STAT 24400 Lecture 11 Section 4.5 Moment Generating Functions (MGF)

Yibi Huang Department of Statistics University of Chicago

Moment Generating Function (MGF)

The moment generating function (MGF) M(t) of the random variable X is defined to be

$$M(t) = \mathrm{E}(e^{tX}) = \begin{cases} \sum_x e^{tx} p_X(x) & \text{if discrete} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) \mathrm{d}x & \text{if continuous} \end{cases}$$

where $p_X(x)$ and $f_X(x)$ are the PMF/PDF of X.

- lacktriangle MGF M(t) is NOT a single value but a function of t
- $ightharpoonup M(0) = \mathrm{E}(e^{0\dot{X}}) = \mathrm{E}[1] = 1 \text{ always}$

Example: MGF for Geometric

For **Geometric**(p), the PMF is

$$p(x) = (1-p)^{x-1}p, \quad x = 1, 2, \dots,$$

Its MGF is

$$\begin{split} M(t) &= \sum_{x=1}^{\infty} e^{tx} p(x) = \sum_{x=1}^{\infty} e^{tx} (1-p)^{x-1} p \\ &= p e^t \sum_{x=1}^{\infty} (e^t (1-p))^{x-1} \\ &= \frac{p e^t}{1 - (1-p) e^t}, \quad \text{since } \sum_{x=0}^{\infty} r^x = \frac{1}{1-r}. \end{split}$$

The last step is valid only when $(1-p)e^t < 1$, or $t < -\log(1-p)$.

Thus the MGF is defined when $(1-p)e^t < 1$.

Example: MGF for Binomial

For **Binomial**(n, p), the PMF is

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad k = 0, 1, 2, \dots, n.$$

Its MGF is

$$\begin{split} M(t) &= \sum_{x=0}^n e^{tx} p(x) = \sum_{x=0}^n e^{tx} {n \choose x} p^x (1-p)^{n-x} \\ &= \sum_{x=0}^n {n \choose x} (pe^t)^x (1-p)^{n-x} \\ &= (pe^t + (1-p))^n \quad \text{valid for } -\infty < t < \infty. \end{split}$$

The last step comes from the Binomial expansion

$$(a+b)^N = \sum_{x=0}^N {N \choose x} a^x b^{N-x}, \quad \text{for} \quad \begin{aligned} a &= p e^t \\ b &= 1-p \end{aligned} \text{ and } N=n.$$

Example: MGF for Exponential

For Exponential (λ) , the PDF is

$$f(x) = \lambda e^{-\lambda x}, \quad 0 \le x < \infty.$$

Its MGF is

$$M(t) = \int_0^\infty e^{tx} f(x) dx = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx$$
$$= \int_0^\infty \lambda e^{-(\lambda - t)x} dx$$
$$= \frac{\lambda}{\lambda - t},$$

The integral is finite only when $\lambda - t > 0$.

Thus the MGF is defined only when $-\infty < t < \lambda$.

MGF for Standard Normal N(0,1)

The PDF for N(0,1) is $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ for $-\infty \le x < \infty$.

Its MGF is thus

$$M(t) = \int_{-\infty}^{\infty} e^{tx} \phi(x) \mathrm{d}x = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{\sec below}{-x^2/2 + tx}} \mathrm{d}x$$

Using the technique of completing the square, as

$$-\frac{x^2}{2} + tx = -\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2} = -\frac{1}{2}(x - t)^2 + \frac{t^2}{2},$$

the integral equals

$$M(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x-t)^2/2 + t^2/2} \mathrm{d}x = e^{t^2/2} \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x-t)^2/2} \mathrm{d}x}_{=1} = e^{t^2/2}.$$

The last integral is 1 since it integrates over the PDF of N(t,1).

The MGF is defined for all $-\infty < t < \infty$.

