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Abstract. It is known that the contact process on a homogeneous tree of degree d+1 ≥ 3
has a weak survival phase, in which the infection survives with positive probability but
nevertheless eventually vacates every finite subset of the tree. It is shown in this paper that
in the weak survival phase there exists a spherically symmetric invariant measure whose
density decays exponentially at infinity, thus confirming a conjecture of Liggett [10]. The
proof is based on a study of the relationships between various thermodynamic parameters
and functions associated with the contact process initiated by a single infected site. These
include (a) the growth profile, which determines the exponential rate of growth in space-
time on the event of survival; (b) the exponential rate β of decay of the hitting probability
function at infinity (also studied in [7]); and (c) the exponential rate η of decay in time t
of the probability that the initial infected site is infected at time t. It is shown that β is
a strictly increasing function of the infection rate λ in the weak survival phase. It is also
shown that η < 1 except at the critical value λ2 demarcating the boundary between the
weak and strong survival phases, where η = 1.

1. Introduction

This paper is a sequel to [7], in which the weakly supercritical phase of an isotropic contact
process on an infinite homogeneous tree was studied. Briefly, an isotropic contact process
on the homogeneous tree T = Td of degree d + 1 is a continuous time Markov process At

on the set of finite subsets of T (henceforth, T will be identified with the vertex set of the
tree) that evolves as follows. Infected sites (members of At) recover at rate 1 and upon
recovery are removed from At; healthy sites (members of Ac

t) become infected at rate λ
times the number of infected neighbors, and upon infection are added to At. Under the
default probability measure P , the initial state A0 is the singleton set {e} (where e is a
distinguished element of T called the “root”). See [8] and [5] for general information on the
contact process, and [7], especially sections 1 and 2, for background information concerning
the contact process on a homogeneous tree. Some of the arguments of this paper (see the
proofs of Proposition 8 and Theorem 4 below) are borrowed from [7].

It was discovered by Pemantle [13] for trees of degree greater than 3 and by Liggett
[11] (see also Stacey [14] for a relatively simple argument) for the tree of degree 3 that the
contact process described above has (at least) 3 essentially different “phases”: (i) extinction,
(ii) weak survival, and (iii) strong survival. In phase (i), At = ∅ eventually, with probability
1; in phase (ii), |At| → ∞ with positive probability but for every finite subset Bof T ,
At ∩ B = ∅ eventually, with probability 1; and in phase (iii), with positive probability
e ∈ At for arbitrarily large values of t. There exist critical constants 0 < λ1 < λ2 < ∞ such
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that λ ≤ λ1 implies ultimate extinction; λ1 < λ ≤ λ2 implies weak survival; and λ > λ2

implies strong survival. The phase of interest here is weak survival (we also refer to the
contact process in this phase as weakly supercritical). This phase is of interest, among other
reasons, because it does not occur for the contact process on Euclidean lattices (e.g., on
Zd). Henceforth we shall discuss only this case. Thus, we make the standing assumption
that

λ ∈ (λ1, λ2].

1.1. Growth Profile and Other Characteristics. The main results of this paper con-
cern a function V (s) which we shall call the growth profile of the contact process. Two
other parameters also enter into the statements of these results: β = β(λ), which deter-
mines the size of the “limit set” of the contact process on the event of its survival (see [7]),
and η = η(λ), the exponential rate of decay of P{e ∈ At}. The definitions are as follows:

β = lim
n=d(x,e)→∞

(P{x ∈ At for some t})1/n;(1)

η = lim
t→∞

(P{e ∈ At})1/t;(2)

V (s) = log lim
n=d(x,e)→∞

(P{x ∈ Ans})1/n.(3)

The existence of these limits follows from simple subadditivity arguments (see below for η
and V (s), and see [7] for β). The main result of [7] is that for all values of λ ∈ (λ1, λ2],

(4) β ≤ 1√
d
.

Theorem 1. The growth profile V (s) is a concave, continuous function of s > 0 that is
bounded above by log β and satisfies

lim
s→0+

V (s) = −∞,(5)

lim
s→∞

V (s)/s = log η.(6)

Theorem 1 will be proved in section 2 below – see Propositions 1-4. We have been unable
to prove that V (s) is strictly concave, but we conjecture that it is.

Theorem 2. If λ < λ2 and β < 1/
√

d then η < 1. If β = 1/
√

d then η = 0.

In view of equation (6), Theorem 2 implies that if λ < λ2 and β < 1/
√

d then V (s) → −∞
as s →∞, but that if β = 1/

√
d then V (s) is nondecreasing in s (since it is concave). This

will be of crucial importance in the proof of Theorem 5 below. Theorem 2 will be proved
in section 4.
Theorem 3. In the weak survival phase λ ∈ (λ1, λ2] the parameter β is a strictly increasing
function of λ.

