STAT 24400 Lecture 18 P-values Tests & Confidence Intervals for Normal Distributions

Yibi Huang Department of Statistics University of Chicago

The P-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is at least as strong as our observed data, assuming the H_0 is true.

The P-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is at least as strong as our observed data, assuming the H_0 is true.

The definition is mouthful. Here are some key points

▶ The P-value is a probability, and thus it's between 0 and 1

The P-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is at least as strong as our observed data, assuming the H_0 is true.

The definition is mouthful. Here are some key points

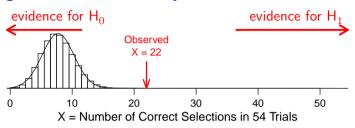
- The P-value is a probability, and thus it's between 0 and 1
- \triangleright This probability is calculated assuming the H_0 is true.

The P-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is at least as strong as our observed data, assuming the H_0 is true.

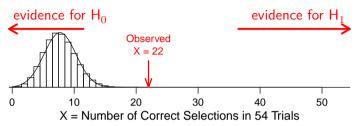
The definition is mouthful. Here are some key points

- The P-value is a probability, and thus it's between 0 and 1
- ightharpoonup This probability is calculated assuming the H_0 is true.
- To determine the P-value, we must first decide which values of the test statistic are the evidence for H_1 to be stronger than or as as the value obtained from our sample

P-Value — Dogs-Smell-Cancer Study



P-Value — Dogs-Smell-Cancer Study



- ightharpoonup Observed X=22
- $lackbox{ Evidence for H}_1$ is stronger than or as strong as the observed X=22 if $X\geq 22$
- ▶ Under H_0 , $X \sim Bin(n = 54, p = 1/7)$

$$P\text{-value} = \mathrm{P}(X \geq 22 \mid H_0) = \sum_{k=22}^{54} {54 \choose k} \left(\frac{1}{7}\right)^k \left(\frac{6}{7}\right)^{54-k} \approx 1.86 \times 10^{-6}$$

Note P-value is NOT $P(X=22 \mid H_0)$

Test Procedure Based on the P-value

As an alternative to test procedures based on rejection regions, one can use test procedures based on P-values

- 1. Select a significance level $\alpha =$ the desired P(Type I error).
- 2. Then
 - lacksquare reject $oldsymbol{\mathsf{H}}_0$ if the P-value $\leq \alpha$
 - lacksquare do not reject ${
 m H}_0$ if the P-value > lpha

Test Procedure Based on the P-value

As an alternative to test procedures based on rejection regions, one can use test procedures based on P-values

- 1. Select a significance level $\alpha =$ the desired P(Type I error).
- 2. Then
 - lacksquare reject $oldsymbol{\mathsf{H}}_0$ if the P-value $\leq \alpha$
 - lacksquare do not reject ${
 m H}_0$ if the P-value > lpha

Remark: Hypothesis tests using a "Rejection Region" and those using the "P-value" are equivalent. In fact,

lacktriangle the test statistic is in the rejection region with significance level lpha if and only if the P-value < the significance level lpha

Test Procedure Based on the *P*-value

As an alternative to test procedures based on rejection regions, one can use test procedures based on P-values

- 1. Select a significance level $\alpha =$ the desired P(Type I error).
- 2. Then
 - lacksquare reject ${
 m H}_0$ if the P-value $\leq \alpha$
 - lacksquare do not reject ${
 m H}_0$ if the P-value > lpha

Remark: Hypothesis tests using a "Rejection Region" and those using the "P-value" are equivalent. In fact,

 \blacktriangleright the test statistic is in the rejection region with significance level α if and only if the P-value< the significance level α

In the rest of L18, we will outline the test procedures for 6 major tests about the normal distribution, using both the critical-value and the P-value approach.

Six Tests for Normal Distributions

One sample: $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

- 1. One sample test for mean, with known σ^2 H₀: $\mu=\mu_0$ v.s. H₁: $\mu\neq\mu_0$ (or $\mu>\mu_0$, $\mu<\mu_0$)
- 2. One sample test for mean, with unknown σ^2 H_0 : $\mu = \mu_0$ v.s. H_1 : $\mu \neq \mu_0$ (or $\mu > \mu_0$, $\mu < \mu_0$)
- 3. One sample test for variance, with unknown μ H_0 : $\sigma^2 = \sigma_0^2$ v.s. H_1 : $\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$, $\sigma^2 < \sigma_0^2$)

Two indep samples: $X_{11},\dots,X_{1n_1}\stackrel{\text{iid}}{\sim} N(\mu_1,\sigma_1^2)$, and $X_{21},\dots,X_{2n_2}\stackrel{\text{iid}}{\sim} N(\mu_2,\sigma_2^2)$

