(\bar{f} : \Omega \to \mathbb{C} \) is defined by \(f(z) = \bar{f}(z) \) for all \(z \in \Omega \).

SOLUTION. Since \(f \) is real differentiable, there exists an \(\mathbb{R} \)-linear \(\varphi \) for which (3.10) is satisfied. By triangle inequality,

\[
0 \leq \left| \frac{f(z + h) - f(z)}{h} - \frac{\varphi(h)}{h} \right| = \left| \frac{f(z + h) - f(z) - \varphi(h)}{h} \right|.
\]

Since the limit of the RHS is 0, by Sandwich Lemma, the limit \(\lim_{h \to 0} |\varphi(h)|/|h| \) exists (and equals the limit in (3.11)). Since \(\varphi \) is \(\mathbb{R} \)-linear, by (2.4), we have

\[
\varphi(h) = \lambda h + \mu \bar{h}
\]

where

\[
\lambda := \frac{\varphi(1) - i\varphi(i)}{2} \quad \text{and} \quad \mu := \frac{\varphi(1) + i\varphi(i)}{2}.
\]

Now

\[
\left| \frac{\varphi(h)}{h} \right|^2 = \left| \frac{\lambda h + \mu \bar{h}}{h} \right|^2 = |\lambda|^2 + |\mu|^2 + 2 \Re \left(\lambda \bar{\mu} \frac{h}{h} \right).
\]

\(^1\)Note the difference between (3.9) and (3.11).
Since the limit of the LHS exists as $h \to 0$, the limit
\[
\lim_{h \to 0} \text{Re} \left(\frac{\lambda \bar{\mu} h}{h} \right)
\]
must also exist. Write $h = \xi + i\eta$. First we let $h \to 0$ along the lines $\eta = 0$ and $\xi = 0$ respectively, we get
\[
\lim_{\xi \to 0} \text{Re} \left(\lambda \bar{\mu} \left(\frac{\xi}{\xi} \right) \right) = \lim_{\eta \to 0} \text{Re} \left(\lambda \bar{\mu} \left(\frac{i\eta}{-i\eta} \right) \right)
\]
by the uniqueness of limit. This gives $\text{Re}(\lambda \bar{\mu}) = -\text{Re}(\lambda \bar{\mu})$ and thus
\[
\text{Re}(\lambda \bar{\mu}) = 0.
\] (3.13)

Now we let $h \to 0$ along the lines $\xi = \eta$ and $\xi = -\eta$ respectively, we get
\[
\lim_{\xi \to 0} \text{Re} \left(\lambda \bar{\mu} \left(\frac{\xi + i\xi}{\xi - i\xi} \right) \right) = \lim_{\eta \to 0} \text{Re} \left(\lambda \bar{\mu} \left(\frac{-\eta + i\eta}{-\eta - i\eta} \right) \right)
\]
by the uniqueness of limit. This gives $\text{Re}(i\lambda \bar{\mu}) = -\text{Re}(i\lambda \bar{\mu})$, ie. $-\text{Im}(\lambda \bar{\mu}) = \text{Im}(\lambda \bar{\mu})$, and thus
\[
\text{Im}(\lambda \bar{\mu}) = 0.
\] (3.14)

By (3.13) and (3.14),
\[
\lambda \bar{\mu} = 0,
\]
ie. we must either have $\lambda = 0$ or $\bar{\mu} = 0$. So by (3.12), either
\[
\varphi(1) = i\bar{\varphi}(i) \quad \text{or} \quad \bar{\varphi}(1) = i\bar{\varphi}(i).
\]

In the first case, φ is \mathbb{C}-linear (by Problem 2(c)) and therefore f must be complex differentiable (by Problem 3(c)). In the second case, $\bar{\varphi}$ is \mathbb{C}-linear and there \bar{f} must be complex differentiable. In the second case, we also need to observe that if f is real differentiable with respect to φ, then f is real differentiable with respect to $\bar{\varphi}$ since
\[
\lim_{h \to 0} \frac{f(z + h) - f(z) - \varphi(h)}{h} = 0
\]
iff
\[
\lim_{h \to 0} \frac{|f(z + h) - f(z) - \varphi(h)|}{|h|} = 0
\]
iff
\[
\lim_{h \to 0} \frac{|f(z + h) - f(z) - \varphi(h)|}{|h|} = 0
\]
iff
\[
\lim_{h \to 0} \frac{\bar{f}(z + h) - \bar{f}(z) - \bar{\varphi}(h)}{h} = 0.
\]

(e) Show that the function $f : \mathbb{C} \to \mathbb{C}$ defined by
\[
f(z) = \sqrt{|z^2 - \pi^2|}
\]
satisfies the Cauchy-Riemann equation at $z = 0$ but is not differentiable at $z = 0$.

