We write \(\mathbb{C}^\times = \mathbb{C} \setminus \{0\} \). We say that \(f \) is identically zero on \(\Omega \), denoted \(f \equiv 0 \), if \(f(z) = 0 \) for all \(z \in \Omega \). When we write \(f(z) > 0 \) for a complex function \(f \), it is implicit that \(f(z) \in \mathbb{R} \) (likewise for \(<, \leq, \geq \), and if 0 is replaced by any other real number). You may use without proof any results that had been proved in the lectures.

1. Prove or disprove. Given any entire function \(f : \mathbb{C} \to \mathbb{C} \), there exist functions \(g, h : \mathbb{C} \to \mathbb{C} \) such that
 (i) \(g \) and \(h \) are both entire functions,
 (ii) \(f(z) = g(z) + ih(z) \) for all \(z \in \mathbb{C} \),
 (iii) \(g(x) \in \mathbb{R} \) and \(h(x) \in \mathbb{R} \) for all \(x \in \mathbb{R} \).

 Solution. By Theorem 4.3 in the lectures, \(f \) has a power series representation
 \[
 f(z) = \sum_{n=0}^{\infty} a_n z^n
 \]
 for all \(z \in \mathbb{C} \) (i.e. the radius of convergence of the RHS is \(\infty \)). Let \(a_n = \beta_n + i \gamma_n \) where \(\beta_n, \gamma_n \in \mathbb{R} \) for all \(n \in \mathbb{N} \cup \{0\} \). We define \(g, h \) by
 \[
 g(z) = \sum_{n=0}^{\infty} \beta_n z^n \quad \text{and} \quad h(z) = \sum_{n=0}^{\infty} \gamma_n z^n.
 \]
 Note that \(|\beta_n| \leq |a_n| \) for all \(n \in \mathbb{N} \cup \{0\} \). So
 \[
 0 \leq \limsup_{n \to \infty} \sqrt[2]{|\beta_n|} \leq \limsup_{n \to \infty} \sqrt[2]{|a_n|} = 0,
 \]
 and the series defining \(g \) has an infinite radius of convergence. Likewise, the series defining \(h \) has an infinite radius of convergence. Hence \(g \) and \(h \) both entire functions. Since the series defining \(f, g, \) and \(h \) all have infinite radii of convergence, the following equation is valid for all \(z \in \mathbb{C} \):
 \[
 \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} \beta_n z^n + i \sum_{n=0}^{\infty} \gamma_n z^n
 \]
 (note that this is not true in general — see Chapter 2, Exercise 10 in the textbook). Hence we have \(f(z) = g(z) + ih(z) \) for all \(z \in \mathbb{C} \). Since \(\beta_n, \gamma_n \in \mathbb{R} \) for all \(n \in \mathbb{N} \cup \{0\} \), it is clear that \(g(x) \in \mathbb{R} \) and \(h(x) \in \mathbb{R} \) for all \(x \in \mathbb{R} \).

2. (a) Let \(J \) be defined by the power series
 \[
 J(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{z}{2} \right)^{2n}.
 \]
 Prove that
 \[
 z^2 J''(z) + zJ'(z) + z^2 J(z) = 0.
 \]
 State which theorem(s) you have used here. For what values of \(z \) is this valid?

 Solution. Observe that
 \[
 \lim_{n \to \infty} \left| \frac{(-1)^{n+1}/((n+1)!)^2}{((-1)^n/(n!)^2)^2} \right| = \lim_{n \to \infty} \frac{1}{(n+1)^2} = 0
 \]

Date: October 21, 2007 (Version 1.0)
and so J has infinite radius of convergence. By a result in the lectures,

$$J'(z) = \sum_{n=0}^{\infty} 2n \frac{(-1)^n}{(n!)^2} 2^{2n} z^{2n-1} \quad \text{and} \quad J''(z) = \sum_{n=0}^{\infty} 2n(2n-1) \frac{(-1)^n}{(n!)^2} 2^{2n} z^{2n-2}$$

and both series have infinite radii of convergence. So

$$z^2 J''(z) + zJ'(z) + z^2 J(z) = \sum_{n=0}^{\infty} (z^2 + 2n + 2n(2n-1)) \frac{(-1)^n}{(n!)^2} 2^{2n} z^{2n}$$

$$= \sum_{n=0}^{\infty} (2 + 4n^2) \frac{(-1)^n}{(n!)^2} 2^{2n} z^{2n}.$$

Now observe that

$$(z^2 + 4n^2) \frac{(-1)^n}{(n!)^2} 2^{2n} z^{2n} = \frac{(-1)^n}{(n!)^2} 2^{2n} z^{2n} = \frac{(-1)^n - 1}{((n-1)!)^2} 2^{2(n-1)} z^{2n}.$$ (2.1)

For a fixed $z \in \mathbb{C}$, let

$$Z_n := \frac{(-1)^n}{(n!)^2} 2^{2n} z^{2(n+1)}$$

for $n \in \mathbb{N} \cup \{0\}$ and set $Z_{-1} := 0$. So by (2.1),

$$\sum_{n=0}^{\infty} (Z_n - Z_{n-1}) = Z_{-1} = 0,$$

since we have a telescopic sum. Since $z \in \mathbb{C}$ is arbitrary,

$$z^2 J''(z) + zJ'(z) + z^2 J(z) = 0$$

for all $z \in \mathbb{C}$.

