MATH 185: COMPLEX ANALYSIS
FALL 2009/10
PROBLEM SET 2

Throughout the problem set, \(i = \sqrt{-1} \); and whenever we write \(x + yi \), it is implicit that \(x, y \in \mathbb{R} \). For \(z \in \mathbb{C} \), recall that the argument \(\text{arg}(z) \), is any \(\theta \in \mathbb{R} \) such that \(z = |z|e^{i\theta} \). We write \(\mathbb{C}^\times := \mathbb{C} \setminus \{0\} \).

1. Let \((z_n)_{n=1}^\infty\) be a sequence of complex numbers.
 (a) Show that if \(\lim_{n \to \infty} z_n = z \), then \(\lim_{n \to \infty} |z_n| = |z| \) but that the converse is not true in general.
 (b) Is it true that if \(\lim_{n \to \infty} z_n = z \), then \(\lim_{n \to \infty} \text{arg}(z_n) = \text{arg}(z) \)?
 (c) Show that if \(\lim_{n \to \infty} |z_n| = r \) and \(\lim_{n \to \infty} \text{arg}(z_n) = \theta \), then \(\lim_{n \to \infty} z_n = re^{i\theta} \).

2. Which of the following limits exists? Prove your answers.
 \[\lim_{n \to \infty} \left(\frac{1+i}{1-i} \right)^n, \quad \sum_{n=1}^{\infty} i^n \log \left(\frac{n}{n+1} \right), \quad \lim_{n \to \infty} \frac{1-z}{1-z}. \]

3. Let \(\Omega \subseteq \mathbb{C} \) be a region. Let \(f : \Omega \to \mathbb{C} \) and \(z_0 \in \Omega \).
 (a) Suppose \(\lim_{z \to z_0} f(z) = w \). Prove that
 \[\lim_{z \to z_0} \overline{f(z)} = \overline{w}, \quad \lim_{z \to z_0} \text{Re}(f(z)) = \text{Re}(w), \quad \lim_{z \to z_0} \text{Im}(f(z)) = \text{Im}(w), \quad \lim_{z \to z_0} |f(z)| = |w|. \]
 (b) Suppose \(\lim_{z \to z_0} |f(z)| = |w| \). For which value of \(w \) is it always true that \(\lim_{z \to z_0} f(z) = w \)? You will need to prove that it is true for that value and false for all other values.

4. The functions \(f, g, h : \mathbb{C} \to \mathbb{C} \) are defined as follows
 \[f(z) = \begin{cases} \frac{\text{Re}(z)}{z} & \text{if } z \neq 0, \\ \alpha & \text{if } z = 0, \end{cases} \quad g(z) = \begin{cases} \frac{z}{|z|} & \text{if } z \neq 0, \\ \beta & \text{if } z = 0, \end{cases} \quad h(z) = \begin{cases} \frac{\text{Re}(z)}{|z|} & \text{if } z \neq 0, \\ \gamma & \text{if } z = 0, \end{cases} \]
 where \(\alpha, \beta, \gamma \in \mathbb{C} \) are constants. Show that \(f, g, h \) are continuous on \(\mathbb{C}^\times \). Are there values of \(\alpha, \beta, \gamma \) for which \(f, g, h \) are continuous on \(\mathbb{C} \)?

5. Let \(f : \mathbb{C}^\times \to \mathbb{C} \) be the reciprocal function
 \[f(z) = \frac{1}{z}. \]
 Define the sequence of function \((f_n)_{n=1}^\infty, f_n : \mathbb{C}^\times \to \mathbb{C}\), by
 \[f_n(z) = \frac{1}{nz}. \]
 Let \(g : \mathbb{C}^\times \to \mathbb{C} \) be the zero function, ie. \(g(z) = 0 \) for all \(z \in \mathbb{C}^\times \). Let \(\Omega = \{ z \in \mathbb{C} \mid r \leq |z| \leq R \} \) where \(0 < r < R < \infty \).
 (a) Show that \(f \) is continuous but not uniformly continuous on \(\mathbb{C}^\times \).
 (b) Show that \(f \) is uniformly continuous on \(\Omega \).
 (c) Show that \(f_n \) converges pointwise but not uniformly to \(g \) on \(\mathbb{C}^\times \).
 (d) Show that \(f_n \) converges uniformly to \(g \) on \(\Omega \).

Date: September 17, 2009 (Version 1.0); due: September 25, 2009.
6. Let R_a and R_b be the radii of convergence of
$$\sum_{n=0}^{\infty} a_n z^n \text{ and } \sum_{n=0}^{\infty} b_n z^n$$
respectively.
(a) Show that the radii of convergence of
$$\sum_{n=0}^{\infty} (a_n + b_n) z^n \text{ and } \sum_{n=0}^{\infty} a_n b_n z^n$$
are at least $\min(R_a, R_b)$ and $R_a R_b$ respectively.
(b) Suppose $0 < R_a < \infty$ and $p > 0$. Find the radii of convergence of the following power series in terms of R_a and p:
$$\sum_{n=0}^{\infty} a_n^p z^n, \sum_{n=0}^{\infty} n^p a_n z^n, \sum_{n=0}^{\infty} n^n a_n z^n, \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n.$$

7. Use the power series representation of exp(z) for this problem.
(a) Prove that
$$\left| e^z - \sum_{k=0}^{n} \frac{z^k}{k!} \right| \leq |e^{|z|} - \sum_{k=0}^{n} \frac{|z|^k}{k!}| \leq |z|^{n+1} e^{|z|}$$
for all $n \in \mathbb{N}$. Hence deduce that
$$|e^z - 1| \leq |e^{|z|} - 1| \leq |z| e^{|z|}.$$
(b) Suppose
$$0 < \limsup_{n \to \infty} |a_n|^{1/n} < \alpha < \infty,$$
show that there exists $\beta > 0$ such that
$$\left| \sum_{k=0}^{\infty} \frac{a_n}{n!} z^n \right| \leq \beta e^{\alpha |z|}$$
for all $z \in \mathbb{C}$.

2