Moments and Moment Generating Functions

As $M(t) = E(e^{tX})$, its first derivative is

$$M'(t) = \frac{d}{dt} \operatorname{E}[e^{tX}] = \operatorname{E}\left[\frac{d}{dt}e^{tX}\right] = \operatorname{E}[Xe^{tX}].$$

Its second derivative is

$$M''(t) = \frac{d}{dt}M'(t) = \frac{d}{dt}\operatorname{E}[Xe^{tX}] = \operatorname{E}\left[\frac{d}{dt}Xe^{tX}\right] = \operatorname{E}[X^2e^{tX}].$$

In general, the kth derivative of the MGF is

$$M^{(k)}(t) = \frac{d^k}{dt^k} M(t) = \mathbf{E}[X^k e^{tX}].$$

Plugging in t = 0, we get

$$M'(0) = E(X), \quad M''(0) = E(X^2), \quad M^{(k)}(0) = E(X^k), \dots,$$

Moment generating functions got the name since the moments of X can be obtained by successively differentiating M(t).

Example: Calculating Moments Using MGF — Exponential

The MGF for Exponential (λ) is

$$M(t) = \frac{\lambda}{\lambda - t}.$$

The derivatives and the moments are thus

$$\begin{split} M'(t) &= \frac{\lambda}{(\lambda - t)^2} \quad \Rightarrow \quad \mathrm{E}(X) = M'(0) = \frac{1}{\lambda} \\ M''(t) &= \frac{2\lambda}{(\lambda - t)^3} \quad \Rightarrow \quad \mathrm{E}(X^2) = M''(0) = \frac{2}{\lambda^2} \\ &\vdots \\ M^{(k)}(t) &= \frac{k!\lambda}{(\lambda - t)^{k+1}} \Rightarrow \quad \mathrm{E}(X^k) = M^{(k)}(0) = \frac{k!}{\lambda^k}. \end{split}$$

Example: Calculating Moments Using MGF — N(0,1)

The MGF for N(0,1) is

$$M(t) = e^{t^2/2}$$

The derivatives and the moments are thus

$$\begin{array}{lll} M'(t) = te^{t^2/2} & \Rightarrow & \mathrm{E}(X) = M'(0) = 0 \\ M''(t) = e^{t^2/2} + t^2 e^{t^2/2} & \Rightarrow & \mathrm{E}(X^2) = M''(0) = 1 \\ M^{(3)}(t) = 3te^{t^2/2} + t^3 e^{t^2/2} & \Rightarrow & \mathrm{E}(X^3) = M^{(3)}(0) = 0 \\ M^{(4)}(t) = (3 + 3t + 3t^2 + t^3)e^{t^2/2} & \Rightarrow & \mathrm{E}(X^4) = M^{(4)}(0) = 3 \end{array}$$

MGF for a + bX

If X has the MGF $M_X(t)$ and Y=a+bX, then the MGF for Y is

$$\begin{aligned} M_Y(t) &= \mathcal{E}(e^{tY}) \\ &= \mathcal{E}(e^{at+btX}) \\ &= \mathcal{E}(e^{at}e^{btX}) \\ &= e^{at} \mathcal{E}(e^{btX}) \\ &= e^{at} M_X(bt) \end{aligned}$$

MGF for $N(\mu, \sigma^2)$

If $X \sim N(0,1)$, we know in L04 that

$$Y = \mu + \sigma X \sim N(\mu, \sigma^2).$$

As the MGF for X is known to be $M_X(t)=e^{t^2/2}$, we can obtain the MGF for $Y=\mu+\sigma X$ from $M_X(t)$ to be

$$M_Y(t) = e^{\mu t} M_X(\sigma t) = e^{\mu t} e^{\sigma^2 t^2/2} = e^{\mu t + \sigma^2 t^2/2}.$$

Cauchy Distribution Has No MGF

The Cauchy Distribution has the PDF

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad -\infty \le x < \infty.$$