SOLUTION. Note that f is identically zero on the real and imaginary axes and so trivially satisfies the Cauchy-Riemann equation at $z = 0$, i.e.
\[
f_x(0) = \lim_{\xi \to 0, \xi \in \mathbb{R}} \frac{f(0 + \xi) - f(0)}{\xi} = \lim_{\xi \to 0, \xi \in \mathbb{R}} \frac{0 - 0}{\xi} = 0,
\]
\[
f_y(0) = \lim_{\eta \to 0, \eta \in \mathbb{R}} \frac{f(0 + i\eta) - f(0)}{\eta} = \lim_{\eta \to 0, \eta \in \mathbb{R}} \frac{0 - 0}{\eta} = 0
\]
and so $f_y(0) = -f_x(0)$. To see that it is not differentiable, take $h = r(\cos \theta + i \sin \theta)$ and take limit as $r \to 0$, we get
\[
\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{r \to 0} \frac{f(0 + re^{i\theta}) - f(0)}{re^{i\theta}}
= \lim_{r \to 0} \frac{\sqrt{4 \cos \theta \sin \theta} - 0}{\cos \theta + i \sin \theta}
= \sqrt{\frac{4 \cos \theta \sin \theta}{\cos \theta + i \sin \theta}}.
\]
Since the last expression depends on θ, taking $\theta = 0$ and $\theta = \pi/4$, we get two different values and thus the limit of the LHS does not exist.

(f) Let $\Omega \subseteq \mathbb{C}$ be a region such that the function
\[
f(x + iy) = |x^2 - y^2| + 2i|xy|
\]
is analytic on Ω but is not analytic on any larger region Ω' containing Ω. Find all possible Ω with this property.

SOLUTION. The function f is analytic in each of the following regions

\[
\Omega_1 = \{z \in \mathbb{C} \mid 0 < \arg(z) < \pi/4\}, \quad \Omega_2 = \{z \in \mathbb{C} \mid \pi < \arg(z) < 5\pi/4\},
\Omega_3 = \{z \in \mathbb{C} \mid \pi/2 < \arg(z) < 3\pi/4\}, \quad \Omega_4 = \{z \in \mathbb{C} \mid 3\pi/2 < \arg(z) < 7\pi/4\}.
\]
On Ω_1 or Ω_2, we have
\[
f(z) = z^2.
\]
On Ω_3 or Ω_4, we have
\[
f(z) = -z^2.
\]

(g) Find constants $a, b, c \in \mathbb{R}$ such that the functions $f, g : \mathbb{C} \to \mathbb{C}$ defined by
\[
f(x + iy) = x + ay + i(bx + cy),
g(x + iy) = \cos x(\cosh y + a \sinh y) + i \sin x(\cosh y + b \sinh y)
\]
are analytic on \mathbb{C}.

SOLUTION. Applying the Cauchy-Riemann equations
\[
u_x = v_y, \quad u_y = -v_x,
\]
we see that $c = 1$ and $b = -a$ in f and so
\[
f(z) = (1 - ai)z.
\]
Likewise $a = b = -1$ in g and so
\[
g(z) = e^{iz}.
\]

4. Let $\Omega \subseteq \mathbb{C}$ be a region. Let $f : \Omega \to \mathbb{C}$ be analytic and $u(x, y) = \text{Re} f(x + iy)$, $v(x, y) = \text{Im} f(x + iy)$.

(a) Suppose $u, v \in C^2(\Omega_R)$. Show that u and v are harmonic functions, i.e. solutions of the Laplace equation
\[
\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0,
\]
on Ω_R.

SOLUTION. Taking partial derivatives of the Cauchy-Riemann equations
\[
u_x = v_y, \quad u_y = -v_x
\]
gives
\[
u_{xx} = v_{yx}, \quad u_{yy} = -v_{xx},
u_{xy} = v_{yxx}, \quad u_{yx} = -v_{xy}.
\]
Since the second order partial derivatives are continuous, we have that
\(u_{xy} = u_{yx} \) and \(v_{xy} = v_{yx} \). Hence
\[
\begin{align*}
 u_{xx} + u_{yy} &= v_{yx} - v_{xy} = 0, \\
v_{xx} + v_{yy} &= -u_{yx} + u_{xy} = 0.
\end{align*}
\]

(b) Let \(a \in \mathbb{R} \). Suppose \(f \) is analytic on \(D(0,1) \). Which of the following can occur as the real or imaginary part of \(f \)?
\[
\begin{align*}
x^2 - axy + y^2, & \quad x^3 - x^2 + y^3, & \quad x^2 + y^2 - 5x, & \quad \frac{x^2 - y^2}{(x^2 + y^2)^2}.
\end{align*}
\]