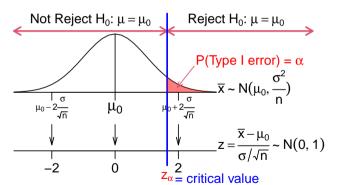
- 4. Two sample tests for mean, assuming $\sigma_1^2 = \sigma_2^2$ H_0 : $\mu_1 = \mu_2$ v.s. H_1 : $\mu_1 \neq \mu_2$ (or $\mu_1 > \mu_2$, $\mu_1 < \mu_2$)
 5. Two sample tests for mean, NOT assuming $\sigma_1^2 = \sigma_2^2$ H_0 : $\mu_1 = \mu_2$ v.s. H_1 : $\mu_1 \neq \mu_2$ (or $\mu_1 > \mu_2$, $\mu_1 < \mu_2$)
- 6. Two sample tests for variance, μ_1 and μ_2 unknown H_0 : $\sigma_1^2 = \sigma_2^2$ v.s. H_1 : $\sigma_1^2 \neq \sigma_2^2$ (or $\sigma_1^2 > \sigma_2^2$, $\sigma_1^2 < \sigma_2^2$)

One Sample Tests for Mean, Known σ^2

Upper One-Sided One Sample Tests for Mean, Known σ^2

The test statistic for testing H_0 : $\mu = \mu_0$ against H_1 : $\mu > \mu_0$ is

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1), \quad \text{under } \mathsf{H}_0: \ \mu = \mu_0.$$



To control P(Type I error) = $P(\text{rejecting } H_0 \mid H_0 \text{ is true})$ at the significance level α , we reject H_0 when

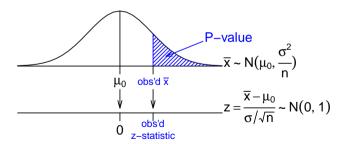
8 / 40

P-value for Upper One-Sided Test

Let \overline{x} be the observed value of \overline{X} . The P-value for testing H_0 : $\mu=\mu_0$ against H_1 : $\mu>\mu_0$ is

$$\mathrm{P}(Z>z) = 1 - \Phi(z), \quad \text{where } z = \mathsf{obs'd} \ \mathsf{z\text{-stat}} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

or the blue shaded region below.

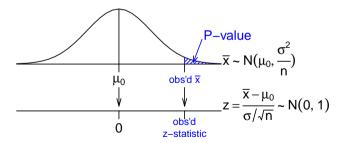


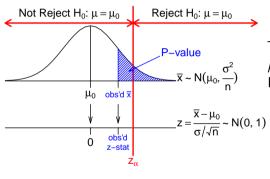
P-value for Upper One-Sided Test

Let \overline{x} be the observed value of \overline{X} . The P-value for testing H_0 : $\mu=\mu_0$ against H_1 : $\mu>\mu_0$ is

$$\mathrm{P}(Z>z) = 1 - \Phi(z), \quad \text{where } z = \mathsf{obs'd} \ \mathsf{z\text{-stat}} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

or the blue shaded region below.

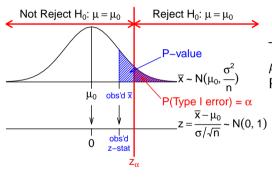




Observed that

if z-statistic $< z_{\alpha}$ then P-value $> \alpha$

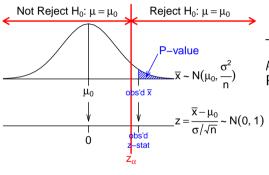
- ► Critical value approach: compute the $z ext{-stat} = rac{ar{x} \mu_0}{\sigma/\sqrt{n}}$ and the critical value z_{lpha} , and reject H_0 if the $z ext{-stat} > z_{lpha}$.
 - P-value approach: compute the P-value from the z-stat and reject H_0 when P-value $<\alpha$



Observed that

if z-statistic $< z_{\alpha}$ then P-value $> \alpha$

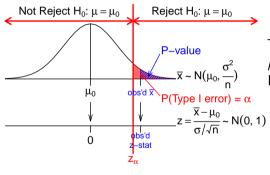
- Critical value approach: compute the z-stat $= \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$ and the critical value z_{α} , and reject H_0 if the z-stat $> z_{\alpha}$.
- P-value approach: compute the P-value from the z-stat and reject H_0 when P-value $< \alpha$



Observed that

 $\begin{array}{lll} \text{if z-statistic} < z_{\alpha} & \text{then} & P\text{-value} > \alpha \\ \text{if z-statistic} > z_{\alpha} & \text{then} & P\text{-value} < \alpha \end{array}$