Its MGF would be

$$\begin{split} M(t) &= \int_{-\infty}^{\infty} \frac{e^{tx}}{\pi (1+x^2)} \mathrm{d}x \\ &> \begin{cases} \int_{0}^{\infty} \frac{e^{tx}}{\pi (1+x^2)} \mathrm{d}x = \infty & \text{since } \lim_{x \to \infty} \frac{e^{tx}}{\pi (1+x^2)} = \infty \text{ if } t > 0, \\ \int_{-\infty}^{0} \frac{e^{tx}}{\pi (1+x^2)} \mathrm{d}x = \infty & \text{since } \lim_{x \to -\infty} \frac{e^{tx}}{\pi (1+x^2)} = \infty \text{ if } t < 0 \end{cases} \end{split}$$

Cauchy Distribution Has No MGF

The Cauchy Distribution has the PDF

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad -\infty \le x < \infty.$$

Its MGF would be

$$\begin{split} M(t) &= \int_{-\infty}^{\infty} \frac{e^{tx}}{\pi(1+x^2)} \mathrm{d}x \\ &> \begin{cases} \int_{0}^{\infty} \frac{e^{tx}}{\pi(1+x^2)} \mathrm{d}x = \infty & \text{since } \lim_{x \to \infty} \frac{e^{tx}}{\pi(1+x^2)} = \infty \text{ if } t > 0, \\ \int_{-\infty}^{0} \frac{e^{tx}}{\pi(1+x^2)} \mathrm{d}x = \infty & \text{since } \lim_{x \to -\infty} \frac{e^{tx}}{\pi(1+x^2)} = \infty \text{ if } t < 0 \end{cases} \end{split}$$

Remark

- If X has an MGF M(t) that exists for t in an open interval containing 0, then all the moments $\mathrm{E}(X^k)$ exist.
- If X doesn't have all the moments $\mathrm{E}(X^k)$, then X has a **heavier tail** than those with all the moments.

MGFs for Common Discrete Distributions

Name and range	PMF at k	Mean	Variance	MGF
$Bernoulli(p) \\ on\ \{0,1\}$	$\begin{cases} 1-p & \text{if } k=0\\ p & \text{if } k=1 \end{cases}$	p	p(1-p)	pe^t+1-p
$\begin{array}{c} Binomial(n,p) \\ on\ \{0,1,\dots,n\} \end{array}$	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(pe^t + 1 - p)^n$
$\begin{array}{c} Geometric(p) \\ on\ \{1,2,3\ldots\} \end{array}$	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$
$\label{eq:local_problem} \begin{array}{ c c c c c } \hline \text{Negative Binomial}(r,p) \\ \text{on } \{r,r+1,r+2,\ldots\} \end{array}$	$\binom{k-1}{r-1}p^r(1-p)^{k-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^t}{1-(1-p)e^t}\right)^r$
$\begin{array}{c} \operatorname{Poisson}(\lambda) \\ \operatorname{on}\ \{0,1,2,\ldots\} \end{array}$	$e^{-\lambda}rac{\lambda^k}{k!}$	λ	λ	$\exp(\lambda(e^t-1))$

▶ MGF for the Hypergeometric distribution exists but is complicated

MGFs for Common Continuous Distributions

Name	$PDF\; f(x)$	Range	Mean	Variance	$MGF\ M(t)$
	$\lambda e^{-\lambda x},$	$0 \le x < \infty$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda - t}, \ t < \lambda$
	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x},$				$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}, \ t < \lambda$
$Normal(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2},$	$-\infty < x < \infty$	μ	σ^2	$\exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$
Cauchy	$\frac{1}{\pi(1+x^2)},$			not exist	does not exist

▶ MGF for the Beta distribution exists but is complicated.

MGF for Sum of Independent R.V.'s

If X and Y are independent r.v.'s with MGF's $M_X(t)$ and $M_Y(t)$, then $M_{X+Y}(t)=M_X(t)M_Y(t)$ on the common interval where both MGF's exist.

Proof.

$$\begin{split} M_{X+Y}(t) &= \mathbf{E}(e^{t(X+Y)}) = \mathbf{E}(e^{tX}e^{tY}) \\ &= \mathbf{E}(e^{tX})\,\mathbf{E}(e^{tY}) \quad \text{since } X,Y \text{ are indep.} \\ &= M_X(t)M_Y(t) \end{split}$$

More generally, if X_1,\dots,X_n are independent with corresponding MGF $M_{X_i}(t)$'s, then the MGF for $T=\sum_{i=1}^n X_i$ is

$$M_T(t) = \mathbb{E}[e^{t\sum_{i=1}^n X_i}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}] = \prod_{i=1}^n M_{X_i}(t),$$

and it exists on the common interval where all MGF's exist.