(b) More generally, for any $k \in \mathbb{N} \cup \{0\}$, let J_k be defined by the power series

$$J_k(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+k)!} \left(\frac{z}{2} \right)^{2n+k}.$$

Prove that

$$z^2 J''_k(z) + zJ'_k(z) + (z^2 - k^2)J_k(z) = 0.$$

For what values of z is this valid?

SOLUTION. For $n \in \mathbb{N} \cup \{0\}$, let

$$a_n := \frac{(-1)^n}{2^{2n+k} n!(n+k)!}.$$

Observe that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{1}{4(n+1)(n+k+1)} = 0$$

and so J_k has infinite radius of convergence. By a result in the lectures,

$$J'_k(z) = \sum_{n=0}^{\infty} (2n + k)a_n z^{2n+k-1} \quad \text{and} \quad J''_k(z) = \sum_{n=0}^{\infty} (2n + k)(2n + k - 1)a_n z^{2n+k-2}$$

and both series have infinite radii of convergence. So the coefficient of z^{2n+k} in the sum $z^2 J''_k(z) + zJ'_k(z) + (z^2 - k^2)J_k(z)$ is

$$(2n + k)(2n + k - 1)a_n + (2n + k)a_n + a_{n-1} - k^2 a_n = 4n(n+k)a_n + a_{n-1}.$$

But note that

$$\frac{a_{n-1}}{a_n} = -4n(n+k).$$
and so the coefficient of \(z^{2n+k}\) is 0. Hence

\[z^2J''_k(z) + zJ'_k(z) + (z^2 - k^2)J_k(z) = 0\]

for all \(z \in \mathbb{C}\).

3. (a) For \(i = 1, 2\) and \(j = 1, 2, 3, 4\), determine the value of

\[\int_{\Gamma_j} f_i\]

where \(f_i\) is defined by

\[f_1 : \mathbb{C} \to \mathbb{C}, \quad f_1(z) = z^3,\]
\[f_2 : \mathbb{C} \to \mathbb{C}, \quad f_2(z) = \overline{z};\]

and \(\Gamma_j\) is defined by

\[z_1 : [0, 1] \to \mathbb{C}, \quad z_1(t) = 1 + it,\]
\[z_2 : [0, 1] \to \mathbb{C}, \quad z_2(t) = e^{-i\pi t},\]
\[z_3 : [0, 1] \to \mathbb{C}, \quad z_3(t) = e^{i\pi t},\]
\[z_4 : [0, 1] \to \mathbb{C}, \quad z_4(t) = 1 + it + t^2.\]

SOLUTION. Routine. The answers are given by

\[\int_{\Gamma_j} f_1 = \begin{cases} (1 + i)^4/4 - 1/4 & \text{if } j = 1, \\ 0 & \text{if } j = 2, \\ 0 & \text{if } j = 3, \\ (2 + i)^4/4 - 1/4 & \text{if } j = 4. \end{cases}\]

\[\int_{\Gamma_j} f_2 = \begin{cases} i + 1/2 & \text{if } j = 1, \\ -\pi i & \text{if } j = 2, \\ \pi i & \text{if } j = 3, \\ 2 + 2i/3 & \text{if } j = 4. \end{cases}\]

Note that Cauchy’s theorem applies for \(j = 2, 3\) (closed \(\Gamma\)) in the case \(i = 1\) (analytic \(f\)) but not in the case \(i = 2\) (non-analytic \(f\)).

(b) For \(i = 1, 2\), determine the value of

\[\int_{\Gamma} g_i\]

where \(g_i\) is defined by

\[g_1 : \mathbb{C} \to \mathbb{C}, \quad g_1(z) = ze^{z^2},\]
\[g_2 : \mathbb{C} \to \mathbb{C}, \quad g_2(z) = \sin z;\]

and \(\Gamma\) is the path from 0 to \(1 + i\), taken along the parabola \(y = x^2\).

