STAT 24400 Lecture 14 Section 8.3 Parameter Estimation Section 8.4 The Method of Moments Section 8.5 The Method of Maximum Likelihood

Yibi Huang Department of Statistics University of Chicago

Section 8.3 Parameter Estimation

Parameter Estimation

Suppose that we observe data X_1, X_2, \ldots, X_n generated from a known distribution with unknown parameter(s), e.g., the data is from

- $ightharpoonup N(\mu, \sigma^2)$, with μ unknown (& σ^2 known)
- $ightharpoonup N(\mu,\sigma^2)$, with $\mu~\&~\sigma^2$ unknown
- ightharpoonup Exponential(λ), with λ unknown
- ightharpoonup Binomial(n,p), with n known and p unknown

How can we estimate the unknown parameter(s)? How can we perform inference on the unknown parameter(s)?

General Notation

- $X_1, \dots, X_n = \text{data drawn i.i.d. from the distribution}$
- $\triangleright \theta =$ the unknown parameter(s)
- lacktriangledown θ lies in $\Theta=$ subspace of $\mathbb R$ (or $\mathbb R^2$ if two parameters, etc)

General Notation

- $X_1, \dots, X_n = \text{data drawn i.i.d. from the distribution}$
- ightharpoonup heta = the unknown parameter(s)
- lacktriangledown heta lies in $\Theta=$ subspace of $\mathbb R$ (or $\mathbb R^2$ if two parameters, etc)
- ▶ We will write $f(x \mid \theta)$ for the PDF or PMF of the distribution, e.g.,
 - Exponential $(\lambda) \rightsquigarrow \mathsf{PDF} \ f(x \mid \lambda) = \lambda e^{-\lambda x}$

Parameter Estimation (Point Estimate)

Given data X_1, \dots, X_n i.i.d. $\sim f(x \mid \theta)$, would like to estimate the unknown θ

The *point estimate* or *estimator* of a parameter θ , is a function

$$\hat{\theta} = g(X_1, \dots, X_n)$$

computed from the observed data $\{X_1,\dots,X_n\}$ that is a sensible guess for the unknown θ .

Note: any estimator $\hat{\theta}$ must be a function of X_1,\dots,X_n only it cannot involve any unknown parameter, e.g.,

$$\frac{\sum_{i=1}^n (X_i - \mu)^2}{n}$$

is not a estimator since it involves the unknown μ .

Examples of Point Estimates

Example 1: If X_1,\dots,X_n are i.i.d. $N(\mu,\sigma^2)$, the point estimate for the population mean μ can be

- \blacktriangleright the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$
- \blacktriangleright the median of X_1,\ldots,X_n
- lacktriangle the average of X_1,\dots,X_n after excluding the minimum & maximum

The point estimate for the population variance σ^2 can be

- lacktriangle an alternative estimator would result from using divisor n instead of n-1

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}{n}$$

Examples of Point Estimates

Example 2: If $X \sim Bin(n, p)$ is Binomial, the point estimate for the success probability p can be

- ▶ the sample proportion $\hat{p} = \frac{X}{n}$ ▶ Wilson's plus-four estimate $\tilde{p} = \frac{X+2}{n+4}$
 - adding two successes and two failures to the sample and then calculate the sample proportion of successes

Mean Squared Error

With many possible point estimates $\hat{\theta}$'s for a parameter θ , how to choose a good one among them?

A population criterion is to compare their Mean Squared Error (MSE), defined as

Mean Squared Error (MSE)
$$= \mathrm{E}[(\hat{ heta} - heta)^2]$$

$MSE = (Bias)^2 + Variance$

Recall the shortcut formula for the variance of any variable Y

$$Var(Y) = E(Y^2) - (E(Y))^2,$$

Rearranging the terms, we get

$$\begin{split} \mathrm{E}(Y^2) &= (\mathrm{E}(Y))^2 + \mathrm{Var}(Y). \end{split}$$
 Plugging in $Y = \hat{\theta} - \theta$, then $\mathrm{E}(\hat{\theta} - \theta) = \mathrm{E}(\hat{\theta}) - \theta$, we get
$$\mathrm{E}[(\hat{\theta} - \theta)^2] \quad = \quad [\mathrm{E}(\hat{\theta}) - \theta]^2 \quad + \quad \mathrm{Var}(\hat{\theta} - \theta) \end{split}$$

where the *bias* of an point estimate $\hat{\theta}$ for θ is defined to be the difference between the expected value of the estimate and the true value of the parameter

$$\mathsf{Bias}(\hat{\theta}) = \mathrm{E}(\hat{\theta}) - \theta$$

Unbiased Estimators

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased Estimators

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

For unbiased estimators, MSE = Variance.