Theorem 3 will be proved in section 6 below. It follows immediately from theorems 2-3
that η < 1 for all λ ∈ (λ1, λ2). We have not been able to determine whether β(λ2) = 1/

√
d,

so we do not yet know if it is possible for η = 1 in the weakly supercritical phase.
The function V (s) proscribes the shape and size of the set At of infected sites at large

times t. Define rt and Rt to be the smallest and largest distances d(x, e) among the infected
sites x ∈ At. Also, for any integer n and any s > 0 define Nn(ns) to be the number of
vertices x ∈ Ans at distance n from e that are infected at time ns.
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Theorem 4. Suppose that β < 1/
√

d. Then there exist smallest and largest solutions
0 < s1 ≤ s2 < ∞ of V (s) = − log d. Almost surely on the event of survival,

lim
t→∞

rt/t = 1/s2, and(7)

lim
t→∞

Rt/t = 1/s1.(8)

Moreover, for any s > 0 such that V (s) + log d > 0,

(9) lim
n→∞

1
n

log Nn(ns) = V (s) + log d

See section 5 for the proof. This theorem explains the use of the term “growth profile”.
The function V (s) effectively determines how the contact process “spreads out” in space-
time, and determines roughly how many vertices at each distance from e are infected at
any large time t. Together with Theorem 2, it also implies that At recedes linearly from
the root vertex e if and only if λ ∈ (λ1, λ2).

1.2. Invariant Measures for the Contact Process. The set of invariant measures in the
phase of strong survival has a relatively simple structure: every such measure is a mixture
of the point mass at ∅ and the “upper invariant measure” (see Zhang [15]). For weakly
supercritical contact processes the set of invariant measures seems in general to be much
more complex. Durrett and Schinazi [3] proved that it has infinitely many extreme points.
Liggett [10] showed that, at least for λ > λ1 sufficiently close to λ1, there are invariant
measures ν that are spherically symmetric (about the root vertex e) and have exponentially
receding densities, i.e., are such that for all x ∈ T ,

(10) C1z
d(x,e) ≤ ν{A : x ∈ A} ≤ C2z

d(x,e),

where 0 < C1 < C2 < ∞ are constants independent of x and d(x, e) denotes the distance
from x to e in T . Liggett also conjectured that such invariant measures exist for all λ ∈
(λ1, λ2], and gave a sufficient condition for their existence. This condition involves the
function

(11) ϕ(z) = lim
t→∞

(
E
∑
x∈At

zL(x)

) 1
t

,

where L(x) is the depth of the vertex x in the tree (see [10] or section 3 below for the
definition). Liggett proved that if there exists a solution z ∈ (1/

√
d, 1) of the equation

(12) ϕ(z) = 1,

then there exists a spherically symmetric invariant measure for the contact process that
satisfies the exponential decay law (10). The next result shows that the growth profile
determines Liggett’s function ϕ.
Theorem 5. If β < 1/

√
d then for every z > 1/

√
d,

(13) ϕ(z) = max
0<s<∞

exp
(

V (s) + log(dz)
s

)
.

The proof will be given in section 3, along with the proof of the following corollary.
Corollary 1. If β < 1/

√
d, then ϕ(1/dβ) = 1.

In view of (4) and Theorem 3, this implies that Liggett’s conjecture is true:
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Corollary 2. For every λ ∈ (λ1, λ2) there is a spherically symmetric invariant measure for
the contact process whose density decays exponentially at infinity.

2. Growth Profile: Basic Properties

By the isotropy of the contact process, the probability that the set At of sites infected at
time t contains a particular vertex x ∈ T depends only on t and |x|. Thus, we may define

un(t) = P{x ∈ At},
where x is any vertex at distance n from the root e. The Markov and monotonicity properties
of the contact process imply that for all nonnegative integers m, n and all times s, t ≥ 0,

(14) um+n(s + t) ≥ um(s)un(t).

Consequently, by the basic subadditivity lemma, for every s > 0 the limit

(15) lim
n→∞

un(ns)
1
n

∆= U(s) ∆= exp{V (s)}

exists, and for every s > 0 and every integer n ≥ 0,

(16) un(ns) ≤ U(s)n.

Proposition 1. V (s) ≤ log β

It is clear that un(ns) ≤ un for any n ∈ N and any s > 0. Taking nth roots on both sides
of this inequality and letting n →∞, one obtains the desired result.
Proposition 2. V (s) is a concave and, therefore, continuous function of s > 0.

According to the fundamental inequality (14), for all 0 < s < t < ∞ and all nonnegative
integers m,n,

um(ms)un(nt) ≤ um+n(ms + nt).
Taking the (m+n)thh root of both sides and letting m,n →∞ in such a way that the ratio
m/(m + n) converges to α ∈ (0, 1), one gets

U(s)αU(t)1−α ≤ U(s + t),

which implies that V is concave.
Proposition 3. lims→0+ V (s) = −∞.

This is equivalent to showing that lims→0+ U(s) = 0. Recall that

U(s) = lim
n→∞

un(ns)1/n,

and that un(ns) is the probability that a particular vertex x at distance n from e will be
infected at time ns. Let x0, x1, x2, . . . , xn be the successive vertices on the geodesic segment
from e = x0 to x = xn, and for each 1 ≤ m ≤ n define τm to be the elapsed time between
the first infection of xm−1 and the first infection of m. In order that xn be infected at time
ns, it must be the case that at least half of the times τm are no greater than 2s. But the
distribution of τm, conditional on the history of the contact process up to the time of first
infection of xm−1, is stochastically larger than an exponential random variable with mean
1/λ, so the conditional probability that τm ≤ 2s is no larger than 1 − e−2λs. Thus, the
probability that at least half of the random variables τm, 1 ≤ m ≤ n, are ≤ 2s is no larger
than

n∑
k=[n/2]