- Critical value approach: compute the z-stat $= \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$ and the critical value z_{α} , and reject H_0 if the z-stat $> z_{\alpha}$.
 - P-value approach: compute the P-value from the z-stat and reject H_0 when P-value $< \alpha$



Observed that

 $\begin{array}{lll} \text{if z-statistic} < z_{\alpha} & \text{then} & P\text{-value} > \alpha \\ \text{if z-statistic} > z_{\alpha} & \text{then} & P\text{-value} < \alpha \end{array}$

- Critical value approach: compute the z-stat $= \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$ and the critical value z_{α} , and reject H_0 if the z-stat $> z_{\alpha}$.
- P-value approach: compute the P-value from the z-stat and reject H_0 when P-value $< \alpha$

P-value is the Smallest Significance Level to Reject H_0

The P-value is the smallest significance level α at which the H_0 can be rejected.

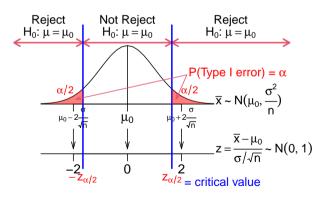
e.g., the P-value for the dog study is 1.86×10^{-6} . The H $_0$ won't be rejected unless the significance level is as small as 1.86×10^{-6}

Because of this, the P-value is alternatively referred to as the *observed significance level* for the data.

Two-Sided One Sample Tests for Mean, Known σ^2 ,

For a two-sided test of H_0 : $\mu=\mu_0$ against H_1 : $\mu\neq\mu_0$, the test statistic remains to be

$$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1), \quad \text{under $\mathsf{H}_0:$} \ \mu = \mu_0.$$



To control P(Type I error) at the significance level $\alpha,$ reject \mathbf{H}_0 when

$$|z\text{-stat}| = \left|\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2},$$

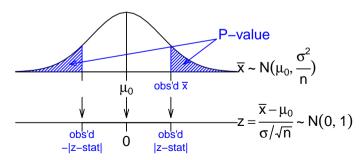
where
$$\Phi(z_{\alpha/2})=1-\frac{\alpha}{2}.$$

P-values for Two-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ against **two-sided alternative** $|H_1$: $\mu \neq \mu_0$, the P-value is the two-tail probability

$$\mathrm{P}(|Z|>|z|)=2(1-\Phi(|z|)), \quad \text{where } z=\text{obs'd z-stat}=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$$

(the blue shaded region below).

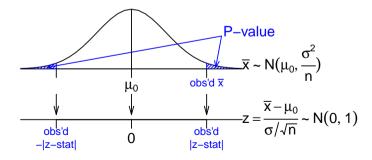


P-values for Two-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ against **two-sided alternative** $|H_1$: $\mu \neq \mu_0$, the P-value is the two-tail probability

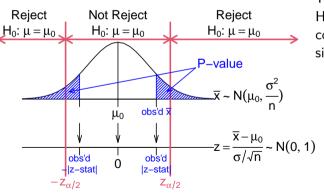
$$\mathrm{P}(|Z|>|z|)=2(1-\Phi(|z|)), \quad \text{where } z=\text{obs'd z-stat}=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$$

(the blue shaded region below).



Observed

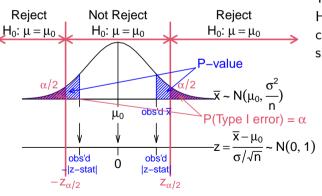
if
$$|z\operatorname{-stat}| < z_{\alpha/2}$$
 then 2-sided $P\operatorname{-value} > \alpha$



- ► Critical value approach: reject H_0 if $|z ext{-stat}| = \left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{2}}\right| > z_{\alpha/2}$
- P-value approach: compute the 2-sided P-value from the z-statistic and reject H_0 when the P-value $< \alpha$

Observed

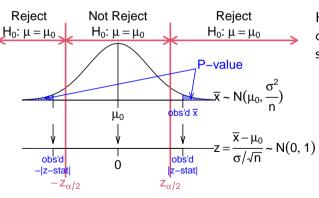
if
$$|z\operatorname{-stat}| < z_{\alpha/2}$$
 then 2-sided $P\operatorname{-value} > \alpha$



- Critical value approach: reject H_0 if $|z\text{-stat}| = \left|\frac{\bar{x} \mu_0}{\sigma(\sqrt{x})}\right| > z_{\alpha/2}$
 - P-value approach: compute the 2-sided P-value from the z-statistic and reject H_0 when the P-value $< \alpha$