Examples of MSE

If X_1,\ldots,X_n are i.i.d. with population mean μ and population variance σ^2 , using the sample mean $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ the point estimate for the population mean μ

- \blacktriangleright the bias is $\mathrm{E}(\overline{X}) \mu = \mu \mu = 0$
- ightharpoonup the variance is $\mathrm{Var}(\overline{X}) = \sigma^2/n$

The MSE for \overline{X} is hence

$$\mathsf{MSE} = (\mathsf{Bias})^2 + \mathsf{Variance} = 0^2 + \frac{\sigma^2}{n} = \frac{\sigma^2}{n}$$

MSE of Sample Variance S^2

In L13, we have shown that if X_1,X_2,\dots,X_n are i.i.d. $\sim N(\mu,\sigma^2)$, then S^2 is an unbiased estimate for σ^2 .

$$E[S^2] = \sigma^2$$

To obtain the MSE, we need to calculate $\mathrm{Var}(S^2)$. From that

$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2,$$

and the variance for $T \sim \chi^2_{n-1}$ is 2(n-1), it follows that

$$\operatorname{Var}(S^2) = \operatorname{Var}\left(\frac{\sigma^2 T}{n-1}\right) = \left(\frac{\sigma^2}{n-1}\right)^2 \underbrace{\operatorname{Var}(T)}_{=2(n-1)} = \frac{2\sigma^4}{n-1}.$$

The MSE of S^2 is hence

$$\mathsf{MSE} = (\mathsf{Bias})^2 + \mathsf{Variance} = 0^2 + \frac{2\sigma^4}{n-1} = \frac{2\sigma^4}{n-1}$$

A Biased Estimator for σ^2 w/ a Smaller MSE

Consider an alternative estimator for σ^2 that using divisor n+1 instead of n-1

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n+1} = \frac{(n-1)S^2}{n+1}$$

The expected value and variance of $\hat{\sigma}^2$ are respectively

$$E(\hat{\sigma}^2) = \frac{(n-1)E(S^2)}{n+1} = \frac{(n-1)\sigma^2}{n+1},$$

$$Var(\hat{\sigma}^2) = \left(\frac{n-1}{n+1}\right)^2 Var(S^2) = \left(\frac{n-1}{n+1}\right)^2 \frac{2\sigma^4}{(n-1)} = \frac{2(n-1)\sigma^4}{(n+1)^2}$$

Hence, $\hat{\sigma}^2$ is a **biased** estimator for σ^2 with

$$\mathsf{Bias} = \mathsf{E}(\hat{\sigma}^2) - \sigma^2 = \frac{(n-1)\sigma^2}{n+1} - \sigma^2 = \frac{-2\sigma^2}{n+1}.$$

The MSE of $\hat{\sigma}^2$ is

$$\begin{aligned} \mathsf{MSE} &= (\mathsf{Bias})^2 + \mathsf{Variance} \\ &= \left(\frac{-2\sigma^2}{n+1}\right)^2 + \frac{2(n-1)\sigma^4}{(n+1)^2} = \frac{2n\sigma^4}{(n+1)^2} \end{aligned}$$

which is lower than the MSE of $\frac{2\sigma^4}{n-1}$ for the sample variance S^2 .

The MSE of $\hat{\sigma}^2$ is

$$\begin{aligned} \mathsf{MSE} &= (\mathsf{Bias})^2 + \mathsf{Variance} \\ &= \left(\frac{-2\sigma^2}{n+1}\right)^2 + \frac{2(n-1)\sigma^4}{(n+1)^2} = \frac{2n\sigma^4}{(n+1)^2} \end{aligned}$$

which is lower than the MSE of $\frac{2\sigma^4}{n-1}$ for the sample variance S^2 .

A biased estimator might have a smaller MSE if it has a smaller variance.

MSE of the Sample Proportion $\hat{p} = \frac{X}{n}$

If $X \sim Bin(n,p)$ is Binomial, a point estimate for the success probability p is the sample proportion $\hat{p} = \frac{X}{n}$. As X is Binomial,

$$\begin{split} \mathbf{E}(X) &= np & \Rightarrow & \mathbf{E}(\hat{p}) = \frac{\mathbf{E}(X)}{n} = \frac{np}{n} = p \\ \mathbf{Var}(X) &= np(1-p) & \Rightarrow & \mathbf{Var}(\hat{p}) = \frac{\mathbf{Var}(X)}{n^2} = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n} \end{split}$$

Thus the sample proportion \hat{p} is **unbiased** with the MSE

MSE =
$$(Bias)^2 + Variance = 0^2 + \frac{p(1-p)}{n} = \frac{p(1-p)}{n}$$
.

MSE for Wilson's "Plus-Four" Estimate for Proportions

Recall Wilson's plus-four estimate is

$$\tilde{p} = \frac{X+2}{n+4}.$$

It's expected value and variance are respectively,

$$\mathrm{E}(\tilde{p}) = \frac{\mathrm{E}(X) + 2}{n+4} = \frac{np+2}{n+4}, \text{ and } \mathrm{Var}(\tilde{p}) = \frac{\mathrm{Var}(X)}{(n+4)^2} = \frac{np(1-p)}{(n+4)^2}.$$

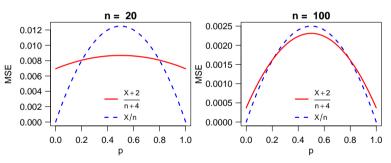
Its bias and MSE are respectively

$$\begin{aligned} & \mathsf{Bias} = \mathsf{E}(\tilde{p}) - p = \frac{np+2}{n+4} - p = \frac{2-4p}{n+4} \\ & \mathsf{MSE} = (\mathsf{Bias})^2 + \mathsf{Variance} = \left(\frac{2-4p}{n+4}\right)^2 + \frac{np(1-p)}{(n+4)^2} \end{aligned}$$