(
n

k

)
(1− e−2λs)k(e−2λs)n−k ≤ (n + 1)2n(1− e−2λs)[n/2]
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Taking nth roots, one finds that

U(s) = lim sup
n→∞

(un(ns))1/n ≤ 2
√

1− e−2λs,

which converges to 0 as s →∞.
By definition, u0(t) = P{e ∈ At} is the probability that the root vertex e is infected at

time t. If e is infected at time t and if there is an infection trail from (e, t) to (e, t+ s), then
clearly e is infected at time t+ s. Hence, by the Markov and monotonicity properties of the
contact process, u0(t + s) ≥ u0(t)u0(s) for all s, t > 0. It follows that

η = lim
t→∞

u0(t)
1
t ≤ 1

exists, and that u0(t) ≤ ηt for all t > 0.
Proposition 4. lims→∞ V (s)/s = log η.

The concavity of V implies that the limit exists and is nonpositive, so it suffices to
consider only integer values of s. Fix ε = 1/m > 0 smaller than 1, and let n > 0 be an
integer such that nε ∈ N . Let x be a vertex at distance nε from the root e. If there are
infection trails that extend from (e, 0) to (e, n − nε) and from (e, n − nε) to (x, n), then
their concatenation is an infection trail from (e, 0) to (x, n). Hence, by the Markov and
monotonicity properties,

unε(n) ≥ u0(n− nε)unε(nε)
Taking nth roots of both sides and letting n →∞ through integer multiples of 1/ε gives

U(1/ε)ε ≥ η1−εU(1)ε.

Taking logarithms and letting ε → 0 yields

lim
s→∞

V (s)
s

≥ log η.

The reverse inequality is obtained in much the same way. Let x be a vertex at distance
nε from the root e. If there are infection trails that extend from (e, 0) to (x, n) and from
(x, n) to (e, n + nε) then their concatenation is an infection trail from (e, 0) to (e, n + nε);
consequently,

unε(n)unε(nε) ≤ u0(n + nε).
Taking nth roots and letting n →∞ gives

U(1/ε)εU(1)ε ≤ η1+ε

and letting ε → 0 yields

lim
s→∞

V (s)
s

≤ log η.

Proposition 5. If lims→∞ V (s) = −∞ then

max
0<s<∞

V (s) = log β.

By Proposition 3, V (s) → −∞ as s → 0+, and by Proposition 2, V (s) is continuous
in s. Consequently, if V (s) → −∞ as s → ∞ then V (s) attains its maximum value vmax.
Moreover, since V is concave, the hypothesis that V → −∞ as s → ∞ implies that there
exist constants a < 0 and 0 < s∗ < ∞ such that

(17) V (s) ≤ as− as∗ + vmax − 1 if s∗ ≤ s < ∞
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Let x be any vertex of T . If x is infected for a first time at time τ , then conditional on
the history of the contact process up to time τ the probability that x will remain infected
until time τ + 1 is at least exp{−1}, because the death rate is 1. On this event, x will
remain infected at the first integer time after τ . Hence,

un ≤ exp{1}
∞∑

m=1

un(m)(18)

= exp{1}
∞∑

m=1

exp{nV (m/n)}

= exp{1}(
∑

m≤ns∗

+
∑

m>ns∗

).

By (17), the second sum (over m > ns∗) is dominated by a convergent geometric series
whose first term is no larger than exp{n(vmax− 1)}. On the other hand, the first sum (over
m ≤ ns∗) contains at most ns∗ + 1 terms, none larger than exp{nvmax}. Thus,∑

m≤ns∗

≤ exp{nvmax}(ns∗ + 1),

∑
m>ns∗

≤ exp{nvmax − n}/(1− exp{−a})

and so the dominant term is the first of these sums. Taking nth roots in (18) and letting
n →∞ gives log β ≤ vmax. Proposition 1 implies the reverse inequality.

3. The Growth Profile and Liggett’s ϕ−Function

In this section we prove Theorem 5, thus making the connection between the growth
profile V and Liggett’s ϕ−function. Recall [10] that ϕ is defined by

ϕ(z) = lim
t→∞

(Ewz(At))
1
t lim

t→∞

(
E
∑
x∈At

zL(x)

) 1
t

,

where L(x) is the depth of the vertex x. The definition of the depth function L depends on
an arrangement of the vertices of T in levels (Ln)n ∈ Z so that (i) distinct levels Ln and
Lm do not intersect; (ii) every vertex y ∈ Ln has exactly d neighbors in Ln+1 and exactly
one neighbor in Ln−1; and (iii) the root vertex e is in level L0. The depth L(x) of a vertex
x is then defined to be the index n of the level Ln in which x lies. Observe that there are
infinitely many distinct arrangements of the vertices in levels, but that the expectations in
the definition of ϕ(z) do not depend on which arrangement is used, by the isotropy of the
contact process.
Lemma 1. Define Mk

ν to be the number of vertices of T at distance k from the root e and
at depth ν. Then

Mk
ν = 1 if ν = −k;(19)

Mk
ν = dk if ν = k;(20)

Mk
ν = (d− 1)dj−1 ≤ dj if ν = −k + 2j and − k < ν < k;

Mk
ν = 0 otherwise.
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Let x be a vertex at distance n from the root e. The geodesic segment from e to x makes j
steps “up” and n−j steps “down” for some integer 0 ≤ j ≤ n, with the j up steps preceding
the n− j down steps (otherwise the path would retrace some of its steps, contradicting the
supposition that it is a geodesic segment). The depth at termination of any such geodesic
segment is (n− j)− j, and the number of distinct such geodesic segments (with j up steps
followed by n − j down steps) is dn if j = 0 and (d − 1)dn−j−1 if j ≥ 1. Since geodesic
segments starting at e are in one-to-one correspondence with their endpoints, the formulas
for Mk

ν follow.
The proof of Theorem 5 will use the following intermediate characterization of ϕ.