SOLUTION. Note that all these functions are in \(C^2(\mathbb{R}^2) \) and so the result in (a) applies. For \(w(x,y) = x^2 - axy + y^2 \), we have
\[
\begin{align*}
w_{xx} &= 2 \quad \text{and} \quad w_{yy} = 2
\end{align*}
\]
and so
\[
w_{xx} + w_{yy} = 2 + 2 \neq 0.
\]
Thus \(w \) cannot be the real or imaginary part of an analytic function since it is not harmonic. Likewise for \(x^3 - x^2 + y^3 \) and \(x^2 + y^2 - 5x \). The function \((x^2 - y^2)/(x^2 + y^2)^2 \) is not even continuous at 0 and so not a candidate. But on the other hand, if we allow the point 0 to be excluded, then for
\[
u(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2},
\]
we see that
\[
\begin{align*}
\frac{\partial u}{\partial x} &= \frac{2x(3y^2 - x^2)}{(x^2 + y^2)^3}, & \frac{\partial u}{\partial y} &= -\frac{2y(3x^2 - y^2)}{(x^2 + y^2)^3}
\end{align*}
\]
and
\[
\begin{align*}
\frac{\partial^2 u}{\partial x^2} &= \frac{6}{(x^2 + y^2)^4} \left(x^4 - 6x^2y^2 + y^4 \right), & \frac{\partial^2 u}{\partial y^2} &= -\frac{6}{(x^2 + y^2)^4} \left(x^4 - 6x^2y^2 + y^4 \right)
\end{align*}
\]
and thus
\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.
\]
We want \(v(x,y) \) such that the Cauchy-Riemann equations
\[
\begin{align*}
 \frac{\partial v}{\partial y} &= \frac{\partial u}{\partial x} = \frac{2x(3y^2 - x^2)}{(x^2 + y^2)^3}, & \frac{\partial v}{\partial x} &= -\frac{\partial u}{\partial y} = \frac{2y(3x^2 - y^2)}{(x^2 + y^2)^3}
\end{align*}
\]
are satisfied and by inspection we see that
\[
v(x,y) = \frac{-2xy}{(x^2 + y^2)^2}
\]
is a possible candidate. Since \(u \) and \(v \) are both continuously differentiable in \(C^\infty \), the function
\[
f(x,y) = \frac{x^2 - y^2 - 2ixy}{(x^2 + y^2)^2}
\]
is analytic in \(C^\infty \) by Theorem 2.4 (partial converse of Cauchy-Riemann equations) in the lectures.

5. We may rewrite any complex function \(f \) of two real variables \(x \) and \(y \) as a function of \(z \) and \(\bar{z} \) via
\[
x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}.
\]
(a) Considering \(z \) and \(\overline{z} \) as independent variables, show that
\[
\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \quad \text{and} \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).
\]

Solution. Treating \(z \) and \(\overline{z} \) as independent variables, the differentiation rules give, formally
\[
\frac{\partial x}{\partial z} = \frac{1}{2}, \quad \frac{\partial y}{\partial z} = -\frac{i}{2}, \quad \frac{\partial y}{\partial \overline{z}} = \frac{i}{2}
\]
and the chain rule then implies that
\[
\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right),
\]
\[
\frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).
\]

(b) Show that the Cauchy-Riemann equation may be expressed as
\[
\frac{\partial f}{\partial \overline{z}} = 0.
\]
This may be interpreted as saying that complex differentiable functions must be independent\(^2\) of \(\overline{z} \) and depend only on \(z \).

Solution. By (a),
\[
\frac{\partial f}{\partial z} = 0
\]
iff
\[
\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0
\]
iff
\[
\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}
\]
which is one form of the Cauchy-Riemann equations that we have shown in lectures.

(c) Which of the following complex functions of two real variables can be expressed in terms of a polynomial in \(z = x + iy \)?
\[
f_1(x, y) = x^2 - y^2 - ixy, \quad f_2(x, y) = x^2 + y^2 - 2i xy.
\]

Solution. By (b), a complex function can be expressed in terms of a polynomial in \(z \) (independent of \(\overline{z} \)) iff it satisfies the Cauchy-Riemann equations. Write \(f_1 = u + iv \), since
\[
u_x = 2x \neq -x = v_y,
\]
\(f_1 \) cannot be expressed in terms of \(z \) only. Now write \(f_2 = u + iv \), since
\[
u_x = 2x \neq -2x = v_y,
\]
\(f_2 \) cannot be expressed in terms of \(z \) only either.

\(^2\)In fact you may also view this as a reason why there isn’t a ‘quaternion analysis’ similar to complex analysis. For a quaternion \(q = x + yi + zj + wk \), its quaternionic conjugate \(\overline{q} = x - yi - zj - wk \) can always be expressed in terms of \(q \):
\[
\overline{q} = -\frac{1}{2} (q + iqi + jqj + kqk),
\]
and so we don’t have functions dependent on \(q \) but not on \(\overline{q} \).