MSE's for Sample Proportion & Wilson's "Plus-Four"

Below are the graphs of the MSE for $\hat{p}=X/n$ and $\tilde{p}=\frac{X+2}{n+4}$

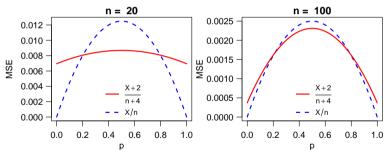
$$\mathsf{MSE}(\hat{p}) = \frac{p(1-p)}{n}, \quad \mathsf{MSE}(\tilde{p}) = \left(\frac{2-4p}{n+4}\right)^2 + \frac{np(1-p)}{(n+4)^2}$$



MSE's for Sample Proportion & Wilson's "Plus-Four"

Below are the graphs of the MSE for $\hat{p}=X/n$ and $\tilde{p}=\frac{X+2}{n+4}$

$$\mathsf{MSE}(\hat{p}) = \frac{p(1-p)}{n}, \quad \mathsf{MSE}(\tilde{p}) = \left(\frac{2-4p}{n+4}\right)^2 + \frac{np(1-p)}{(n+4)^2}$$



- $\hat{p} = X/n$ has a smaller MSE only when p is close to 0 or 1
- $\tilde{p} = \frac{X+2}{n+4}$ has a smaller MSE when p is NOT close to 0 or 1
- \blacktriangleright The two MSE's are close when n is large

Sampling Distributions

The *sampling distribution* of a point estimate $\hat{\theta}$ is simply its probability distribution, e.g.,

Ex1. If X_1,\dots,X_n are i.i.d. $\sim N(\mu,\sigma^2)$, the sampling distribution for $\hat{\mu}=\overline{X}$ is

$$\hat{\mu} = \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

and the sampling distribution for S^2 is that

$$S^2 = \frac{\sigma^2 T}{n-1}, \quad \text{where } T \sim \chi^2_{n-1}.$$

Note: The sampling distribution generally depends on some unknown parameter θ .

Ex2: If X_1, \ldots, X_n are i.i.d. from some distribution with mean μ and variance σ^2 (not necessarily normal),

- \blacktriangleright the exact sampling distribution of $\hat{\mu}=\overline{X}$ would depend on the distribution of X_i
- CLT asserts that

$$\hat{\mu} = \overline{X}$$
 is approx. $\sim N\left(\mu, \frac{\sigma^2}{n}\right)$.

Standard Error

The *standard error (SE)* of a point estimate $\hat{\theta}$ refers to any estimate of the standard deviation of $\hat{\theta}$.

Ex1. If X_1, \dots, X_n are i.i.d. $\sim N(\mu, \sigma^2)$,

lackbox the standard deviation for $\hat{\mu}=\overline{X}$ is

$$SD(\overline{X}) = \sqrt{Var(\overline{X})} = \sqrt{\frac{\sigma^2}{n}}$$

which involves the unknown σ^2

lacktriangle the standard error for \overline{X} is

$$SE(\overline{X}) = \sqrt{\frac{S^2}{n}}$$

which replaces the unknown σ^2 by its estimate S^2 .

Ex2. If $X \sim \text{Bin}(n, p)$,

 \blacktriangleright the standard deviation for $\hat{p} = X/n$ is

$$\mathrm{SD}(\hat{p}) = \sqrt{\mathrm{Var}(\hat{p})} = \sqrt{\frac{p(1-p)}{n}},$$
 which involves the unknown p .

 \blacktriangleright the standard error for \hat{p} is

$$SE(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

which replaces the unknown p by its estimate \hat{p} .

Note: The true SD may depend on θ , while SE depends on the data but not on θ

Section 8.4 The Method of Moments

Sample Moments

Recall the kth moment of a random variable X is $E[X^k]$.

If X_1,\dots,X_n are i.i.d. from some distribution $f(x\mid\theta)$, the kth sample moment is defined to be

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

The Method of Moments (MME)

The *method of moments* is a strategy for finding an estimator θ . If there is only **one parameter** θ ,

- 1. compute E(X) as a function of θ
- 2. compute the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 3. choose $\hat{\theta}$ as the value of θ so that $\mathrm{E}(X) = \overline{X}$

If there are k parameters θ_1,\dots,θ_k

- 1. compute $\mathrm{E}(X)$, $\mathrm{E}(X^2)$, ..., $\mathrm{E}(X^k)$ as functions of θ_i 's
- 2. compute the sample moments

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\mu}_2 = \sum_{i=1}^n X_i^2, \dots, \hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

3. choose $(\hat{\theta}_1, \dots, \hat{\theta}_m)$ as the value of θ_i so that

$$E(X^j) = \frac{1}{n} \sum_{i=1}^n X_i^j \quad \text{for } 1 \le j \le k.$$

(solving a system of k equations, for k unknowns)

Examples (1 Parameter)

$$\mathbf{Ex1}\!\!:\, X_1,\dots,X_n \stackrel{\mathrm{iid}}{\sim} \mathsf{Poisson}(\lambda) \text{ for unknown } \lambda > 0$$