Proposition 6. For every z > 1/
√

d,

ϕ(z) = lim
t→∞

( ∞∑
n=0

un(t)(dz)n

) 1
t

.

For any finite set A of vertices and any z ∈ R, define wz(A) =
∑

x∈A zL(x). Then ϕ(z) =
limt→∞(Ewz(At))1/t, where At denotes the set of infected vertices at time t. Arranging
vertices by distance from the root gives

Ewz(At) =
∞∑

k=0

k∑
j=0

z−k+2jMk
−k+2juk(t).

Since Mk
k = dk, it follows directly that

Ewz(At) ≥
∞∑

k=0

zkdkuk(t).

On the other hand, Lemma 1 and the hypothesis z2d > 1 imply that

Ewz(At) ≤
∞∑

k=0

k∑
j=0

zkdkuk(t)z−2jd−j

≤
∞∑

k=0

zkdkuk(t)(1− (z2d)−1)−1

Since the limit limt→∞(Ewz(At))1/t exists and equals ϕ(z) (see [10]), the desired result
follows from the last two displayed inequalities.

Proof of Theorem 5 Fix z > 1/
√

d, set Vz(s) = V (s) + log(dz), and define

σ = sup
s>0

Vz(s)/s = sup
s>0

(V (s) + log(dz))/s.

By Propositions 3 and 4 and Theorems 1 and 2, Vz(s)/s converges to −∞ as s → 0+and
Vz(s)/s converges to log η < 0 as s →∞. Consequently, σ < ∞.

By definition of σ and the intermediate value theorem, for all σ∗ < σ sufficiently close to
σ, the line of slope σ∗ through the origin must intersect the graph of V . Thus, there exists
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s∗ ∈ (0,∞) such that Vz(s∗) = σ∗. Now( ∞∑
n=0

un(t)dnzn

) 1
t

≥
(
u[t/s∗](t)(dz)[t/s∗]

) 1
t

→ (U(s∗)dz)
1

s∗

= exp{σ∗}
as t → ∞. This implies, by Proposition 6, that ϕ(z) ≥ eσ∗ . Since σ∗ < σ was arbitrary, it
follows that

ϕ(z) ≥ eσ.

The proof of the reverse inequality is similar to the proof of Proposition 5. First note
that by Proposition 3, V (s) → −∞ as s → 0+, so for any z > 0 there exists δ ∈ (0, 1)
sufficiently small that for all s ∈ (0, δ),

V (s) + log(dz) < min(−1, σ − 1)

Now
∞∑

n=0

un(t)dnzn ≤
∞∑

n=0

U(t/n)ndnzn

=
∞∑

n=0

exp{n(V (t/n) + log(dz))}

=
∑
n≤δt

+
∑
n>δt

.

There are at most δt terms in the first sum, none larger than eσt, since σt ≥ V (t) + log(dz)
by definition of σ. By our choice of δ, the terms of the second are dominated by the terms of
a geometric series with ratio ≤ e−1 and with initial term no larger than et(σ−1)/δ < et(σ−1).
Hence, by Proposition 6,

ϕ(z) = lim sup
t→∞

( ∞∑
n=0

un(t)dnzn

) 1
t

≤ eσ.

Proof of Corollary 1 By Theorems 1 and 2, if β < 1/
√

d then lims→∞ V (s) = −∞. Thus,
Theorem 5 implies that for every z > 1/

√
d the value of ϕ(z) is given by equation (13). By

Proposition 5, the function V (s) attains its maximum value of log β at some s = s∗ ∈ (0,∞).
When z = 1/(dβ),

max
s>0

(V (s) + log(dz)) = (V (s∗) + log(dz)) = 0,

so by (13), ϕ(z) = 1.

4. The Growth Profile at ∞

Proposition 7. If β < 1/
√

d and λ < λ2 then η < 1.
It suffices to prove that if β < 1/

√
d then there exists a value of z > 0 such that ϕ(z) < 1,

because for any z > 0,

η = lim
t→∞

(P{e ∈ At})
1
t ≤ lim

t→∞
(Ewz(At))

1
t = ϕ(z)
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According to Proposition 1.19(e) of [10], if λ < λ2 and if ϕ(z∗) ≤ 1 for some z∗ > 1/
√

d then
ϕ(z) < 1 for every z ∈ [1/

√
d, z∗); hence it suffices to prove that if λ < λ2 and β < 1/

√
d

then for some z > 1/
√

d,

(21) ϕ(z) = lim
t→∞

(Ewz(At))1/t ≤ 1.

