For \(z \in \mathbb{C}^x \), recall that the principle argument of \(z \), denoted \(\text{Arg}(z) \), is the unique \(\theta \in [-\pi, \pi) \) such that \(z = |z|e^{i\theta} \). By convention \(\text{Arg}(0) = 0 \).

1. Let \(S \) denote the sector given by
 \[\{ z \in \mathbb{C} \mid -\pi/4 < \text{Arg}(z) < \pi/4 \} . \]
 Let \(f : \overline{S} \to \mathbb{C} \) be a continuous function such that \(f \) is analytic on \(S \). Suppose
 (i) \(|f(z)| \leq 1 \) for all \(z \in \partial S \);
 (ii) \(|f(x + iy)| \leq e^{\sqrt{x}} \) for all \(x + iy \in S \).
 Prove that \(|f(z)| \leq 1 \) for all \(z \in S \).

2. (a) Show that the functions \(\eta_a \) and \(\eta_b \) maps \(D(0,1) \) to \(H_a \) and \(H_b \) where
 \[\eta_a(z) = \frac{1 + z}{1 - z}, \quad \eta_b(z) = i \left(\frac{1 + z}{1 - z} \right) , \]
 and
 \[H_a = \{ z \in \mathbb{C} \mid \text{Re} z > 0 \}, \quad H_b = \{ z \in \mathbb{C} \mid \text{Im} z > 0 \} . \]
 (b) Show that the functions \(\sigma_a \) and \(\sigma_b \) maps \(S_a \) and \(S_b \) to \(D(0,1) \) where
 \[\sigma_a(z) = \frac{e^{i\pi z/2} - 1}{e^{i\pi z/2} + 1}, \quad \sigma_b(z) = \frac{e^{i\pi z/2} - 1}{e^{i\pi z/2} + 1} \]
 and
 \[S_a = \{ z \in \mathbb{C} \mid -1 < \text{Re} z < 1 \}, \quad S_b = \{ z \in \mathbb{C} \mid -1 < \text{Im} z < 1 \} . \]

3. For a region \(\Omega \subseteq \mathbb{C} \) and a point \(\alpha \in \Omega \), let \(\mathcal{F}(\Omega, \alpha) \) be the set of functions defined by
 \[\mathcal{F}(\Omega, \alpha) := \{ f : \Omega \to \mathbb{C} \mid f \text{ analytic}, |f| < 1 \text{ on } \Omega, \text{ and } f(\alpha) = 0 \} . \]
 (a) Let \(\Omega = H_a \) and \(\alpha = 1 \). Show that
 \[\sup_{f \in \mathcal{F}(H_a,1)} |f'(1)| = \frac{1}{2} . \]
 (b) Let \(\Omega = H_b \) and \(\alpha = i \). Show that
 \[\sup_{f \in \mathcal{F}(H_b,i)} |f(2i)| = \frac{1}{3} . \]
 (c) Let \(\Omega = S_b \) and \(\alpha = 0 \). Show that
 \[\sup_{f \in \mathcal{F}(S_b,0)} |f(1)| = \frac{e^{\pi/2} - 1}{e^{\pi/2} + 1} . \]

4. Let \(f : D(0,1) \to \mathbb{C} \) be analytic and \(|f(z)| < 1 \) for all \(z \in D(0,1) \).
 (a) Show that
 \[\frac{|f'(z)|}{1 - |f(z)|^2} \leq \frac{1}{1 - |z|^2} . \]

Date: November 14, 2008 (Version 1.1); due: November 21, 2008.
(b) Suppose $f(0) = 0$. Show that

$$|f(z) + f(-z)| \leq 2|z|^2.$$