Observed

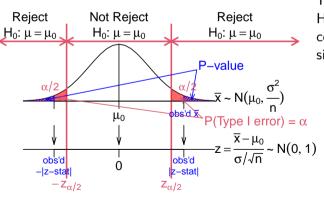
$$\begin{array}{lll} \text{if } |z\text{-stat}| < z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} > \alpha \\ \text{if } |z\text{-stat}| > z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} < \alpha \end{array}$$



- Critical value approach: reject H_0 if $|z\text{-stat}| = \left|\frac{\bar{x} \mu_0}{\sigma(\sqrt{2})}\right| > z_{\alpha/2}$
- P-value approach: compute the 2-sided P-value from the z-statistic and reject H_0 when the P-value $< \alpha$

Observed

$$\begin{array}{lll} \text{if } |z\text{-stat}| < z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} > \alpha \\ \text{if } |z\text{-stat}| > z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} < \alpha \end{array}$$



- Critical value approach: reject H_0 if $|z\text{-stat}| = \left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2}$
- P-value approach: compute the 2-sided P-value from the z-statistic and reject H_0 when the P-value $< \alpha$

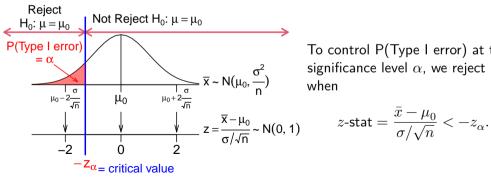
Three Types of Alternative Hypotheses:

- ▶ Upper one-sided: H_1 : $\mu > \mu_0$
- Lower one-sided: H_1 : $\mu < \mu_0$
- ► Two-sided: H_1 : $\mu \neq \mu_0$

Lower One-Sided Tests

To test H_0 : $\mu = \mu_0$ against the **lower one-sided** alternative H_1 : $\mu < \mu_0$, the test statistic remains to be

$$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1), \quad \text{under $\mathsf{H}_0:$} \ \mu = \mu_0.$$



To control P(Type I error) at the significance level α , we reject H_0 when

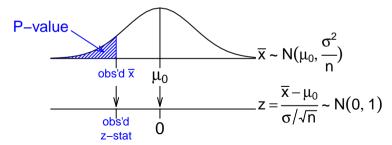
$$z ext{-stat} = rac{ar{x} - \mu_0}{\sigma/\sqrt{n}} < -z_lpha$$

P-values for Lower One-Sided Hypothesis Tests

To test H_0 : $\mu=\mu_0$ v.s. lower one-sided alternative H_1 : $\mu<\mu_0$, the P-value is the lower tail probability

$$\mathrm{P}(Z < z) = \Phi(z), \quad \text{where } z = \mathsf{obs'd} \ \mathsf{z\text{-stat}} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

(blue shaded region below).

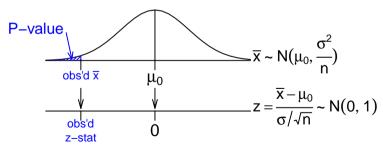


P-values for Lower One-Sided Hypothesis Tests

To test H_0 : $\mu=\mu_0$ v.s. lower one-sided alternative H_1 : $\mu<\mu_0$, the P-value is the lower tail probability

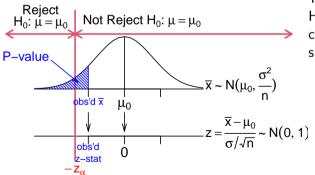
$$\mathrm{P}(Z < z) = \Phi(z), \quad \text{where } z = \mathsf{obs'd} \ \mathsf{z\text{-stat}} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

(blue shaded region below).



Observed that

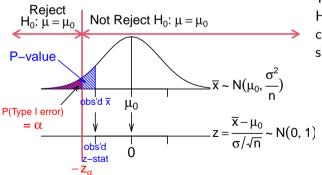
if z-statistic
$$>-z_{\alpha}$$
 then P -value $>\alpha$



- Critical value approach: reject H_0 if z-stat $=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}<-z_{\alpha}$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H_0 when the P-value $< \alpha$

Observed that

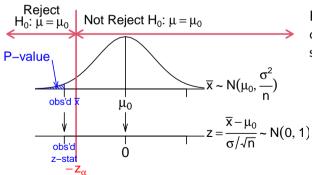
if z-statistic
$$>-z_{\alpha}$$
 then P -value $>\alpha$



- ► Critical value approach: reject H_0 if z-stat $=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}<-z_\alpha$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H_0 when the P-value $< \alpha$