Define A∗ to be the (random) set consisting of all vertices that are ever infected. Obvi-
ously At ⊂ A∗ for every t < ∞, and so it is also the case that Ewz(At) ≤ Ewz(A∗). We will
show that if β < 1/

√
d and zβ < 1/d then Ewz(A∗) < ∞. It will then follow that equation

(21) holds for all z ∈ [1/
√

d, 1/dβ). Summing over vertices at fixed distances from the root
e as in the proof of Proposition 6 gives

Ewz(A∗) =
∞∑

k=0

k∑
j=0

z−k+2jMk
−k+2juk

≤
∞∑

k=0

k∑
j=0

zkdkβkz−2jd−j

≤
∞∑

k=0

zkdkβk(1− (z2d)−1)−1

= (1− zβd)−1(1− (z2d)−1)−1

The remainder of this section is devoted to the proof of the following proposition, which
will complete the roof of Theorem 2. The argument is largely borrowed from [7], section 4.

Proposition 8. If β = 1/
√

d then η = 1.
For any integer n ≥ 1, define Fn to be the event that there is an infection trail that

begins at the root e at time t = 0, reaches a vertex x at distance n from e, and then returns
from x to e. Since the contact process is, by hypothesis, weakly supercritical, P (Fn) → 0
as n →∞ (see [7] section 4). Define

ζ = lim sup
n→∞

P (Fn)
1
n .

Lemma 2. If ζ = 1 then η = 1.
Let Hn be the event that e ∈ At for some t ≥ n, and let H ′

n be the event that e ∈ At

for some integer t ≥ n. Since the recovery rate in the contact process is 1, for any n the
conditional probability is at least exp{−1} that e remains infected for n ≤ t ≤ n + 1, given
that e is infected at time n. Hence, P (Hn) ≤ exp{1}P (H ′

n), and it follows that

P (Hn) ≤ exp{1}
∞∑

m=0

P (e ∈ An+m) ≤ exp{1}ηn/(1− η).

Thus, to prove that η = 1 it suffices to prove that

lim sup
n→∞

P (Hn)1/n = 1.

Fix ε > 0, and let Gn be the event that there is an infection trail starting at (e, 0) that
reaches a vertex at distance n from e and then returns to e by time εn. On the event Gn,
some vertex at distance n from e is infected at some time t < εn; hence, summing over all
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such vertices and all integer times < εn, using again the fact that the recovery rate is 1, we
obtain that

P (Gn) < (d + 1)dn−1

(
exp{1}

εn∑
m=1

expnV (m/n) + λn exp{−λ}/n!

)
(λne−λ/n! is an upper bound for the probability that a particular vertex x at distance n
from e is infected before time 1). Consequently, by Proposition 3, if ε > 0 is sufficiently
small then

lim sup
n→∞

P (Gn)
1
n < 1.

Now by hypothesis, lim supn→∞ P (Fn)1/n = 1. Consequently, if ε > 0 is sufficiently small
then, by the result of the preceding paragraph, lim supn→∞ P (Fn ∩ Gc

n)1/n = 1. But the
event Fn ∩Gc

n is contained in H[εn], so it follows that

lim sup
n→∞

P (H[εn])
1
n = 1.

Proof of Proposition 8 By Lemma 2, it suffices to show that ζ = 1. For this we adapt
from [7] (section 3) the notion of a downward infection trail. Let x, y ∈ T be vertices such
that L(x) = m < L(y) = m + k, where as earlier L(z) denotes the depth of the vertex z
(the index of its level LL(z)). A downward infection trail from x to y is an infection trail
that begins at x, never enters level Lm−1, and first reaches Lm+k at y, where it terminates.
Observe that a downward infection trail is the same as an outward infection trail (see section
3 of [7]) provided that the initial vertex x is at depth L(x) > 0. By the isotropy of the
contact process, the probability that there is a downward infection trail from x to y depends
only on k = d(x, y), so we may define

wk = P{∃ downward infection trail x → y}.

By Proposition 1 of [7], w
1/k
k → β as k →∞. Thus, the probability that there is a downward

infection trail from e to x is, in exponential size, just as large as the probability that there
is any infection trail from e to x.

If there is a downward infection trail from an infected site x at level L(x) ≥ 0 (beginnning
at x during the first infection epoch of x) to a site x∗ ∈ T (x), say that x∗ is a descendant
of x. Fix an integer L ≥ 1 and define YL to be the number of descendants of e at depth
L. Then by Proposition 2 of [7], there is a Galton-Watson process ZL

n with mean offspring
number dLwL such that YnL ≥ ZL

n for all n. Since w
1/L
L → β = 1/

√
d as L → ∞, if L is

sufficiently large then the Galton-Watson ZL
n is supercritical. Hence, for any β− < β, if k

is sufficiently large then

(22) pk
∆= P{Yk > (dβ−)k} > ε > 0,

where ε > 0 is the probability that the Galton-Watson process ZL
n does not reach extinction.

Consider now the event F k
n that there is an infection trail that begins at the root e at time

t = 0, reaches a vertex x ∈ Ynk, and then returns from x to e. Clearly, P (F k
n ) ≤ P (Fnk),

where Fnk is as in Lemma 2 above. The event F k
n will occur if there is just one descendant

x of e at depth k such that (i) there is a descendant x∗ of x at depth kn and an infection
trail from x∗ to x, beginning at the instant of initial infection of x∗; and (ii) there is a
subsequent infection trail from x to e. Now conditional on the set Yk of descendants of e at
depth k, the events (i) for the different x∗ ∈ Yk are mutually independent (since they involve
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non-overlapping parts of the percolation structure), and each has probability P (F k
n−1) (by

the isotropy of the contact process). Moreover, given that event (i) occurs for some x ∈ Yk,
the conditional probability of event (ii) is at least uk. Consequently, if rn = P (F k

n ), then

rn ≥ P{Yk ≥ (dβ−)k}P (∪x∈Yk
(i)&(ii) |Yk ≥ (dβ−)k)

≥ pk(1− (1− rn−1)(dβ−)k
)uk

≥ pkuk(1− exp{−(dβ−)krn−1})

For each fixed k, rn = P (F k
n ) → 0 as n →∞, as the contact process is weakly supercritical.

