1. Show that $\sqrt{2} + \sqrt[3]{3}$ is
(a) an algebraic number;

Solution. Let $x = \sqrt{2} + \sqrt[3]{3}$. Taking powers and rearranging successively, we get

$$x - \sqrt{2} = \sqrt[3]{3}$$

$$(x - \sqrt{2})^3 = 3$$

$$x^3 - 3x^2\sqrt{2} + 6x - 2\sqrt{2} = 3$$

$$x^3 + 6x - 3 = \sqrt{2}(3x^2 + 2)$$

$$(x^3 + 6x - 3)^2 = 2(3x^2 + 2)^2$$

$$x^6 - 6x^4 - 6x^3 + 12x^2 - 36x + 1 = 0$$

This calculation shows that $\sqrt{2} + \sqrt[3]{3}$ is a zero of $f(x) = x^6 - 6x^4 - 6x^3 + 12x^2 - 36x + 1$. Since f has coefficients in \mathbb{Z} (and therefore in \mathbb{Q}), $\sqrt{2} + \sqrt[3]{3}$ is an algebraic number.

(b) an irrational number.

Solution. Suppose there exists $p, q \in \mathbb{Z}$, $q \neq 0$, $\gcd(p, q) = 1$ such that

$$\frac{p}{q} = \sqrt{2} + \sqrt[3]{3}.$$

By (a), $f(p/q) = 0$ and therefore $q^6f(p/q) = 0$, i.e.

$$p^6 - 6p^4q^2 - 6p^3q^3 + 12p^2q^4 - 36pq^5 + q^6 = 0.$$

In other words,

$$p^6 - 6p^4q^2 - 6p^3q^3 + 12p^2q^4 - 36pq^5 = -q^6.$$

Since p divides the LHS, it divides $-q^6$, and so it must divide q. Since $\gcd(p, q) = 1$, this is only possible if $p = \pm 1$. But then

$$1 < \sqrt{2} + \sqrt[3]{3} \left| \frac{p}{q} \right| = \frac{1}{|q|} \leq 1$$

yields a contradiction.

2. Let $X, Y \subseteq \mathbb{R}$ be nonempty sets. Using the definitions of supremum and infimum, prove that

$$\sup(X \cup Y) = \max\{\sup X, \sup Y\},$$

$$\inf(X \cup Y) = \min\{\inf X, \inf Y\}.$$

Solution. Suppose X and Y are both bounded above. Let

$$A := \sup X \quad \text{and} \quad B := \sup Y.$$

We may assume wlog that $A \leq B$ and so

$$\max\{\sup X, \sup Y\} = \max\{A, B\} = B.$$

Let $z \in X \cup Y$,

- if $z \in X$, then $z \leq A \leq B$,

Proof:

1. **Show that $\sqrt{2} + \sqrt[3]{3}$ is**
 (a) an algebraic number;

 Solution. Let $x = \sqrt{2} + \sqrt[3]{3}$. Taking powers and rearranging successively, we get

 $$x - \sqrt{2} = \sqrt[3]{3}$$

 $$(x - \sqrt{2})^3 = 3$$

 $$x^3 - 3x^2\sqrt{2} + 6x - 2\sqrt{2} = 3$$

 $$x^3 + 6x - 3 = \sqrt{2}(3x^2 + 2)$$

 $$(x^3 + 6x - 3)^2 = 2(3x^2 + 2)^2$$

 $$x^6 - 6x^4 - 6x^3 + 12x^2 - 36x + 1 = 0$$

 This calculation shows that $\sqrt{2} + \sqrt[3]{3}$ is a zero of $f(x) = x^6 - 6x^4 - 6x^3 + 12x^2 - 36x + 1$. Since f has coefficients in \mathbb{Z} (and therefore in \mathbb{Q}), $\sqrt{2} + \sqrt[3]{3}$ is an algebraic number.

 (b) an irrational number.