Observed that

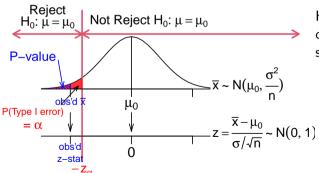
$$\begin{array}{ll} \text{if z-statistic} > -z_{\alpha} & \text{then} & P\text{-value} > \alpha \\ \text{if z-statistic} < -z_{\alpha} & \text{then} & P\text{-value} < \alpha \end{array}$$



- ► Critical value approach: reject H_0 if z-stat $=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}<-z_\alpha$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H_0 when the P-value $< \alpha$

Observed that

$$\begin{array}{ll} \text{if z-statistic} > -z_{\alpha} & \text{then} & P\text{-value} > \alpha \\ \text{if z-statistic} < -z_{\alpha} & \text{then} & P\text{-value} < \alpha \end{array}$$



- Critical value approach: reject H_0 if z-stat $=\frac{\bar{x}-\mu_0}{\sigma(\sqrt{n})}<-z_{\alpha}$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H_0 when the P-value $< \alpha$

P-value Approach or Critical Value Approach?

We introduced both the critical value approach and the P-value approach for hypothesis testing. They are equivalent but we generally $recommend\ the\ P$ -value approach, for two reasons.

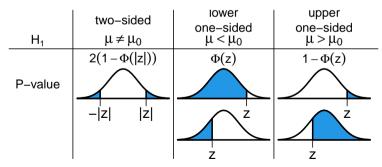
- lacktriangle The rejection rule is simpler, just compare the P-value with the significance level lpha
- More importantly, we can simply report the P-value and let people choose their own significance level $\alpha=P({\sf Type\ I\ error})$ and decide whether to reject or not to reject the ${\sf H}_0$

Recap: 1- & 2-Sided Rejection Regions & P-values

For
$${\rm H_0}$$
: $\mu=\mu_0$, z -stat $=rac{ar x-\mu_0}{\sigma/\sqrt n}\sim N(0,1),$ reject ${\rm H_0}$ at level α if

- ightharpoonup z-stat $> z_{\alpha}$ for H_1 : $\mu > \mu_0$
- ightharpoonup z-stat $<-z_{\alpha}$ for H_1 : $\mu<\mu_0$
- $ightharpoonup |z ext{-stat}|>z_{lpha/2} ext{ for } \mathsf{H}_1\colon \mu
 eq \mu_0$

The P-values are as follows, where the bell-shape curve is the standard normal curve



Example w/ Data

Data: $X_1,\dots,X_{100}\stackrel{\mathrm{iid}}{\sim} N(\mu,\sigma^2=6^2)$, w/ sample mean $\overline{x}=9.5$.

For H₀:
$$\mu = 8$$
,
$$z\text{-stat} = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{9.5 - 8}{6 / \sqrt{100}} = \frac{1.5}{0.6} = 2.5,$$

$$P\text{-value} = \begin{cases} 1 - \Phi(2.5) \approx 0.0062 & \text{if H}_1\colon \mu > 8 \\ 2(1 - \Phi(2.5)) \approx 0.0124 & \text{if H}_1\colon \mu \neq 8 \\ \Phi(2.5) \approx 1 - 0.0062 = 0.9938 & \text{if H}_1\colon \mu < 8 \end{cases}$$

$$\frac{\text{H}_1}{\text{P-value}} \begin{array}{|c|c|c|c|c|c|c|} \mu > 8 & \mu < 8 & \mu < 8 \\ \hline 0.0062 & 2 \times 0.0062 & 1 - 0.0062 \\ \hline \text{P-value} \end{array}$$

For H_1 : $\mu > 8$ or $\mu \neq 8$, we reject H_0 since P-value < 5%.

For H_1 : $\mu < 8$, no reason to reject H_0 : $\mu = 8$ since H_1 : $\mu < 8$ is less plausible than

21 / 40

-2.5

One Sample Tests for Mean, Unknown σ^2

One Sample Tests for Mean (Unknown σ^2) — Rejection Regions

Data: $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

The test statistic for testing H_0 : $\mu = \mu_0$ with unknown σ^2 is

$$T=rac{\overline{X}-\mu_0}{\sqrt{S^2/n}}, \quad ext{where} \quad S^2=rac{\sum_{i=1}^n(X_i-\overline{X})^2}{n-1}.$$

Under H_0 : $\mu=\mu_0$, $T\sim t_{n-1}$, we reject H_0 at level α if

- \blacktriangleright t-stat $> t_{n-1,\alpha}$ for H_1 : $\mu > \mu_0$
- \blacktriangleright t-stat $<-t_{n-1,\alpha}$ for H_1 : $\mu<\mu_0$
- |t-stat $| > t_{n-1,\alpha/2}$ for H_1 : $\mu \neq \mu_0$

where t-stat is the observed value of T

$$t$$
-stat $=\frac{\overline{x}-\mu_0}{\sqrt{s^2/n}}$, in which $s^2=\frac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1}$.