This implies that the last exponential displayed above is well-approximated by the first
term of its Taylor series around 0. Furthermore, if kis sufficiently large then uk > βk

−, and
pk > ε by the last paragraph. Thus, for all large n,

rn ≥ ε(dβ2
−)krn−1/2.

It follows that lim infn→∞ P (F k
n )1/n ≥ ε(dβ2

−)k/2. Since P (F k
n ) ≤ P (Fnk), this implies that

lim supn→∞ P (Fn)1/n ≥ dβ2
−; but β− < β = 1/

√
d was arbitrary, so this proves that

lim sup
n→∞

P (Fn)1/n = η = 1.

5. The Growth Profile and the Spread of the Infection

Proof of Theorem 4 When β < 1/
√

d, by Propositions 7 and 5, maxs V (s) = log β. Also,
β ≥ − log d because otherwise the expected number of sites ever infected would be finite,
which would preclude the possibility of weak survival. Consequently, there is at least one
solution s of V (s) = − log d. Let s1 be the smallest solution and s2 the largest solution.
Recall that rt and Rt are the smallest and largest distances d(x, e) among the infected sites
x ∈ At, and for any interval (a, b), Nt(a, b) is the number of vertices x ∈ At such that
at < d(x, e) < bt.

Proof of Relations (7)-(8)(Sketch). We will show that a.s. on the event of survival, for any
ε > 0, Nt(t/s1 + εt,∞) = 0 eventually and Nt(0, t/s1 − εt) = 0 eventually. This will imply
that a.s. on survival, lim supRt/t ≤ 1/s1 and lim inf rt/t ≥ 1/s2. The reverse inequalities
lim inf Rt/t ≥ 1/s1 and lim sup rt/t ≤ 1/s2 will follow from relation (9) proved below.

A routine argument using estimates like those developed in the proof of Proposition 3
shows that it is enough to consider integer times t (the probability that an infection trail
moves a distance ≥ εt in time 1 decreases more rapidly than any exponential e−ct). For a
fixed large integer t, the probability that Nt(t/s1 + εt,∞) > 0 is smaller than∑

n≥t/s1+εt

un(t)dn(d + 1).

But un(t) ≤ exp {nV (t/n)}, so by an argument like that used in the proof of Theorem 5 the
terms in the above sum are bounded by the terms of a geometric series with sum smaller
than O(e−tδ for some δ > 0 depending only on ε. Since

∑
t ∈ Ne−tδ < ∞, the Borel-Cantelli

Lemma implies that a.s Nt(t/s1 + εt,∞) = 0 eventually. A similar argument proves that
a.s. Nt(t/s1 + εt,∞) = 0 eventually.

Proof of Relation (9)(Sketch): Fix s > 0 such that V (s)+log d > 0. The probability un(ns)
that a particular vertex at distance n from the root will be infected at time ns is no larger
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than exp{nV (s)}. The number of vertices in T at distance n from e is (d + 1)dn−1. It
follows that the expected number of such vertices that are infected at time ns is no larger
than

(d + 1)dnenV (s).

Consequently, by a routine application of the Borel-Cantelli lemma and the Markov inequal-
ity,

lim sup
n→∞

1
n

log Nn(ns) ≤ V (s) + log d.

The proof of the reverse direction uses again the notion of a downward infection trail,
which was introduced in the proof of Proposition 8. Let x be a vertex at depth n > 0, and
let u∗n(t) be the probability that there is a downward infection trail from (e, 0) to (x, t).
Then for any s > 0,

(23) lim
n→∞

u∗n(ns)1/n = eV (s).

This may be proved in much the same manner as Proposition 1 of [7].
The virtue of considering only vertices infected via downward infection trails is that the

existence (or nonexistence) of these infection trails depends only on the part of the perco-
lation structure above the vertices of the tree in the sector between the initial and terminal
vertices. Thus, for any distinct vertices x, x′, . . . at depth m and any times t, s, the numbers
ξx(s, t), ξx′(s, t), . . . of vertices y, y′, . . . that are infected at time t by downward infection
trails starting at (x, s), (x′, s), . . . , respectively, are mutually independent. Consequently, if
Nnm(nms) denotes the number of vertices at distance nm that are infected at time nms
(by infection trails starting at (e, 0)), then Nnm(nms) dominates a Galton-Watson chain
Zn whose mean offspring number is

dmu∗m(ms).

(See [7], Proposition 2 for a similar result about time-independent infection trails.) It follows
that on the event of non-extinction of this Galton-Watson process,

lim inf
n→∞

1
n

log Nnm(nms) ≥ log dmu∗m(ms).