SOLUTION. Both \(g_1\) and \(g_2\) are entire and observe that

\[G_1(z) = \frac{1}{2}e^{z^2}\]

is a primitive for \(g_1\) and

\[G_2(z) = -\cos z\]

is a primitive for \(g_2\). So

\[\int_{\Gamma} g_1 = G_1(1 + i) - G_1(0) = \frac{1}{2}(e^{2i} - 1)\]

and

\[\int_{\Gamma} g_2 = G_2(1 + i) - G_2(0) = 1 - \cos(1 + i).\]

4. Let \(S = \{x + iy \in \mathbb{C} \mid x, y \in [0, 1]\}\) be the unit square in \(\mathbb{C}\). Let \(f\) be analytic on a region \(\Omega\) that contains \(S\). Suppose the following is true:
(i) for all z with $\text{Re}(z) = 0$, $0 \leq \text{Im}(z) \leq 1$,

$$f(z + 1) - f(z) \geq 0;$$

(ii) for all z with $0 \leq \text{Re}(z) \leq 1$, $\text{Im}(z) = 0$,

$$f(z + i) - f(z) \geq 0.$$

Show that f is a constant.

Solution. Since f is analytic on Ω and $\Gamma = \partial S$ is a rectangular path contained in Ω, we may apply Cauchy's theorem to get

$$0 = \int_{\Gamma} f(z) \, dz = \int_0^1 f(x) \, dx + i \int_0^1 f(1 + yi) \, dy - \int_0^1 f(x + i) \, dx - i \int_0^1 f(yi) \, dy \tag{4.2}$$

Hence we have

$$\int_0^1 [f(x) - f(x + i)] \, dx = 0 \quad \text{and} \quad \int_0^1 [f(1 + iy) - f(iy)] \, dy = 0.$$

By condition (ii),

$$f(x) - f(x + i) \leq 0$$

for all $0 \leq x \leq 1$; and by condition (i),

$$f(1 + iy) - f(iy) \geq 0$$

for all $0 \leq y \leq 1$. Furthermore, since f is analytic and thus continuous in Ω, the integrands in (4.2) must be identically zero for $x, y \in [0, 1]$. So

$$f(x) = f(x + i) \quad \text{and} \quad f(iy) = f(iy + 1)$$

for $x, y \in [0, 1]$. So

$$f(z) = f(z + i) \quad \text{and} \quad f(z) = f(z + 1)$$

for on subsets of Ω with limit points and so they must be true for all $z \in \Omega$. Now we may define a function $F : \mathbb{C} \to \mathbb{C}$ as follows:

$$F(x + iy) = f(\langle x \rangle + i(y))$$

where $\langle x \rangle$ denotes the fractional part of $x \in \mathbb{R}$. Hence,

$$F(z) = F(z + i) \quad \text{and} \quad F(z) = F(z + 1)$$

for all $z \in \mathbb{C}$ and thus

$$|F(z)| \leq \max_{z \in S}|f(z)|$$

for all $z \in \mathbb{C}$. Note that F is analytic for all $z \in \mathbb{C}$ (why?). Now the RHS is bounded since F is continuous and S is compact. Hence F is a bounded entire function and Liouville’s Theorem implies that it must be a constant function. And so f is also a constant function.

5. (a) Let f be an entire function. Show that if

$$\lim_{|z| \to \infty} \frac{|f(z)|}{|z|} = 0,$$

then f is a constant.
SOLUTION. By Corollary 4.4 in the lectures, the function \(g : \mathbb{C} \to \mathbb{C} \) defined by
\[
g(z) = \begin{cases}
\frac{f(z) - f(0)}{z} & z \neq 0, \\
 f'(0) & z = 0,
\end{cases}
\]
is also entire. Now for \(z \in \mathbb{C}^\times \),
\[
|g(z)| = \left| \frac{f(z) - f(0)}{z} \right| \leq \left| \frac{f(z)}{z} \right| + \left| \frac{f(0)}{z} \right|
\]
and so
\[
\lim_{|z| \to \infty} |g(z)| = 0. \tag{5.3}
\]
Hence \(g \) is bounded. So \(g \) is a constant function by Liouville’s Theorem and (5.3) further implies that \(g \equiv 0 \). It then follows that \(f(z) = f(0) \) for all \(z \in \mathbb{C} \) and so \(f \) is a constant function.

(b) Let \(f \) be an entire function. Suppose \(g : \mathbb{R} \to \mathbb{R} \) is such that \(\lim_{x \to \infty} |g(x)| = 0 \). Show that if
\[
|f(z)| \leq |z| \cdot |g(|z|)|
\]
for all \(z \in \mathbb{C}^\times \), then \(f \equiv 0 \).

SOLUTION. Observe that
\[
\lim_{|z| \to \infty} \frac{|f(z)|}{|z|} \leq \lim_{|z| \to \infty} |g(|z|)| = 0
\]
and so part (a) above applies and we have \(f(z) = f(0) \) for all \(z \in \mathbb{C} \). Now
\[
|f(0)| = \lim_{z \to 0} |f(z)| \leq \lim_{z \to 0} |z| \cdot |g(|z|)| = 0
\]
and so \(f \equiv 0 \).