1.5: Show that if $f : X \rightarrow Y$ is one-to-one and $g : Y \rightarrow Z$ is one-to-one then $g \circ f : X \rightarrow Z$ is one-to-one.
Solution. $g \circ f(x_1) = g \circ f(x_2) \Rightarrow g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

1.16: Prove $2^{n-1} \leq n!$ for each $n \in \mathbb{N}$.
Solution. Let $A := \{n \in \mathbb{N} \mid 2^{n-1} \leq n!\}$. Since $2^{1-1} = 1 \leq 1!$, so $1 \in A$. If $p \in A$, then $2^{p-1} \leq p!$ and so $2^{(p+1)-1} = 2 \cdot 2^{p-1} \leq 2 \cdot p! \leq (p+1) \cdot p! = (p+1)!$ as $2 \leq p+1$ for all $p \in \mathbb{N}$, hence $p+1 \in A$. By P5, $A = \mathbb{N}$.

1.20: Prove the cancelation laws in \mathbb{Z}:
(a) $j + k = j + l$ implies $k = l$ for all $j, k, l \in \mathbb{Z}$.
Solution. Let $j = [(a,b)], k = [(c,d)], l = [(e,f)]$ where $a, \ldots, f \in \mathbb{N}$. Then

$$[(a,b)] + [(c,d)] = [(a,b)] + [(e,f)]$$

$$[(a+c, b+d)] = [(a+e, b+f)]$$

$$(a+c) + (b+f) = (a+c) + (b+d)$$

$$(a+b) + (c+f) = (a+b) + (e+d)$$

$$(c+f) = (e+d)$$

where the last step is by the additive cancelation law in \mathbb{N}. Since $c + f = e + d$, we see that

$$k = [(c,d)] = [(e,f)] = l.$$

(b) $j \cdot k = j \cdot l$ implies $k = l$ for all $j, k, l \in \mathbb{Z}$ with $j \neq 0$.
Solution. Let $j = [(a,b)], k = [(c,d)], l = [(e,f)]$ where $a, \ldots, f \in \mathbb{N}$ and $a \neq b$. Then

$$[(a,b)] \cdot [(c,d)] = [(a,b)] \cdot [(e,f)]$$

$$[(ac + bd, ad + bc)] = [(ae + bf, af + be)]$$

$$(ac + bd) + (af + be) = (ad + bc) + (ae + bf)$$

Since $a \neq b$, we must have $a < b$ or $b < a$ by trichotomy. Suppose $a < b$. Then there exists $n \in \mathbb{N}$ such that $a + n = b$. The last equation above becomes

$$ac + ad + nd + af + ae + ne = ad + ac + nc + ae + af + nf$$

and applying the additive cancelation law in \mathbb{N} we get

$$nd + ne = nc + nf$$

$$n(d + e) = n(c + f)$$

and applying the multiplicative cancelation law in \mathbb{N} we get

$$c + f = d + e$$

and so $k = [(c,d)] = [(e,f)] = l$, as required.
1.25: Prove that the order properties in \(\mathbb{Q} \):
(a) \(u < v \) implies \(u + w < v + w \) for every \(w \in \mathbb{Q} \).

Solution. Let \(\mathbb{Q}_+ \) denote the subset of positive rationals. Since \(u < v \), there exists
\(p \in \mathbb{Q}_+ \) such that \(u + p = v \). Let \(w \in \mathbb{Q} \), by associativity and commutativity, \((u + w) + p = (u + p) + w = v + w\). Hence \(u + w < v + w \) for every \(w \in \mathbb{Q} \).
(b) \(u < v \) and \(w > 0 \) implies \(u \cdot w < v \cdot w \) for every \(w \in \mathbb{Q} \).

Solution. Since \(u < v \) and \(0 < w \), there exists \(p \in \mathbb{Q}_+ \) such that \(u + p = v \) and
\(q \in \mathbb{Q}_+ \) such that \(0 + q = w \). In particular \(w = q \). Now \(v \cdot w = (u + p) \cdot w = u \cdot w + p \cdot q \). Since the product of two positive rationals is positive, \(p \cdot q \in \mathbb{Q}_+ \) and hence \(u \cdot w + p \cdot q = v \cdot w \) implies that \(u \cdot w < v \cdot w \).

1.28: Prove that for any \(r \in \mathbb{Q} \) the set \(\{ x \in \mathbb{Q} \mid x > r \} \) is a ray in \(\mathbb{Q} \).