By choosing m large, we can (i) make the event of non-extinction of the G-W process arbi-
trarily close to the event of non-extinction of the contact process, and (ii) push u∗m(ms)1/m

close to eV (s), by (23). Therefore, almost surely on the event of non-extinction,

lim inf
t→∞

1
t

log Nn(ns) ≥ V (s) + log d.

6. Strict Monotonicity of β

Fix λ ∈ (λ1, λ2], so that the contact process with infection rate λ and recovery rate 1 is
weakly supercritical. In this section we will prove the following proposition, which implies
Theorem 3.
Proposition 9. If λ∗ < λ then β(λ∗) < β(λ).

We begin the proof by introducing an augmentation of the usual percolation structure used
in the construction of the contact process. Recall that the percolation structure is a system
of independent Poisson processes attached to vertices and ordered pairs of neighboring
vertices. For each vertex x of T the Poisson process attached to x has rate 1, and determines
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the recovery times at x: in particular, at every occurrence time site x recovers if it is infected.
For each ordered pair (x, y) of neighboring vertices, the Poisson process attached to (x, y)
has rate λ; the occurrence times are precisely those times when an infection at x may
jump to y. Occurrences in these Poisson processes are marked on a system of directed rays
{x} × [0,∞) connected to the vertices x of T , in such a way that (1) at each occurrence
time t of the Poisson process attached to (x, y) an “infection arrow” is drawn from (x, t)
(the “tail”) to (y, t) (the “head”) in T × (0,∞); and (2) at each occurrence time t of the
Poisson process attached to x a “recovery mark” ∗ is attached to (x, t). Note that there are
no simultaneous occurrences of infection arrows and/or recovery marks in the percolation
structure. The state At of the contact process at time t may now be defined to be the set
of all vertices y for which there is a (directed) path through the percolation structure (the
system of rays and arrows described above) that begins at e, ends at (y, t), and does not
pass through any recovery marks ∗.

In its augmented form, the percolation structure is provided with a collection of Bernoulli-
p random variables ξα, one for each infection arrow α. These are conditionally independent,
given the realization of the percolation structure. The value of p is chosen so that

λ∗ =
λp

1 + λq
,

where q = 1−p. A version A∗t of the contact process with infection rate λp and recovery rate
1 + λq may be constructed using the augmented percolation structure by (1) first creating
a modified percolation structure by changing every infection arrow α such that ξα = 0 to a
recovery mark ∗; then (2) defining A∗t to be the set of all vertices y for which there exists
a directed path from (e, 0) to (y, t) in the modified percolation structure that does not pass
through any recovery marks ∗. This new contact process A∗t , with infection rate λp and
recovery rate 1 + λq, is a time-changed version of a contact process with infection rate λ∗
and recovery rate 1. Consequently, the value of the parameter β(λ∗) satisfies

β(λ∗) = lim
n→∞

(u∗n)1/n

where u∗n is the probability that the contact process A∗t ever infects vertex en at distance n
from e.

Let Gn be the event that the contact process At infects vertex en at some finite time t,
and let G∗

n be the corresponding event for the contact process A∗y (thus, P (Gn) = un and
P (G∗

n) = u∗n). By construction, G∗
n ⊂ Gn, because every infection arrow in the modified

percolation structure occurs also in the unmodified percolation structure, and every recovery
mark ∗ in the unmodified percolation structure is retained in the modified percolation
structure. On the event Gn, there is at least one directed path through the unmodified
percolation structure that leads from (e, 0) to en × (0,∞) (and in fact there may be many
overlapping such paths). Call an infection arrow α in the unmodified percolation structure
essential for the event Gn if (1) event Gn occurs, and (2) changing α from an infection arrow
to a recovery mark would destroy all directed paths from (e, 0) to en × (0,∞). Define Nn

to be the number of essential arrows for the event Gn when Gn occurs, and Gn = 0 when
Gn does not occur. Since modification of any one of the essential arrows would disconnect
(e, 0) from en × (0,∞), in order that event G∗

n occur it is necessary that Nn ≥ 1 and that
ξα = 1 for every essential arrow α. The conditional probability of this, given the realization
of the unmodified percolation structure, is pNn ; hence,

u∗n = P (G∗
n) = EpNn1Gn .
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If it were the case that Nn ≥ Cn on Gn for some C > 0 then it would follow that u∗n ≤ unpCn,
and consequently that β(λ∗) ≤ β(λ)pC . Alternatively, if for some ρ < 1 it were the case
that P (Nn ≤ Cn |Gn) ≤ ρn then it would follow that u∗n ≤ un(pCn + ρn), and again
β(λ∗) < β(λ). Thus, to prove Proposition 9 it suffices to prove the following lemma.
Lemma 3. There exist constants C < ∞ and 0 < ρ < 1 such that for all n sufficiently
large

P (Nn ≤ Cn |Gn) ≤ ρn

Lemma 3 is a statement that refers only to the unmodified percolation structure. The
remaining arguments make no further reference to the augmented or modified percolation
structures. Henceforth, the term directed path will mean a directed path in the (unmodified)
percolation structure that does not pass through any recovery marks ∗.

