Ω ⊆ ℂ will always denote a region unless specified otherwise. For \(f : \Omega \to \mathbb{C} \) and \(c \in \mathbb{C} \) a constant, we write \(f \equiv c \) to mean that \(f(z) = c \) for all \(z \in \Omega \).

1. Let \(f : \Omega \to \mathbb{C} \) with \(f(x+iy) = u(x,y) + iv(x,y) \). Let \(z_0 \in \Omega \) and suppose there exists a function \(\varphi : \mathbb{C} \to \mathbb{C} \) such that

\[
\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - \varphi(h)}{h} = 0.
\]

Recall from Problem Set 2, Problem 2 that \(f \) is real differentiable if \(\varphi \) is real linear and \(f \) is complex differentiable if \(\varphi \) is complex linear. Recall from Problem Set 2, Problem 1 that a real linear \(\varphi \) satisfies

\[
\varphi(x + iy) = (ax + by) + i(cx + dy)\tag{1.1}
\]

for some \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} \) and a complex linear \(\varphi \) satisfies

\[
\varphi(x + iy) = (ax - cy) + i(cx + ay)\tag{1.2}
\]

for some \(\begin{bmatrix} a & -c \\ c & a \end{bmatrix} \in \mathbb{R}^{2 \times 2} \).

(a) Show that if \(f \) is real differentiable at \(z_0 = x_0 + iy_0 \in \Omega \), then the matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by

\[
\begin{bmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{bmatrix}.
\]

Solution. Taking limits along \(\xi \to 0, \xi \in \mathbb{R} \), we get

\[
0 = \lim_{\xi \to 0} \frac{f(z_0 + \xi) - f(z_0) - \varphi(\xi)}{\xi}
= \lim_{\xi \to 0} \frac{f(z_0 + \xi) - f(z_0) - b\xi - ic\xi}{\xi}
= \lim_{\xi \to 0} \frac{u(x_0 + \xi, y_0) - u(x_0, y_0) - a\xi}{\xi} + i \lim_{\xi \to 0} \frac{v(x_0 + \xi, y_0) - v(x_0, y_0) - c\xi}{\xi}
= \left[\lim_{\xi \to 0} \frac{u(x_0 + \xi, y_0) - u(x_0, y_0)}{\xi} - a \right] + i \left[\lim_{\xi \to 0} \frac{v(x_0 + \xi, y_0) - v(x_0, y_0)}{\xi} - c \right]
= [u_x(x_0, y_0) - a] + i[v_x(x_0, y_0) - c].
\]

Hence

\[
u_x(x_0, y_0) = a \quad \text{and} \quad v_x(x_0, y_0) = c.
\]
Taking limits along $i\eta \to 0$, $i\eta \in i\mathbb{R}$, we get

$$0 = \lim_{\eta \to 0} \frac{f(z_0 + i\eta) - f(z_0) - \varphi(i\eta)}{i\eta}$$

$$= \lim_{\eta \to 0} \frac{f(z_0 + i\eta) - f(z_0) - b\eta - id\eta}{i\eta}$$

$$= -i \lim_{\eta \to 0} \frac{u(x_0, y_0 + \eta) - u(x_0, y_0) - b\eta}{\eta} + \lim_{\eta \to 0} \frac{v(x_0, y_0 + \eta) - v(x_0, y_0) - d\eta}{\eta}$$

$$= -i \left[\lim_{\eta \to 0} \frac{u(x_0, y_0 + \eta) - u(x_0, y_0)}{\eta} - b \right] + \left[\lim_{\eta \to 0} \frac{v(x_0, y_0 + \eta) - v(x_0, y_0)}{\eta} - d \right]$$

$$= -i[u_y(x_0, y_0) - b] + [v_y(x_0, y_0) - d].$$

Hence

$$u_y(x_0, y_0) = b \quad \text{and} \quad v_y(x_0, y_0) = d.$$

(b) Show that if f is complex differentiable at $z_0 = x_0 + iy_0 \in \Omega$, then the matrix $[\begin{smallmatrix} a & -c \\ c & a \end{smallmatrix}]$ is given by

$$\begin{bmatrix} a & -c \\ c & a \end{bmatrix} = \begin{bmatrix} u_x(x_0, y_0) & -u_y(x_0, y_0) \\ u_y(x_0, y_0) & u_x(x_0, y_0) \end{bmatrix}.$$

Solution. By Problem Set 2, Problem 2(a), we know that complex differentiability at z_0 implies real differentiability at z_0. So part (a) holds in this case, i.e. there exists a φ having the form in (1.1) with

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{bmatrix}.$$

By the Cauchy-Riemann equations, we know that complex differentiability at z_0 implies

$$a = u_x(x_0, y_0) = v_y(x_0, y_0) = d$$

and

$$b = u_y(x_0, y_0) = -v_x(x_0, y_0) = -c.$$

(c) Suppose f is analytic on Ω (i.e. complex differentiable at all $z \in \Omega$) and that $u(x, y) = \varphi(x)$, $v(x, y) = \psi(y)$, i.e. f takes the form

$$f(x + iy) = \varphi(x) + i\psi(y).$$

Show that $f(z) = az + b$ for some $a, b \in \mathbb{C}$.