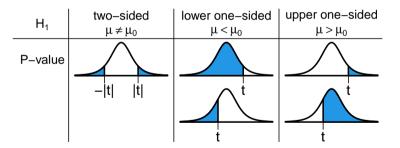
and $t_{n-1,\alpha}$ satisfies

$$\mathrm{P}(T>t_{n-1,\alpha})=\alpha\quad\text{for }T\sim t_{n-1}.$$

One Sample Tests for Mean (Unknown σ^2) — P-values

The P-values for testing H_0 : $\mu = \mu_0$ with unknown σ^2 is

$$P\text{-value} = \begin{cases} \mathbf{P}(T > t\text{-stat}) & \text{if } \mathbf{H}_1 \text{: } \mu > \mu_0 \\ \mathbf{P}(|T| > |t\text{-stat}|) = 2\mathbf{P}(T > |t\text{-stat}|) & \text{if } \mathbf{H}_1 \text{: } \mu \neq \mu_0 \\ \mathbf{P}(T < t\text{-stat}) & \text{if } \mathbf{H}_1 \text{: } \mu < \mu_0 \end{cases}$$



The bell-shape curve above is the t-curve with df = n - 1, not the normal curve. We reject H_0 when P-value $< \alpha$.

One Sample Test for Variance

One Sample Test for Variance — Test Statistic

 $\mathsf{Data} \colon X_1, \dots, X_n \overset{\mathsf{iid}}{\sim} N(\mu, \sigma^2)$

The test statistic for testing ${\rm H}_0$: $\sigma^2=\sigma_0^2$ with unknown μ is

$$V = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma_0^2}.$$

- ▶ What's the distribution of V under H_0 : $\sigma^2 = \sigma_0^2$?
- $V \geq 0$
- ▶ Large V far above 1 is evidence for H_1 : $\sigma^2 > \sigma_0^2$
- $lackbox{ }V$ far below 1 is evidence for ${
 m H_1:}\ \sigma^2<\sigma_0^2$
- ightharpoonup V being far from 1 is evidence for H_1 : $\sigma^2
 eq \sigma_0^2$

One Sample Test for Variance — Test Statistic

The test statistic for testing ${\rm H}_0\colon\thinspace \sigma^2=\sigma_0^2$ with unknown μ is

$$V = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma_0^2}.$$

- What's the distribution of V under H_0 : $\sigma^2=\sigma_0^2$? $V\sim\chi_{n-1}^2$, a **chi-squared** distribution w/ n-1 degrees of freedom
- $V \geq 0$
- ▶ Large V far above 1 is evidence for H_1 : $\sigma^2 > \sigma_0^2$
- ightharpoonup V far below 1 is evidence for $m H_1$: $\sigma^2 < \sigma_0^2$
- ▶ V being far from 1 is evidence for H_1 : $\sigma^2 \neq \sigma_0^2$

One Sample Test of Equal Variance — Rejection Region

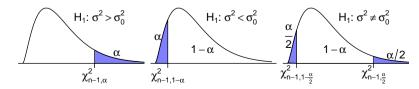
We reject H_0 at level α if

- $\begin{array}{l} \blacktriangleright \ v\text{-stat} > \chi^2_{n-1,\alpha} \ \text{for} \ \mathsf{H}_1 \text{:} \ \sigma^2 > \sigma^2_0 \\ \blacktriangleright \ v\text{-stat} < \chi^2_{n-1,1-\alpha} \ \text{for} \ \mathsf{H}_1 \text{:} \ \sigma^2 < \sigma^2_0 \\ \blacktriangleright \ v\text{-stat} > \chi^2_{n-1,\alpha/2} \ \text{or} \ v\text{-stat} < \chi^2_{n-1,1-\alpha/2} \ \text{or} \ \text{for} \ \mathsf{H}_1 \text{:} \ \sigma^2 \neq \sigma^2_0 \end{array}$

where v-stat is the observed value of V

$$v\text{-stat} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{\sigma_0^2}.$$

and $\chi^2_{n-1,\alpha}$ satisfies $P(V > \chi^2_{n-1,\alpha}) = \alpha$ for $V \sim \chi^2_{n-1}$.