- $\blacktriangleright \text{ PMF: } f(x\mid \lambda) = e^{-\lambda}\lambda^x/x! \text{, } x = 0, 1, 2, \dots$
- ightharpoonup $\mathrm{E}(X) = \lambda$
- ▶ The method of moment estimate (MME) for λ is $\hat{\lambda} = \overline{X}$

Ex2:
$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Geometric}(p)$$
 for unknown p

- ▶ PMF: $f(x \mid p) = (1-p)^{x-1}p$, x = 1, 2, 3, ...
- ightharpoonup $\mathrm{E}(X) = 1/p$
- ightharpoonup MME for p is $\hat{p}=1/\overline{X}$

$$\mathbf{Ex3} \colon X_1, \dots, X_n \overset{\mathrm{iid}}{\sim} \mathsf{Exponential}(\lambda) \text{ for unknown } \lambda > 0$$

- PDF: $f(x \mid \lambda) = \lambda e^{-\lambda x}$, x > 0
- ightharpoonup $\mathrm{E}(X) = 1/\lambda$

Example 4 — Uniform $[0, \theta]$

$$X_1,\dots,X_n \overset{\mathrm{iid}}{\sim} \mathrm{Uniform}[0,\theta]$$
 for unknown $\theta>0$

- ightharpoonup PDF: $f(x \mid \theta) = \frac{1}{\theta}$, $0 \le x \le \theta$
- ightharpoonup $\mathrm{E}(X) = \theta/2$
- $\qquad \qquad \mathbf{MME} \text{ for } \stackrel{'}{\theta} \text{ is } \widehat{\theta} = 2\overline{X}.$

Example 5 — MME for Gamma

 $X_1,\dots,X_n \stackrel{\mathrm{iid}}{\sim} \mathsf{Gamma}(\alpha,\lambda)$ for unknown $\alpha,\lambda>0$

- ightharpoonup $\mathrm{E}(X) = \alpha/\lambda$
- $ightharpoonup \operatorname{Var}(X) = \alpha/\lambda^2 \Rightarrow \operatorname{E}[X^2] = \operatorname{Var}(X) + (\operatorname{E}(X))^2 = \frac{\alpha(\alpha+1)}{\lambda^2}$
- \blacktriangleright The MMEs for α and λ must satisfy

$$\overline{X} = \frac{\hat{\alpha}}{\hat{\lambda}}, \quad \hat{\mu}_2 = \frac{\hat{\alpha}(\hat{\alpha}+1)}{\hat{\lambda}^2} \qquad (\text{Recall } \hat{\mu}_2 = \frac{1}{n}\sum_{i=1}^n X_i^2)$$

First equation $\Rightarrow \hat{\alpha} = \hat{\lambda} \overline{X}$.

Plugging in $\hat{\alpha} = \hat{\lambda} \overline{X}$ into the 2nd equation, we get

$$\hat{\mu}_2 = \overline{X}^2 + \frac{\overline{X}}{\lambda} \ \Rightarrow \ \hat{\lambda} = \frac{\overline{X}}{\hat{\mu}_2 - \overline{X}^2} \ \Rightarrow \ \hat{\alpha} = \hat{\lambda} \overline{X} = \frac{\overline{X}^2}{\hat{\mu}_2 - \overline{X}^2}.$$

Section 8.5 Likelihood & Maximum Likelihood Estimation

A Probability Question

Let p be the proportion of US adults that are willing to get the latest flu shot.

A sample of 20 subjects are randomly selected. Let X be the number of them that are willing to get the latest flu shot. What is P(X=8)?

Answer: X is Binomial (n = 20, p) (Why?)

$$P(X = x \mid p) = {20 \choose x} p^x (1-p)^{n-x}.$$

If p is known to be 0.3, then

$$P(X = 8 \mid p) = {20 \choose 8} (0.3)^8 (0.7)^{12} \approx 0.1144.$$

A Statistics Question

Suppose 8 of 20 randomly selected U.S. adults said they are willing to get the latest flu shot.

What can we infer about the value of

$$p = \text{proportion of U.S. adults that are}$$
 willing to get a flu shot?

The chance to observe X=8 in a random sample of size n=20 is

$$P(X = 8 \mid p) = \begin{cases} {20 \choose 8} (0.3)^8 (0.7)^{12} \approx 0.1144 & \text{if } p = 0.3 \\ {20 \choose 8} (0.6)^8 (0.4)^{12} \approx 0.0355 & \text{if } p = 0.6 \end{cases}$$

It appears that p=0.3 is **more likely** to be true value p than p=0.6, since the former gives a higher prob. to observe the outcome X=8.

We say the *likelihood* of p = 0.3 is higher than that of p = 0.6.

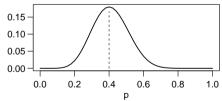
Maximum Likelihood Estimate (MLE)

The *maximum likelihood estimate* (*MLE*) of a parameter θ is the value at which the likelihood function is maximized.