 Solution. Suppose there exists $p, q \in \mathbb{Z}$, $q \neq 0$, $\gcd(p, q) = 1$ such that

 $$\frac{p}{q} = \sqrt{2} + \sqrt[3]{3}.$$

 By (a), $f(p/q) = 0$ and therefore $q^6f(p/q) = 0$, i.e.

 $$p^6 - 6p^4q^2 - 6p^3q^3 + 12p^2q^4 - 36pq^5 + q^6 = 0.$$

 In other words,

 $$p^6 - 6p^4q^2 - 6p^3q^3 + 12p^2q^4 - 36pq^5 = -q^6.$$

 Since p divides the LHS, it divides $-q^6$, and so it must divide q. Since $\gcd(p, q) = 1$, this is only possible if $p = \pm 1$. But then

 $$1 < \sqrt{2} + \sqrt[3]{3} \left| \frac{p}{q} \right| = \frac{1}{|q|} \leq 1$$

 yields a contradiction.

2. **Let $X, Y \subseteq \mathbb{R}$ be nonempty sets. Using the definitions of supremum and infimum, prove that**

 $$\sup(X \cup Y) = \max\{\sup X, \sup Y\},$$

 $$\inf(X \cup Y) = \min\{\inf X, \inf Y\}.$$

 Solution. Suppose X and Y are both bounded above. Let

 $$A := \sup X \quad \text{and} \quad B := \sup Y.$$

 We may assume wlog that $A \leq B$ and so

 $$\max\{\sup X, \sup Y\} = \max\{A, B\} = B.$$

 Let $z \in X \cup Y$,

 - if $z \in X$, then $z \leq A \leq B$,

 Proof:
3. For nonempty sets $X, Y \subseteq \mathbb{R}$, we define

$$\neg X := \{ -x \in \mathbb{R} \mid x \in X \}, \quad X + Y := \{ x + y \in \mathbb{R} \mid x \in X, y \in Y \}$$

($X + Y$ is often called the Minkowski sum). Using the definitions of supremum and infimum, prove the following equalities:

$$\sup(-X) = -\inf X, \quad \inf(-X) = -\sup X,$$

$$\sup(X + Y) = \sup X + \sup Y, \quad \inf(X + Y) = \inf X + \inf Y.$$

Solution. Suppose X is bounded below. Let $a = \inf X$. Then

- $x \geq a$ for all $x \in X$;
- for any $\varepsilon > 0$, there is an $x^* \in X$ such that $x^* < a + \varepsilon$.

Multiplying the inequalities above by -1, we get

- $y \leq -a$ for all $y \in -X$;
- for any $\varepsilon > 0$, there is an $y^* \in -X$ such that $y^* > -a - \varepsilon$.

These two conditions together imply that

$$\sup(-X) = -a.$$

If X is not bounded below, then $-X$ is not bounded above and therefore

$$\sup(-X) = +\infty = -(-\infty) = -\inf X.$$

The second equality can be established in a similar fashion. Suppose X is bounded above.

Let $A = \sup X$. Then

- $x \leq A$ for all $x \in X$;
- for any $\varepsilon > 0$, there is an $x^* \in X$ such that $x^* > A - \varepsilon$.

Multiplying the inequalities above by -1, we get

- $y \geq -A$ for all $y \in -X$;
- for any $\varepsilon > 0$, there is an $y^* \in -X$ such that $y^* < -A + \varepsilon$.

These two conditions together imply that
\[\inf(-X) = -A. \]
If \(X \) is not bounded above, then \(-X\) is not bounded below and therefore
\[\inf(-X) = -\infty = -(+\infty) = -\sup X. \]