Solution. By the Cauchy-Riemann equations, we have

$$\varphi'(x) = \psi'(y)$$

for all $x, y \in \mathbb{R}$. Note that the LHS is a function of x and the RHS is a function of y. The only way two such functions can be equal for two independent variables is if they are both constant functions, i.e. there exists $\alpha \in \mathbb{R}$ such that,

$$\varphi'(x) = \alpha = \psi'(y).$$

Hence there exist $\beta, \gamma \in \mathbb{R}$ such that

$$\varphi(x) = \alpha x + \beta \quad \text{and} \quad \psi(y) = \alpha y + \gamma.$$

In other words,

$$f(x + iy) = \varphi(x) + i\psi(y)$$

$$= \alpha(x + iy) + (\beta + i\gamma)$$

and so $f(z) = az + b$ with $a = \alpha$ and $b = \beta + i\gamma$.

2
2. Let \(f \) be defined by

\[
f(z) = \sum_{n=0}^{\infty} \alpha_n z^n
\]

where the series has a positive radius of convergence \(R \). For each \(m \in \mathbb{N} \), let \(s_m : \mathbb{C} \to \mathbb{C} \) be the \(m \)th partial sum

\[
s_m(z) = \sum_{n=0}^{m} \alpha_n z^n.
\]

Prove that

\[
\sum_{m=0}^{\infty} |f(z) - s_m(z)| < \infty
\]

for all \(z \in D(0, R) \).

Solution. This is almost identical to the proof of Theorem 2.10. Note that for any \(m \in \mathbb{N} \),

\[
|f(z) - s_m(z)| = \left| \sum_{n=m+1}^{\infty} \alpha_n z^n \right| \leq \sum_{n=m+1}^{\infty} |\alpha_n z^n|.
\]

Therefore

\[
\sum_{m=0}^{\infty} |f(z) - s_m(z)| \leq \sum_{m=0}^{\infty} \sum_{n=m+1}^{\infty} |\alpha_n z^n|
\]

\[
= \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} |\alpha_n z^n|
\]

\[
= \sum_{n=1}^{\infty} n|\alpha_n z^n|.
\]

Note that we have used the summation by parts formula in the second step. Since\(^1\)

\[
\limsup_{n \to \infty} \frac{|na_n|^{1/n}}{|a_n|^{1/n}} = \frac{1}{R},
\]

the power series

\[
\sum_{n=1}^{\infty} n\alpha_n z^n
\]

has the same radius of convergence as the one in (1.1). Hence it converges (and thus converges absolutely) for all \(z \in D(0, R) \); and hence

\[
\sum_{m=0}^{\infty} |f(z) - s_m(z)| = \sum_{n=1}^{\infty} n|\alpha_n z^n| < \infty
\]

for all \(z \in D(0, R) \).

3. (a) Let \(f \) be defined by

\[
f(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}.
\]

Prove that

\[
f''(z) - f(z) = 0.
\]

State which theorem(s) you have used here. For what values of \(z \) is this valid?

\(^1\)Recall that we used this same trick to prove that the formal derivative of a power series has the same radius of convergence.
SOLUTION. The ratio test implies that the radius of convergence of the series defining f is ∞. Let

$$f_n(z) = \frac{z^{2n}}{(2n)!}.$$

Then

$$f_n'(z) = \frac{2n}{(2n)!} z^{2n-1}$$

and

$$f_n''(z) = \frac{2n(2n-1)}{(2n)!} z^{2n-2} = f_{n-1}(z).$$

By Theorem 2.3, the series

$$f(z) = \sum_{n=0}^{\infty} f_n(z)$$

converges uniformly in \mathbb{C}, we may differentiate term by term of the summands to get

$$f''(z) = \sum_{n=1}^{\infty} f''_n(z) = \sum_{n=1}^{\infty} f_{n-1}(z) = \sum_{n=0}^{\infty} f_n(z) = f(z).$$

Alternatively, we may use Theorem 2.10 to justify the equality between formal derivatives and derivatives of power series.

(b) Let g be defined by

$$g(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(n!)^2}.$$

Prove that

$$z^2 g''(z) + zg'(z) - 4z^2 g(z) = 0.$$

For what values of z is this valid?