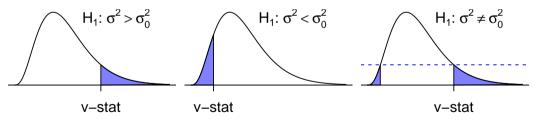


One Sample Test for Variance — P-value

The P-values for testing H_0 : $\sigma^2=\sigma_0^2$ with unknown μ is

$$P\text{-value} = \begin{cases} \mathrm{P}(V > v\text{-stat}) & \text{if } \mathsf{H}_1 \text{: } \sigma^2 > \sigma_0^2 \\ \mathrm{P}(V < v\text{-stat}) & \text{if } \mathsf{H}_1 \text{: } \sigma^2 < \sigma_0^2 \end{cases}$$

What's the two-sided P-value?



Two Sample Tests for Mean (Equal Variance)

Two Sample Test for Mean (Equal Variance) — Test Statistic

Consider two normal random samples of size n_1 and n_2 respectively

$$\left. \begin{array}{ll} X_{11}, X_{12}, \dots, X_{1n_1} & \stackrel{\mathrm{iid}}{\sim} N(\mu_1, \sigma^2) \\ X_{21}, X_{22}, \dots \dots, X_{2n_2} & \stackrel{\mathrm{iid}}{\sim} N(\mu_2, \sigma^2) \end{array} \right\} \ \to \mathrm{indep., \ same} \ \sigma^2.$$

For testing H_0 : $\mu_1 = \mu_2$, the two-sample T-statistic is

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})S^2}}, \text{ where } S^2 = \frac{\sum_{i=1}^{n_1} (X_{1i} - \overline{X}_1)^2 + \sum_{j=1}^{n_2} (X_{2j} - \overline{X}_2)^2}{n_1 + n_2 - 2}$$

Under
$$H_0$$
: $\mu_1=\mu_2$, $T\sim t_{n_1+n_2-2}$.

Two Sample Test for Mean (Equal Variance) — Rejection Region

We reject H_0 : $\mu_1 = \mu_2$ at level α if

- ► t-stat $> t_{n_1+n_2-2,\alpha}$ for H_1 : $\mu_1 > \mu_2$
- t-stat $< -t_{n_1+n_2-2,\alpha}$ for H_1 : $\mu_1 < \mu_2$
- \blacktriangleright $|t\text{-stat}| > t_{n_1+n_2-2,\alpha/2}$ for H_1 : $\mu_1 \neq \mu_2$

where t-stat is the observed value of T

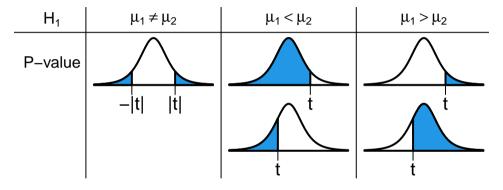
$$t\text{-stat} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})s^2}}, \text{ in which } s^2 = \frac{\sum_{i=1}^{n_1} (x_{1i} - \overline{x}_1)^2 + \sum_{j=1}^{n_2} (x_{2j} - \overline{x}_2)^2}{n_1 + n_2 - 2}.$$

and $t_{n_1+n_2-2,\alpha}$ satisfies

$$P(T > t_{n_1 + n_2 - 2 \cdot \alpha}) = \alpha$$
 for $T \sim t_{n_1 + n_2 - 2}$.

In L17, we show that a two-sided two-sample test for mean is equivalent to the GLR test.

Two Sample Test for Mean (Equal Variance) — P-Value



The bell curve above is the t-curve with n_1+n_2-2 degrees of freedom.

Two Sample Tests for Mean (Unequal Variance)

Two Sample Test for Mean (Unequal Variance)

Without the equal variance assumption, by the indep of the two samples, we know

$$\operatorname{Var}(\overline{X}_1 - \overline{X}_2) = \operatorname{Var}(\overline{X}_1) + \operatorname{Var}(\overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

The two-sample T-statistic without the equal variance assumption is

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \quad \text{where} \quad S_1^2 \quad = \frac{\sum_{i=1}^{n_1} (X_{1i} - \overline{X}_1)^2}{n_1 - 1} \\ S_2^2 \quad = \frac{\sum_{j=1}^{n_2} (X_{2j} - \overline{X}_2)^2}{n_2 - 1}$$

- Unfortunately, the T-statistic above does NOT have a t-distribution, even under H_0 : $\mu_1 \mu_2$
- Fortunately, it can be approximated by a *t*-distribution with a certain degrees of freedom.

See the next slide for the approximation

Approximate Distribution of the Two-Sample *t*-Statistic

Under H_0 : $\mu_1-\mu_2$, the two-sample t-statistic has an approximate t_k distribution, with the degrees of freedom k as follows

$$k = \frac{(w_1 + w_2)^2}{w_1^2/(n_1 - 1) + w_2^2/(n_2 - 1)}, \quad \text{where} \quad \begin{aligned} w_1 &= s_1^2/n_1, \\ w_2 &= s_2^2/n_2. \end{aligned}$$

The rejection regions and the calculation of the P-value are similar to the equal variance case, except for the degrees of freedom and thus is not repeated here.