The MGF Uniquely Determines the Distribution $(\star \star \star \star \star)$

If the moment-generating function M(t) exists for t in an open interval containing 0, like $(-t_0,t_0)$, for some $t_0>0$, then it uniquely determines the probability distribution.

That is, if X and Y have identical MGF

$$M_X(t) = M_Y(t) \quad \text{for all t in an open interval containing 0,} \\$$

then X and Y have the same probability distribution.

The MGF Uniquely Determines the Distribution $(\star \star \star \star \star)$

If the moment-generating function M(t) exists for t in an open interval containing 0, like $(-t_0,t_0)$, for some $t_0>0$, then it uniquely determines the probability distribution.

That is, if X and Y have identical MGF

$$M_X(t) = M_Y(t) \quad \text{for all t in an open interval containing 0,} \\$$

then X and Y have the same probability distribution.

 \triangleright **Ex1**. If the MGF of X is

$$M(t) = (1/2)^{10}(e^t + 1)^{10} \quad \Rightarrow \quad X \sim \text{Bin}(n = 10, p = 1/2).$$

Ex2. If the MGF of X is $M(t) = \exp(3(e^t - 1))$, what's the distribution of X?

The MGF Uniquely Determines the Distribution $(\star \star \star \star \star)$

If the moment-generating function M(t) exists for t in an open interval containing 0, like $(-t_0,t_0)$, for some $t_0>0$, then it uniquely determines the probability distribution.

That is, if X and Y have identical MGF

$$M_X(t) = M_Y(t) \quad {\rm for \ all} \ t \ {\rm in \ an \ open \ interval \ containing \ 0},$$

then X and Y have the same probability distribution.

 \triangleright **Ex1**. If the MGF of X is

$$M(t) = (1/2)^{10}(e^t + 1)^{10} \quad \Rightarrow \quad X \sim \text{Bin}(n = 10, p = 1/2).$$

Ex2. If the MGF of X is $M(t) = \exp(3(e^t - 1))$, what's the distribution of X? Poisson($\lambda = 3$)

Finding the Distribution of the Sum of Indep. R.V.'s Using MGF

Ex1. $X \sim N(\mu_x, \sigma_x^2)$ and $Y \sim N(\mu_y, \sigma_y^2)$ are independent, what's the distribution of X+Y?

Finding the Distribution of the Sum of Indep. R.V.'s Using MGF

Ex1. $X \sim N(\mu_x, \sigma_x^2)$ and $Y \sim N(\mu_y, \sigma_y^2)$ are independent, what's the distribution of X+Y?

Sol. The MGF for X + Y is

$$\begin{split} M(t) &= M_X(t) M_Y(t) = \exp\left(\mu_x t + \frac{\sigma_x^2 t^2}{2}\right) \exp\left(\mu_y t + \frac{\sigma_y^2 t^2}{2}\right) \\ &= \exp\left((\mu_x + \mu_y)t + \frac{(\sigma_x^2 + \sigma_y^2)t^2}{2}\right) \end{split}$$

which is the MGF for $N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$, meaning

$$X + Y \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2).$$

Finding the Distribution of the Sum of Indep. R.V.'s Using MGF

Ex2. What's the distribution of $\sum_{i=1}^{n} X_i$ for independent $X_i \sim \text{Poisson}(\lambda_i)$?