Example. If 8 of 20 randomly selected U.S. adults are comfortable getting the flu shot, the likelihood function

$$L(p \mid x = 8) = {20 \choose 8} p^8 (1 - p)^{12}$$

reaches its max at p=0.4, the MLE for p is $\hat{p}=0.4$ given the data X=8.



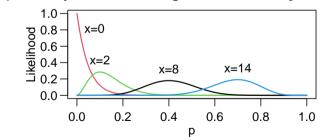
Maximum Likelihood Estimate (MLE)

The probability

$$P(X = x \mid p) = \binom{n}{x} p^x (1-p)^{n-x} = L(p \mid x)$$

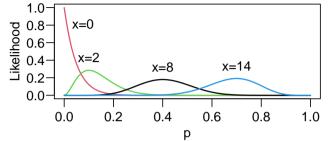
viewed as a function of p, is called the *likelihood function*, (or just the **likelihood**) of p, denoted as $L(p \mid x)$.

It measure the "plausibility" of a value being the true value of p.

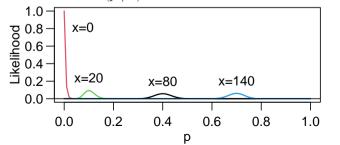


Likelihood functions $L(p \mid x)$ at different values of x for n = 20.

Likelihood functions $L(p \mid x)$ for various values of x when n = 20.



Likelihood functions $L(p \mid x)$ at various values of x when n = 200.



Likelihood in General

In general, suppose the observed data (X_1,X_2,\dots,X_n) have a joint PDF or PMF with some parameter(s) called θ

$$f(x_1, x_2, \dots, x_n \mid \theta)$$

The *likelihood function* for the parameter θ is

$$L(\theta) = L(\theta \mid X_1, X_2, \dots, X_n) = f(X_1, X_2, \dots, X_n \mid \theta).$$

- Note the likelihood function regards the probability as a function of the parameter θ rather than as a function of the data X_1, X_2, \dots, X_n .
- ▶ If

$$L(\theta_1 \mid x_1, \dots, x_n) > L(\theta_2 \mid x_1, \dots, x_n),$$

then θ_1 appears more plausible to be the true value of θ than θ_2 does, given the observed data x_1, \ldots, x_n .

Maximizing the Log-likelihood

Rather than maximizing the likelihood, it is often computationally easier to maximize its natural logarithm, called the *log-likelihood*, denoted as

$$\ell(\theta) = \log L(\theta)$$

which results in the same answer since logarithm is strictly increasing,

$$x_1 > x_2 \quad \Longleftrightarrow \quad \log(x_1) > \log(x_2).$$

So

$$L(\theta_1) > L(\theta_2) \iff \log L(\theta_1) > \log L(\theta_2).$$

Here, log() is always the natural log.

Notation:

- ightharpoonup upper case $L(\theta) =$ likelihood
- lower case $\ell(\theta) = \log L(\theta) =$ log-likelihood

Example (MLE for Binomial)

If the observed data $X\sim$ Binomial (n,p) but p is unknown, the likelihood of p is $L(p\mid x)=p(X=x\mid p)=\binom{n}{x}p^x(1-p)^{n-x}$

and the log-likelihood is

$$\ell(p) = \log L(p \mid x) = \log {n \choose r} + x \log(p) + (n-x) \log(1-p).$$

From Calculus, we know a function g(u) reaches its max at $u=u_0$ if

$$\frac{d}{\mathrm{d}u}g(u)=0 \text{ at } u=u_0 \quad \text{ and } \quad \frac{d^2}{du^2}g(u)<0 \text{ at } u=u_0.$$

Example — MLE for Binomial

$$\frac{d}{dp}\ell(p \mid x) = \frac{x}{p} - \frac{n-x}{1-p} = \frac{x-np}{p(1-p)}.$$

equals 0 when

$$\frac{x - np}{p(1 - p)} = 0$$

That is, when x - np = 0.

Solving for p gives the ML estimator (MLE) $\hat{p} = \frac{x}{n}$.

and
$$\frac{d^2}{dn^2}\ell(p\mid x) = -\frac{x}{n^2} - \frac{n-x}{(1-n)^2} < 0$$
 for any 0

Thus, we know $\ell(p \mid x)$ reaches its max when p = x/n.

So MLE of p is $\hat{p} = \frac{X}{n} = \text{sample proportion of successes.}$

Likelihood Based on i.i.d. Observations

Suppose $X_1,\dots,X_n \overset{\mathrm{iid}}{\sim} f(x\mid\theta)$ for an unknown parameter θ

The joint PDF or PMF of (X_1,\dots,X_n) is the product of the marginal PDF/PMF since they are i.i.d.

$$\prod_{i=1}^n f(x_i \mid \theta) = f(x_1 \mid \theta) f(x_2 \mid \theta) \times \dots \times f(x_n \mid \theta)$$

The likelihood is then

$$L(\theta) = L(\theta \mid X_1, \dots, X_n) = \prod_{i=1}^n f(X_i \mid \theta).$$

The log likelihood then has the summation form

$$\ell(\theta) = \log L(\theta \mid X_1, \dots, X_n) = \log \left(\prod_{i=1}^n f(X_i \mid \theta) \right) = \sum_{i=1}^n \log \left(f(X_i \mid \theta) \right).$$