SOLUTION. The ratio test implies that the radius of convergence of the series defining g is ∞. Hence by Theorem 2.10,

$$g'(z) = \sum_{n=1}^{\infty} \frac{2n}{(n!)^2} z^{2n-1}$$

and

$$g''(z) = \sum_{n=1}^{\infty} \frac{2n(2n-1)}{(n!)^2} z^{2n-2}$$

and so

$$zg'(z) = \sum_{n=1}^{\infty} \frac{2n}{(n!)^2} z^{2n}$$

and

$$z^2 g''(z) = \sum_{n=1}^{\infty} \frac{2n(2n-1)}{(n!)^2} z^{2n} = 4 \sum_{n=1}^{\infty} \frac{n^2}{(n!)^2} z^{2n} - zg'(z).$$

Therefore

$$z^2 g''(z) + zg'(z) = 4 \sum_{n=1}^{\infty} \frac{n^2}{(n!)^2} z^{2n} = 4 \sum_{n=0}^{\infty} \frac{1}{((n-1)!)^2} z^{2n} = 4z^2 g(z)$$

as required.

[Note: When we write things like

$$\lambda z^m \times \left[\sum_{n=0}^{\infty} a_n z^n \right] = \sum_{n=0}^{\infty} \lambda a_n z^{m+n},$$

$$\sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n = \sum_{n=0}^{\infty} (a_n + b_n) z^n,$$

we have used the results in Problem Set 2, Problem 4 implicitly.]
(c) Let \(h \) be defined by the power series
\[
h(z) = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \cdots.
\]
Prove that
\[
h'(z) = \frac{1}{1 + z^2}.
\]

SOLUTION. The radius of convergence of the series defining \(h \) is 1 since
\[
\limsup_{n \to \infty} \left(\frac{1}{n} \right) = 1.
\]

By Theorem 2.10, we get
\[
h'(z) = 1 - z^2 + z^4 - \cdots = \sum_{n=0}^{\infty} (-z^2)^n = \frac{1}{1 - (-z^2)} = \frac{1}{1 + z^2}.
\]

4. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), \(g(z) = \sum_{n=0}^{\infty} b_n z^n \), and \(h(z) = \sum_{n=0}^{\infty} c_n z^n \) be power series with positive radii of convergence.

(a) Is it possible for \(f \) to satisfy
\[
f \left(\frac{1}{n} \right) = \frac{1}{n^2} = f \left(-\frac{1}{n} \right)
\]
for all \(n \in \mathbb{N} \)? If so, what is \(f \)?

SOLUTION. Since \(f \) is continuous at 0, we have that
\[
f(0) = \lim_{n \to \infty} f \left(\frac{1}{n} \right) = \lim_{n \to \infty} \frac{1}{n^2} = 0.
\]
The given condition says that the two power series\(^2\)
\[
f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{and} \quad \tilde{f}(z) = z^2
\]
agree on the set
\[
S = \{ n^{-1} \mid n \in \mathbb{Z}^\times \} \cup \{ 0 \} \subseteq \mathbb{C}.
\]
Since \(S \) has an accumulation point 0, the Uniqueness Theorem for power series (ie. Corollary 2.13) implies that \(f = \tilde{f} \), ie. \(f(z) = z^2 \).

(b) Is it possible for \(g \) to satisfy
\[
g \left(\frac{1}{n} \right) = \frac{1}{n^3} = g \left(-\frac{1}{n} \right) \quad (4.3)
\]
for all \(n \in \mathbb{N} \)? If so, what is \(g \)?

SOLUTION. Since \(g \) is continuous at 0, we have that
\[
g(0) = \lim_{n \to \infty} g \left(\frac{1}{n} \right) = \lim_{n \to \infty} \frac{1}{n^3} = 0.
\]
The first equality says that the two power series
\[
g(z) = \sum_{n=0}^{\infty} b_n z^n \quad \text{and} \quad \tilde{g}(z) = z^3
\]
agree on the set
\[
S = \{ n^{-1} \mid n \in \mathbb{N} \} \cup \{ 0 \} \subseteq \mathbb{C}.
\]
\(^2\)Note that \(\tilde{f} \) is a power series with all its coefficients 0 except the 2nd, which is 1. We use the same observation in (b) and (c).
Since S has an accumulation point 0, the Uniqueness Theorem for power series implies that $g = \hat{g}$, ie.

$$g(z) = z^3 \quad \text{for all } z \in D(0, r), \quad (4.4)$$

where $r > 0$ is the radius of convergence of g.

However, the second equality says that the two power series

$$g(z) = \sum_{n=0}^{\infty} b_n z^n \quad \text{and} \quad \hat{g}(z) = -z^3$$

agree on S and the Uniqueness Theorem for power series now implies that $g = \hat{g}$, ie.

$$g(z) = -z^3 \quad \text{for all } z \in D(0, r). \quad (4.5)$$

Since (4.4) and (4.5) cannot be simultaneously satisfied. It is not possible for g to satisfy (4.3).