Two Sample Tests of Equal Variance

Two Sample Tests of Equal Variance

Consider two normal random samples of size n_1 and n_2 respectively

$$\left. \begin{array}{ccc} X_{11}, X_{12}, \dots, X_{1n_1} & \overset{\text{iid}}{\sim} N(\mu_1, \sigma_1^2) \\ X_{21}, X_{22}, \dots \dots, X_{2n_2} & \overset{\text{iid}}{\sim} N(\mu_2, \sigma_2^2) \end{array} \right\} \ \to \text{indep}.$$

For testing H_0 : $\sigma_1^2 = \sigma_2^2$, the test-statistic is

$$F = \frac{S_1^2}{S_2^2} \quad \text{where } S_k^2 = \frac{\sum_{i=1}^{n_k} (X_{ki} - \overline{X}_k)^2}{n_k - 1}, \ k = 1, 2.$$

- What's the distribution of F under H_0 : $\sigma_1^2 = \sigma_2^2$? $(n_1 1)S_1^2/\sigma_1^2 \sim \chi_{n_1 1}^2 \text{ and } (n_2 1)S_2^2/\sigma_2^2 \sim \chi_{n_2 1}^2 \text{ are indep}$
- $(n_1-1)S_1^2/\sigma_1^2 \sim \chi_{n_1-1}^2 \text{ and } (n_2-1)S_2^2/\sigma_2^2 \sim \chi_{n_2-1}^2 \text{ are indep}$ So $F \sim F_{n_1-1,n_2-1}$ has an F-distribution w/ n_1-1 and n_2-1 degrees of freedom
- $\text{under H}_0 \colon \sigma_1^2 = \sigma_2^2$
- F > 0
- F far above 1 is evidence for H_1 : $\sigma_1^2 > \sigma_2^2$
- ▶ F far below 1 is evidence for H_1 : $\sigma_1^2 < \sigma_2^2$ ▶ F being far away from 1 is evidence for H_1 : $\sigma^2 \neq \sigma_0^2$

Two-Sample Test for Variance — Rejection Region

We reject H_0 at level α if

$$\qquad \qquad f\text{-stat} > F_{n_1-1,n_2-2,\alpha} \text{ for } \mathsf{H}_1 \colon \ \sigma_1^2 > \sigma_2^2$$

$$\qquad \qquad \textbf{f-stat} < F_{n_1-1,n_2-2,1-\alpha} \text{ for } \mathbf{H}_1 \text{: } \sigma_1^2 < \sigma_2^2$$

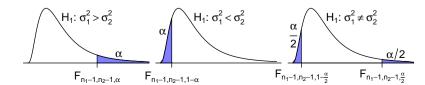
$$f\text{-stat} > F_{n_1-1,n_2-2,\alpha/2} \text{ or } f\text{-stat} < F_{n_1-1,n_2-1,1-\alpha/2} \text{ for H}_1: \ \sigma_1^2 \neq \sigma_2^2$$

where f-stat is the observed value of V

$$f$$
-stat $=$ $\frac{s_1^2}{s_2^2}$.

and $F_{n_1-1,n_2-1,\alpha}$ satisfies

$$\mathrm{P}(F>F_{n_1-1,n_2-1,\alpha})=\alpha\quad\text{for }F\sim F_{n_1-1,n_2-1}.$$

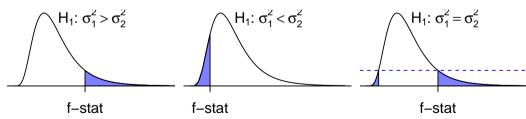


Two-Sample Test for Equal Variance — P-value

The P-values for testing H_0 : $\sigma_1^2 = \sigma_2^2$ with unknown μ is

$$P\text{-value} = \begin{cases} \mathrm{P}(F > f\text{-stat}) & \text{if } \mathsf{H}_1 \text{: } \sigma_1^2 > \sigma_2^2 \\ \mathrm{P}(F < f\text{-stat}) & \text{if } \mathsf{H}_1 \text{: } \sigma_1^2 < \sigma_2^2 \end{cases}$$

What's the two-sided P-value?



Robustness to Non-Normality

If the data are NOT normally distributed,

- ▶ the 4 tests about the mean are approx. valid if the sample size is large by CLT.
- ▶ the 2 tests about the variance are no longer valid