Example — MLE for Exponential

$$X_1,\dots,X_n \stackrel{\mathrm{iid}}{\sim} \mathsf{Exponential}(\lambda)$$
 for unknown $\lambda > 0$

- PDF: $f(x \mid \lambda) = \lambda e^{-\lambda x}$
- likelihood: $L(\lambda) = \prod_{i=1}^n f(X_i \mid \lambda) = \lambda^n \exp(\lambda \sum_{i=1}^n X_i)$
- log likelihood:

$$\ell(\lambda) = \log L(\lambda) = n \log(\lambda) - \lambda \sum\nolimits_{i=1}^{n} X_i = n \log(\lambda) - n \lambda \overline{X}$$

► Solve for MLE:

$$0 = \frac{d}{d\lambda}\ell(\lambda) = \frac{n}{\lambda} - n\overline{X} \quad \Rightarrow \quad \hat{\lambda} = \frac{1}{\overline{X}} \quad \text{(same as MME)}$$

The likelihood indeed reaches its max at $\lambda = 1/\overline{X}$ since

$$\frac{d^2}{d\lambda^2}\ell(\lambda) = -\frac{n}{\lambda^2} < 0.$$

Example — MLE for Poisson

 $X_1,\dots,X_n \stackrel{\mathrm{iid}}{\sim} \mathsf{Poisson}(\lambda)$ for unknown $\lambda > 0$

- $ightharpoonup PMF: f(x \mid \lambda) = e^{-\lambda} \lambda^x / x!$
- likelihood: $L(\lambda) = \prod_{i=1}^n f(X_i \mid \lambda) = e^{-n\lambda} \lambda^{\sum_{i=1}^n X_i} / \prod_{i=1}^n X_i!$
- log likelihood:

$$\ell(\lambda) = \log L(\lambda) = -n\lambda + \sum_{i=1}^n X_i \log(\lambda) - \sum_{i=1}^n \log(X_i!)$$

Solve for MLE:

$$0 = \frac{d}{d\lambda}\ell(\lambda) = -n + \frac{\sum_{i=1}^{n} X_i}{\lambda} = -n + \frac{n\overline{X}}{\lambda}$$

$$\Rightarrow \quad \hat{\lambda} = \overline{X} \quad \text{(same as MME)}$$

The likelihood indeed reaches its max at $\lambda = \overline{X}$ since

$$\frac{d^2}{d\lambda^2}\ell(\lambda) = -\frac{n\overline{X}}{\lambda^2} \le 0.$$

Example — Negative Binomial

 $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{NegBin}(r, p), r$ is known, but p is unknown

The PMF is $f(x \mid p) = \binom{x-1}{x-1} p^r (1-p)^{x-r}$.

$$\begin{split} \text{likelihood } L(p) &= \prod_{i=1}^n f(X_i \mid p) = \left[\prod_{i=1}^n {X_i - 1 \choose r-1} \right] p^{nr} (1-p)^{(\sum_{i=1}^n X_i) - nr} \\ &= \left[\prod_{i=1}^n {X_i - 1 \choose r-1} \right] p^{nr} (1-p)^{n\overline{X} - nr} \end{split}$$

The log likelihood is

$$\ell(p) = \sum_{i=1}^{n} \log {X_i - 1 \choose r - 1} + nr \log(p) + n(\overline{X} - r) \log(1 - p)$$

Solve for MLE:

$$0 = \frac{d}{dr}\ell(p) = \frac{nr}{n} - \frac{n(\overline{X} - r)}{1 - n} = \frac{n(r - p\overline{X})}{n(1 - n)} \quad \Rightarrow \quad \hat{p} = \frac{r}{\overline{X}}.$$

To see if log likelihood indeed reaches its max at $p = r/\overline{X}$, we check

$$\frac{d^2}{dp^2}\ell(p) = -\frac{nr}{p^2} - \frac{n(\overline{X} - r)}{(1 - p)^2}$$

As $X_i \geq r$ and hence $\overline{X} \geq r$, the second derivative above is indeed ≤ 0 .

This shows $\hat{p} = \frac{r}{|\overline{V}|}$ is indeed the MLE.

MLE for Two Parameters

From Calculus, we know a function g(u,v) reaches its maximum at $(u,v)=(u_0,v_0)$ if the following 3 conditions are met

1.
$$\frac{\partial}{\partial u}g(u,v)=\frac{\partial}{\partial v}g(u,v)=0 \text{ at } (u,v)=(u_0,v_0);$$

$$2. \ \frac{\partial^2}{\partial u^2}g(u,v)<0 \ \text{at} \ (u,v)=(u_0,v_0);$$

3. the Hessian matrix

$$\begin{vmatrix} \frac{\partial^2}{\partial u^2} g(u, v) & \frac{\partial^2}{\partial uv} g(u, v) \\ \frac{\partial^2}{\partial vu} g(u, v) & \frac{\partial^2}{\partial v^2} g(u, v) \end{vmatrix}$$

has a *positive* determinant at $(u,v)=(u_0,v_0)$.