(c) Is it possible for h to satisfy

$$h \left(\frac{1}{n} \right) = \frac{(-1)^n}{n} \quad (4.6)$$

for all $n \in \mathbb{N}$? If so, what is h?

SOLUTION. Since h is continuous at 0, we have that

$$h(0) = \lim_{n \to \infty} h \left(\frac{1}{n} \right) = \lim_{n \to \infty} \frac{(-1)^n}{n} = 0.$$

The condition for n even, ie.

$$h \left(\frac{1}{2n} \right) = \frac{1}{2n}$$

says that the two power series

$$h(z) = \sum_{n=0}^{\infty} c_n z^n \quad \text{and} \quad \hat{h}(z) = z$$

agree on the set

$$S_e = \{(2n)^{-1} \mid n \in \mathbb{N}\} \cup \{0\} \subseteq \mathbb{C}.$$

Since S_e has an accumulation point 0, the Uniqueness Theorem for power series implies that $h = \hat{h}$, ie.

$$h(z) = z \quad \text{for all } z \in D(0, r) \quad (4.7)$$

where $r > 0$ is the radius of convergence of h.

However, the condition for n odd, ie.

$$h \left(\frac{1}{2n+1} \right) = -\frac{1}{2n+1}$$

says that the two power series

$$h(z) = \sum_{n=0}^{\infty} c_n z^n \quad \text{and} \quad \hat{h}(z) = -z$$

agree on the set

$$S_o = \{(2n+1)^{-1} \mid n \in \mathbb{N}\} \cup \{0\} \subseteq \mathbb{C}.$$

Since S_o has an accumulation point 0, the Uniqueness Theorem for power series implies that $h = \hat{h}$, ie.

$$h(z) = -z \quad \text{for all } z \in D(0, r). \quad (4.8)$$

Since (4.7) and (4.8) cannot be simultaneously satisfied. It is not possible for h to satisfy (4.6).
5. Let \(f \) be defined by

\[
 f(z) = \sum_{n=0}^{\infty} \alpha_n z^n
\]

where

\[
 \limsup_{n \to \infty} |\alpha_n|^{1/n} = 0.
\]

Suppose \(f \) satisfies the following:

\[
 f'' \left(\frac{i^n}{n^3} \right) + f \left(\frac{i^n}{n^3} \right) = 0 \quad \text{for all } n \in \mathbb{N},
\]

\[
 f(0) = a,
\]

\[
 f'(0) = b.
\]

What is \(f \)? Express \(f \) in terms of \(a, b \) and familiar functions.

Solution. Note that since \(f \) has infinite radius of convergence, then so does \(f'' \). Hence the power series

\[
 f''(z) + f(z) = \sum_{n=0}^{\infty} [(n+2)(n+1)\alpha_{n+2} + \alpha_n]z^n
\]

has infinite radius of convergence by Problem Set 2, Problem 4(a). In particular, \(f'' + f \) is continuous on \(\mathbb{C} \) and so

\[
 f''(0) + f(0) = \lim_{n \to \infty} \left[f'' \left(\frac{i^n}{n^3} \right) + f \left(\frac{i^n}{n^3} \right) \right] = 0.
\]

This, together with the fact that \(f'' + f \) is zero on a sequence

\[
 z_n := \frac{i^n}{n^3}
\]

where \(\lim_{n \to \infty} z_n = 0 \) implies that

\[
 f'' + f \equiv 0
\]

on the whole of \(\mathbb{C} \). Now since \(f \) is entire, its Taylor series expansion about 0 that converges everywhere in \(\mathbb{C} \), and is given by

\[
 f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n.
\]

Likewise for \(f'' \), we have

\[
 f''(z) = \sum_{n=0}^{\infty} \frac{f^{(n+2)}(0)}{n!} z^n.
\]

Hence, for all \(z \in \mathbb{C} \),

\[
 f''(z) + f(z) = \sum_{n=0}^{\infty} \left[\frac{f^{(n+2)}(0)}{n!} + \frac{f^{(n)}(0)}{n!} \right] z^n.
\]

Now since \(f'' + f \equiv 0 \), we must have \(f^{(n+2)}(0) = -f^{(n)}(0) \) for all \(n \in \mathbb{N} \cup \{0\} \), ie.

\[
 f(0) = -f''(0) = \cdots = (-1)^n f^{(2n)}(0) = \cdots
\]

\[
 f'(0) = -f''(0) = \cdots = (-1)^n f^{(2n+1)}(0) = \cdots.
\]
Hence

\[f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n \]

\[= f(0) \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} + f'(0) \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} \]

\[= a \cos z + b \sin z. \]

Note that the ‘splitting’ of the first power series into a sum of two power series is valid because of Problem Set 2, Problem 4(a) and the fact that all three power series have infinite radius of convergence.