Solution. Let \(U = \{ x \in \mathbb{Q} \mid x > r \} \). Since \(r \in \mathbb{Q} \), we have \(r + 1 \in \mathbb{Q} \) and so \(r + 1 \in U \) and so \(U \neq \emptyset \); also since \(r \notin U \), \(U \neq \mathbb{Q} \). Hence \(U \) is a nonempty proper subset of \(\mathbb{Q} \). If \(x \in U \) and \(y > x \), then \(y > x > r \) and so \(y > r \) by transitivity, so \(y \in U \). Suppose \(x_0 \in U \) is a first element, then \(x_0 < x \) for all \(x \in U \) and \(x_0 > r \). Let \(y_0 = (x_0 + r)/2 \). Then \(y_0 > r \) and \(y_0 \in \mathbb{Q} \) and so \(y_0 \in U \). But \(y_0 < x_0 \) and so \(x_0 \) cannot be a first element, contradicting our assumption. Hence \(U \) has no first element. These show that \(U \) is a ray in \(\mathbb{Q} \).

1.33: Prove that a nonempty set \(S \) of real numbers is bounded if and only if there is a nonnegative real number \(K \) such that \(-K \leq x \leq K\) for every \(x \in S \).

Solution. \(\Rightarrow \) Let \(l, u \in \mathbb{R} \) be lower and upper bounds of \(S \). Then \(l \leq x \leq u \) for every \(x \in S \). Let \(K = \max\{|l|, |u|\} \). Note that \(|l| \leq K \) and so \(-K \leq l \); also \(|u| \leq K \) and so \(u \leq K \). Hence \(-K \leq l \leq x \leq u \leq K \) for every \(s \in S \), as required.

\(\Leftarrow \) If \(-K \leq x \leq K \) for every \(x \in S \), then \(l = -K \) is a lower bound for \(S \) and \(u = K \) is an upper bound for \(S \). So \(S \) is bounded.

1.37: Prove that, if they exist, the least upper bound and the greatest lower bound of a nonempty set \(S \subset \mathbb{R} \) are unique.

Solution. Let \(M_1 \) and \(M_2 \) both be least upper bounds of \(S \). Since \(M_1 \) is an upper bound, and \(M_2 \) is a least upper bound, we must have \(M_1 \leq M_2 \). Since \(M_2 \) is an upper bound, and \(M_1 \) is a least upper bound, we must have \(M_2 \leq M_1 \). Hence \(M_1 = M_2 \). Ditto for greatest lower bound.

1.38: Prove Bernoulli’s inequality: \((1 + x)^n \geq 1 + nx \) for every real number \(x \geq -1 \) and every \(n \in \mathbb{N} \).

Solution. Let \(A = \{ n \in \mathbb{N} \mid (1 + x)^n \geq 1 + nx \} \) for all \(x \in (-1, \infty) \). Since \((1 + x)^1 \geq 1 + 1 \cdot x\) for all \(x \geq -1 \), \(1 \in A \). If \(p \in A \), then \((1 + x)^p \geq 1 + px\) for all \(x \geq -1 \) and so \((1 + x)^{p+1} = (1 + x)(1 + x)^p \geq (1 + x)(1 + px) = 1 + (p + 1)x + px^2 \geq 1 + (p + 1)x\) for all \(x \geq -1 \), since \(px^2 \geq 0 \) for all \(p \in \mathbb{N} \), hence \(p + 1 \in A \). By \(\textbf{P5} \), \(A = \mathbb{N} \).

1.43: Prove that every interval of real numbers contains infinitely many rational and irrational numbers.

Solution. Let \(I \) be an interval of real numbers and let \(a = \inf I \) and \(b = \sup I \). Then \((a, b) \subseteq I \). If \(a = -\infty \), then \(I \) contains an infinite number of disjoint intervals \(I_n = (b - n, b - n + 1) \), \(n \in \mathbb{N} \). If \(b = \infty \), then \(I \) contains an infinite number of disjoint intervals \(I_n = (a + n - 1, a + n) \), \(n \in \mathbb{N} \). If \(-\infty < a < b < \infty \), then \(I \) contains an infinite number of disjoint intervals \(I_n = ((a + (2^n - 1)b)/2^{n-1}, (a + (2^n - 1)b)/2^n) \). In all three cases, each \(I_n \) contains a rational and an irrational by Theorems 1.9 and 1.10. Since \(I_n \cap I_m = \emptyset \),
if $n \neq m$, the rationals/irrationals in these intervals are distinct. So $I \supseteq \bigcup_{n \in \mathbb{N}} I_n$ contains infinitely many rationals and irrationals.