Example — MLE for Normal

 $X_1,\ldots,X_n \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu,\sigma^2)$ for unknown $\mu,\,\sigma^2$

- ▶ PDF: $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$
- likelihood:

$$L(\mu,\sigma^2) = \prod_{i=1}^n f(X_i \mid \mu,\sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(\frac{-1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$$

log likelihood:

$$\ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$$

Solve for MLE:

$$\begin{cases} 0 = \frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = \frac{n}{\sigma^2} (\overline{X} - \mu) \\ 0 = \frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2) = \frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2 \end{cases}$$

$$\begin{cases} 0 = \frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) = \frac{n}{\sigma^2} (\overline{X} - \mu) \\ 0 = \frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2) = \frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2 \end{cases}$$

The first equation immediately gives $\hat{\mu} = \overline{X}$.

Plugging $\mu=\overline{X}$ into the second equation, we get

$$0 = \frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum\nolimits_{i=1}^n (X_i - \overline{X})^2 \quad \Rightarrow \quad \hat{\sigma}^2 = \frac{\sum\nolimits_{i=1}^n (X_i - \overline{X})^2}{n}.$$

Note the MLE for σ^2 is not $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$.

To check the log likelihood indeed reach its max when $\mu=\overline{X}$ and $\hat{\sigma}^2=\frac{\sum_{i=1}^n(X_i-\overline{X})^2}{n}$ we calculate the second derivative of the log likelihood:

$$\begin{split} \frac{\partial^2}{\partial \sigma^2 \mu} \ell(\mu,\sigma^2) &= -\frac{n}{\sigma^4} (\overline{X} - \mu) \\ \frac{\partial^2}{\partial (\sigma^2)^2} \ell(\mu,\sigma^2) &= \frac{n}{2(\sigma^2)^2} - \frac{1}{(\sigma^2)^3} \sum\nolimits_{i=1}^n (X_i - \mu)^2 \end{split}$$
 When $\mu = \overline{X}$ and $\sigma^2 = \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$, the Hessian matrix is

 $\begin{bmatrix} -\frac{n}{\widehat{\sigma}^2} & 0 \\ 0 & -\frac{n}{\widehat{\sigma}^2} \end{bmatrix}$

 $\frac{\partial^2}{\partial \mu^2}\ell(\mu,\sigma^2) = -\frac{n}{\sigma^2} < 0$

which has a positive determinant. This shows the MLE for μ and σ^2 are

$$\mu = \overline{X} \quad \text{and} \quad \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}.$$

Example — MLE for Gamma

$$X_1,\dots,X_n\stackrel{\mathrm{iid}}{\sim} \mathsf{Gamma}(\alpha,\lambda)$$
 for unknown α , λ

- ▶ PDF: $f(x \mid \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha 1} e^{-\lambda x}$, x > 0
- likelihood:

$$L(\alpha, \lambda) = \prod_{i=1}^{n} f(X_i \mid \alpha, \lambda) = \frac{\lambda^{n\alpha}}{(\Gamma(\alpha))^n} \left(\prod_{i=1}^{n} X_i \right)^{\alpha - 1} e^{-\lambda \sum_{i=1}^{n} X_i}$$

log likelihood:

$$\ell(\alpha,\lambda) = n\alpha\log\lambda - n\log\Gamma(\alpha) + (\alpha-1)\sum\nolimits_{i=1}^n\log X_i - \lambda\sum\nolimits_{i=1}^n X_i$$

Solve for MLE:

$$\begin{split} 0 &= \frac{\partial}{\partial \alpha} \ell(\alpha, \lambda) = n \log \lambda - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \sum_{i=1}^n \log X_i \\ 0 &= \frac{\partial}{\partial \lambda} \ell(\alpha, \lambda) = \frac{n\alpha}{\lambda} - \sum_{i=1}^n X_i = \frac{n\alpha}{\lambda} - n \overline{X} \end{split}$$

The second equation gives

$$\hat{\lambda} = \frac{\hat{\alpha}}{\overline{X}},$$

plugging it into the first equation we get

$$n\log(\widehat{\alpha}) - n\log(\overline{X}) - n\frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})} + \sum_{i=1}^n \log X_i = 0$$

This equation cannot be solved in closed form.

Numerical tools are required to compute the value of the MLE.

Example — Uniform $[0, \theta]$

 $X_1,\dots,X_n \stackrel{\mathrm{iid}}{\sim} \mathrm{Uniform}[0,\theta]$ for unknown $\theta>0$

- ightharpoonup PDF: $f(x \mid \theta) = \frac{1}{\theta}$, $0 \le x \le \theta$
- Joint PDF:

$$\prod_{i=1}^n f(X_i \mid \theta) = \begin{cases} \theta^{-n} & \text{if } 0 \leq X_i \leq \theta \\ 0 & \text{otherwise} \end{cases}$$

This means the joint PDF is non-zero only if $\theta \ge X_{(n)} = \max_{1 \le i \le n} X_i$.