The proof of Lemma 3 is based on a continuous-time adaptation of (a part of) Men-
shikov’s proof of the uniqueness of the critical point for bond percolation on the integer
lattices Zd, d ≥ 2 (see [12]; also [4], section 3.1 for a detailed exposition). This machin-
ery has also been used in the context of the contact process on Zd by Bezuidenhout &
Grimmett [1]; the argument here is simpler, however. The key tool is a continuous-time
version of the BKF inequality, as stated in section 2.2 of [1], which provides a bound for
the probability of disjoint occurrence of two events. Recall [1] that for any two events F,G,
the event F ◦ G, the event that F and G occur disjointly, is defined to be the set of all
realizations ω of the percolation structure such that there exist disjoint measurable subsets
Γ,∆ of T × [0,∞) such that the cylinders ωΓ and ω∆ are contained in F and G, respectively.
(The cylinder ωΓ is defined to be the set of all realizations of the percolation structure that
agree with ω in Γ.) For any sets A,B of vertices, define H(A,B) to be the event that there
is a directed path from A× {0} to B × (0,∞). Then the event

H(A1, B1) ◦ (H(A2, B2) ∩H(A3, B3)c)

is the event that there exist nonoverlapping directed paths from A1 × {0} to B1 × (0,∞)
and from A2 × {0} to B2 × (0,∞) and no directed path from A3 × {0} to B3 × (0,∞).
Lemma 4. (BKF Inequality)

P (H(A1, B1) ◦ (H(A2, B2) ∩H(A3, B3)c)) ≤ P (H(A1, B1))P (H(A2, B2) ∩H(A3, B3)c)

In addition to the BKF inequality, we will need the following elementary consequence of
Menger’s Lemma (see [2], section ).
Lemma 5. Let H be the event that there is a directed path γ from (x, t) to {z} × (0,∞),
and let K ⊂ H be the event that the only essential arrow for H is the first infection arrow
α leading out of x after time t. Let ν be the occurrence time of α. Then on the event K,
there exists a directed path γ′ from (y, ν) to {z} × (0,∞) that does not intersect α except
possibly at its initial and terminal points.

It is possible that this second path γ′ might be the trivial path that begins and ends at
(y, ν) ; in this case, it must be the case that y = z. In every other case the path γ′ must be
nontrivial, meeting γ only at the point of termination on {z} × (0,∞).

Proof of Lemma 3 If the event Gn occurs then there is at least one essential arrow for
Gn, namely, the first infection arrow emanating from the root line e× (0,∞). The essential
arrows may be ordered in sequence α1, α2, . . . , αNn according to the times ν1, ν2, . . . , νNn of
their occurrence; note that the spatial locations of the essential arrows are not necessarily
ordered in any nice way (for instance, by distance from e), nor are the times νj stopping
times for the contact process.
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For each integer m ≥ 1, define τm to be the time of the mth infection arrow α∗m in the
percolation cluster attached to the root (e, 0) (the set of all (x, t) connected to (e, 0) by a
directed path), or τm = ∞ if there are fewer than m such arrows. Observe that each τm is a
stopping time for the contact process. Moreover, the times νj of the essential arrows must
occur in the (increasing) sequence τ1, τ2, . . .. Suppose that τm < ∞, and let um and vm

be the tail and head, respectively, of the infection arrow α∗m. Note that there is a directed
path from (e, 0) to (um, τm), by definition of τm, and that therefore there is also a directed
path to (vm, τm). In order that this infection arrow be an essential arrow for Gn (i.e., that
α∗m occurs in the sequence α1, α2, . . . , αNn), it is necessary and sufficient that

(E1) there is a directed path to {en} × (0,∞) from (um, τm) or from (vm, τm); and
(E2) there is no directed path to {en} × (0,∞) from (Aτm − {um, vm})× {τm}.

Furthermore, by Lemma 5, given that α∗m is essential for Gn, in order that the next essential
arrow has tail w it is necessary that

(E3) there is a directed path from {um, vm}×{τm} to {w}×(0,∞) that does not intersect
the directed path guaranteed by (E1), except possibly at the endpoints;

and in order that α∗m be the last essential arrow for Gn (i.e., that α∗m = αNn) it is necessary
that

(E3′) there is a directed path from {um, vm}×{τm} to {en}×(0,∞) that does not intersect
the directed path guaranteed by (E1), except possibly at the endpoints.

Assume that the vertices e1, e2, . . . lie in succession along a geodesic ray γ∗ beginning at
e0 = e, so that d(ej , ej+1) = 1 for every j ≥ 0. Let Fm be the event that the arrow α∗m is
essential for Gn (i.e., the event that (E1) and (E2) are true), and for k ≥ 1 let Dm,k be the
event that each of the geodesic segments from um and vm to the tail w of the next essential
arrow (or en if there is no next essential arrow) intersects γ∗ in a segment of length ≥ k.
Then by (E3)-(E3′), on the event Fm ∩Dm,k there is a directed path from {um, vm}×{τm}
that travels a distance ≥ k on γ∗ and does not intersect the directed path guaranteed by
(E1). Consequently, by Lemma 4 and the Strong Markov Property, if Fm denotes the
σ−algebra generated by the history of the contact process up to time τm then

P (Dm,k | Fm ∧ Fm)1Fm ≤ 2uk ≤ 2βk.

(Compare with Lemma 3.12 of [4].) In words: the conditional distribution of the distance
to the next essential arrow is stochastically dominated by a geometric distribution. It
follows that the sum of the distances between the first m essential arrows is stochastically
dominated by the sum of m i.i.d. random variables with geometrically decaying tail, and
Lemma 3 clearly follows.
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