Now for the third equality. Suppose \(X \) and \(Y \) are bounded above. Let \(A = \sup X \) and \(B = \sup Y \). Then \(A \) is an upper bound or \(X \) and \(B \) is an upper bound of \(Y \). Hence \(A + B \) is an upper bound of \(X + Y \). Moreover, for any \(\epsilon > 0 \), there are \(x^* \in X \) and \(y^* \in Y \) such that \(x^* > A - \epsilon/2 \) and \(y^* > B - \epsilon/2 \). Therefore \(x^* + y^* > A + B - \epsilon \). Since \(z^* = x^* + y^* \in X + Y \), this shows that
\[\sup(X + Y) = A + B. \]
If \(X \) or \(Y \) is unbounded above, then \(X + Y \) is also unbounded above, and by definition,
\[\sup X + \sup Y = \begin{cases} \sup X + \infty & \text{if } Y \text{ unbounded}, \\ +\infty + \sup Y & \text{if } X \text{ unbounded}, \end{cases} = +\infty = \sup(X + Y). \]
The fourth equality can be established in a similar fashion. Suppose \(X \) and \(Y \) are bounded below. Let \(a = \inf X \) and \(b = \inf Y \). Then \(a \) is a lower bound or \(X \) and \(b \) is a lower bound of \(Y \). Hence \(a + b \) is a lower bound of \(X + Y \). Moreover, for any \(\epsilon > 0 \), there are \(x^* \in X \) and \(y^* \in Y \) such that \(x^* < a + \epsilon/2 \) and \(y^* < b + \epsilon/2 \). Therefore \(x^* + y^* < a + b + \epsilon \). Since \(z^* = x^* + y^* \in X + Y \), this shows that
\[\inf(X + Y) = a + b. \]
If \(X \) or \(Y \) is unbounded below, then \(X + Y \) is also unbounded below, and by definition,
\[\inf X + \inf Y = \begin{cases} \inf X - \infty & \text{if } Y \text{ unbounded}, \\ -\infty + \inf Y & \text{if } X \text{ unbounded}, \end{cases} = -\infty = \inf(X + Y). \]

4. Define
\[
S_1 = \{ x \in \mathbb{Q} \mid x^2 + x + 1 > 0 \},
S_2 = \{ x \in \mathbb{R} \mid x^2 + x + 1 > 0 \},
S_3 = \{ x + x^{-1} \in \mathbb{R} \mid x > 0 \},
S_4 = \{ mn/(1 + m + n) \in \mathbb{Q} \mid m, n \in \mathbb{N} \},
S_5 = \{ \sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{Q} \mid n \in \mathbb{N} \}.
\]
For \(i = 1, \ldots, 5 \), determine the values of \(\max S_i, \min S_i, \sup S_i, \) and \(\inf S_i \) or state why they do not exist.

SOLUTION. It is clear that
\[\sup S_1 = \sup S_2 = \sup S_3 = +\infty \]
and so \(\max S_1, \max S_2, \max S_3 \) do not exist. Observe that
\[x^2 + x + 1 = \left(x + \frac{1}{2} \right)^2 + \frac{3}{4} \geq \frac{3}{4} > 0 \]
for all \(x \in \mathbb{Q} \subset \mathbb{R} \) and so \(S_1 = \mathbb{Q} \) and \(S_2 = \mathbb{R} \). Hence
\[\inf S_1 = \inf S_2 = -\infty \]
and so \(\min S_1 \) and \(\min S_2 \) do not exist. For any \(x > 0 \), the arithmetic mean-geometric mean inequality implies that
\[x + \frac{1}{x} \geq 2 \sqrt{x \cdot \frac{1}{x}} = 2 \]
and this lower bound of S_3 is attained when $x = 1$, we see that

$$\min S_3 = \inf S_3 = 2.$$

Note that since $m, n \geq 1$,

$$\frac{1 + m + n}{mn} = \frac{1}{mn} + \frac{1}{n} + \frac{1}{m} \leq 1 + 1 + 1 = 3$$

and so we must have

$$\frac{mn}{1 + m + n} \geq \frac{1}{3}.$$

This lower bound of S_4 is attained by $m = n = 1$. Hence

$$\min S_4 = \inf S_4 = \frac{1}{3}.$$

Setting $m = n$, we see that

$$\lim_{n \to \infty} \frac{n^2}{1 + 2n} = \infty$$

and so S_4 contains an unbounded subset \(\{ n^2/(1 + 2n) \in \mathbb{Q} \mid n \in \mathbb{N} \} \) and therefore S_4 is unbounded above. Hence

$$\sup S_4 = +\infty$$

and so max S_4 does not exist.

Let

$$s_n := \sum_{k=0}^{n} \frac{1}{k!}.$$

From Math 1B, we know that s_n is a monotone increasing sequence and therefore

$$1 = s_1 = \inf S_5 = \min S_5.$$

We also know that

$$\lim_{n \to \infty} s_n = e \notin \mathbb{Q}$$

and thus

$$\sup S_5 = e$$

and max S_5 does not exist.