- Likelihood: $L(\theta) = \theta^{-n}$
- Solve for MLE: Note the smaller the value of θ , the greater the likelihood, but θ cannot fall below $X_{(n)}$. Thus the MLE for θ is

$$\hat{\theta} = X_{(n)} \quad (\text{Different from MME} = 2\overline{X}.)$$

Comparison of MME and MLE for $\mathsf{Uniform}[0,\theta]$

MME
$$\hat{\theta}_{\text{MME}} = 2\overline{X}$$
:

- \blacktriangleright For each X_i , $\mathrm{E}(X_i) = \frac{\theta}{2}$, $\mathrm{Var}(X_i) = \frac{\theta^2}{12}$
- $ightharpoonup \mathrm{E}(\hat{ heta}_{\mathsf{MME}}) = 2\,\mathrm{E}(\overline{X}) = 2\cdot\frac{\theta}{2} = \theta$
- $\blacktriangleright \ \operatorname{Bias}(\hat{\theta}_{\mathsf{MME}}) = \operatorname{E}(\hat{\theta}_{\mathsf{MME}}) \theta = \theta \theta = 0$
- ► Variance:

$$\operatorname{Var}(\widehat{\theta}_{\mathsf{MME}}) = \operatorname{Var}(2\overline{X}) = 2^2 \operatorname{Var}(\overline{X}) = 2^2 \frac{\operatorname{Var}(X_i)}{n} = \frac{\theta^2}{3n}$$

► MSE = bias² + Var(
$$\hat{\theta}_{\text{MME}}$$
) = $\frac{\theta^2}{3n}$

Comparison of MME & MLE for Uniform $[0, \theta]$:

MLE $\hat{\theta}_{\mathsf{MLE}} = X_{(n)}$:

▶ PDF of
$$X_{(n)}$$
 (from L07): $f(x) = \frac{nx^{n-1}}{\theta n}$, $0 \le x \le \theta$

▶ Bias:

$$\mathrm{E}(\hat{\theta}_{\mathsf{MLE}}) = \int_{-\hat{\theta}}^{\theta} x \cdot \frac{nx^{n-1}}{\theta^n} \, \mathrm{d}x = \frac{n\theta}{n+1} \ \Rightarrow \ \mathsf{Bias} = -\frac{\theta}{n+1}$$

► Variance:

$$\begin{split} & \mathrm{E}((\hat{\theta}_{\mathsf{MLE}})^2) = \int_{x=0}^{\theta} x^2 \cdot \frac{nx^{n-1}}{\theta^n} \, \mathrm{d}x = \frac{n\theta^2}{n+2} \\ \Rightarrow & \mathrm{Var}(\hat{\theta}_{\mathsf{MLE}}) = \frac{n\theta^2}{n+2} - \left(\frac{n\theta}{n+1}\right)^2 = \frac{n\theta^2}{(n+1)^2(n+2)} \end{split}$$

$$\blacktriangleright \mathsf{MSE}(\hat{\theta}_{\mathsf{MLE}}) = \mathsf{bias}^2 + \mathsf{Var}(\hat{\theta}_{\mathsf{MLE}}) = \frac{2\theta^2}{(n+1)(n+2)}$$

$$\blacktriangleright$$
 far smaller than $\mathrm{MSE}(\hat{\theta}_{\mathrm{MME}}) = \frac{\theta^2}{3n}$

Properties of MLE for Exponential

For $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Exponential}(\lambda)$:

$$\mathsf{PDF}:\ f(x\mid \lambda) = \lambda e^{-\lambda x},\quad x>0,$$

 $\mathsf{MLE} = \mathsf{MME} \text{ for } \lambda \text{ is } \hat{\lambda} = 1/\overline{X}.$

Since $Y = n\overline{X} = \sum_{i=1}^{n} X_i \sim \mathsf{Gamma}(n,\lambda)$ has the PDF

$$f_Y(y) = \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y}, \quad y > 0,$$

we can find the expected value and variance for $\hat{\lambda}=1/\overline{X}=n/Y$ as follows,

$$E[\hat{\lambda}] = E\left(\frac{n}{Y}\right) = \int_{y=0}^{\infty} \frac{n}{y} \cdot \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy = \frac{n\lambda}{n-1}$$

$$E[\hat{\lambda}^2] = E\left(\frac{n^2}{Y^2}\right) = \int_{y=0}^{\infty} \frac{n^2}{y^2} \cdot \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy = \frac{n^2 \lambda^2}{(n-1)(n-2)}$$

$$\operatorname{Var}(\hat{\lambda}) = \operatorname{E}[\hat{\lambda}^2] - (\operatorname{E}[\hat{\lambda}])^2 = \frac{n^2 \lambda^2}{(n-1)(n-2)} - \left(\frac{n\lambda}{n-1}\right)^2 = \frac{n^2 \lambda^2}{(n-1)^2(n-2)}$$

The bias is

$$\mathsf{Bias} = \mathrm{E}[\hat{\lambda}] - \lambda = \frac{n\lambda}{n-1} - \lambda = \frac{\lambda}{n-1}.$$

The MSE of $\hat{\lambda}$ is

$$\begin{split} \mathsf{MSE} &= \mathsf{Bias}^2 + \mathrm{Var}(\hat{\lambda}) \\ &= \left(\frac{\lambda}{n-1}\right)^2 + \frac{n^2\lambda^2}{(n-1)^2(n-2)} = \frac{(n+2)\lambda^2}{(n-1)(n-2)}. \end{split}$$