Sol. The MGF for X_i is $M_{X_i}(t) = \exp(\lambda_i(e^t - 1))$. The MGF for $\sum_{i=1}^n X_i$ is

$$M(t) = \prod_{i=1}^n \exp(\lambda_i(e^t - 1)) = \exp\left((e^t - 1)\sum_{i=1}^n \lambda_i\right),$$

which is the MGF for $Poisson(\sum_{i=1}^{n} \lambda_i)$, meaning

$$\sum_{i=1}^n X_i \sim \mathsf{Poisson}\left(\sum_{i=1}^n \lambda_i\right).$$

If X_1, X_2, \dots, X_n are i.i.d. with MGF $M_X(t)$, the MGF for $\sum_{i=1}^n X_i$ would be

$$M(t) = \mathrm{E}[e^{t\sum_{i=1}^n X_i}] = \prod^n \mathrm{E}[e^{tX_i}] = \prod^n M_X(t) = \left(M_X(t)\right)^n.$$

If X_1, X_2, \dots, X_n are i.i.d. with MGF $M_X(t)$, the MGF for $\sum_{i=1}^n X_i$ would be

$$M(t) = \mathrm{E}[e^{t\sum_{i=1}^n X_i}] = \prod^n \mathrm{E}[e^{tX_i}] = \prod^n M_X(t) = \left(M_X(t)\right)^n.$$

Ex3. If X_1, X_2, \dots, X_n are i.i.d. Exponential(λ), what's the distribution of $\sum_{i=1}^n X_i$?

If X_1, X_2, \dots, X_n are i.i.d. with MGF $M_X(t)$, the MGF for $\sum_{i=1}^n X_i$ would be

$$M(t) = \mathrm{E}[e^{t\sum_{i=1}^n X_i}] = \prod_{i=1}^n \mathrm{E}[e^{tX_i}] = \prod_{i=1}^n M_X(t) = \left(M_X(t)\right)^n.$$

Ex3. If X_1, X_2, \dots, X_n are i.i.d. Exponential(λ), what's the distribution of $\sum_{i=1}^n X_i$?

Sol. The MGF for Exponential(λ) is $M_X(t)=\frac{\lambda}{\lambda-t}$.

The MGF for $\sum_{i=1}^{n} X_i$ would be

$$M(t) = (M_X(t))^n = \left(\frac{\lambda}{\lambda - t}\right)^n,$$

which is the MGF for $Gamma(\alpha = n, \lambda)$, meaning

$$\sum_{i=1}^n X_i \sim \mathrm{Gamma}(\alpha=n,\lambda).$$

Ex4. If X_1, X_2, \dots, X_n are i.i.d. Geometric(p), what's the distribution of $\sum_{i=1}^n X_i$?

Ex4. If X_1, X_2, \dots, X_n are i.i.d. Geometric(p), what's the distribution of $\sum_{i=1}^n X_i$?

Sol. The MGF for $\operatorname{Geometric}(p)$ is $M_X(t) = \frac{pe^t}{1 - (1-n)e^t}$.

The MGF for $\sum_{i=1}^{n} X_i$ would be

$$M(t) = \left(M_X(t)\right)^n = \left(\frac{pe^t}{1 - (1 - p)e^t}\right)^n,$$

which is the MGF for $\operatorname{NegBin}(r=n,p)$, meaning

$$\sum_{i=1}^n X_i \sim \mathsf{NegBin}(r=n,p).$$

Joint Moment Generating Functions (Joint MGF's)

For any n random variables X_1,\dots,X_n , the joint moment generating function (joint MGF) is defined to be

$$M(t_1, \dots, t_n) = E[e^{t_1 X_1 + \dots + t_n X_n}].$$

▶ The MGF for an individual X_i can be obtained from the joint PDF by letting all but t_i be 0. That is,

$$M_{X_i}(t) = \mathbf{E}[e^{tX_i}] = M(0, \dots, 0, t, 0, \dots, 0)$$

where the t is in the ith place.

- The joint MGF uniquely determines the joint distribution of X_1, \dots, X_n $(\star \star \star \star \star)$, proof is too advanced for STAT 244
- **Corollary**: X_1, \dots, X_n are independent if and only if their joint MGF is the product of their marginal MGFs:

$$M(t_1, \dots, t_n) = M_{X_1}(t_1) \dots M_{X_n}(t_n).$$

Example: Proof of Independence by Joint MGF — Normal

Let X and Y be i.i.d. $N(\mu, \sigma^2)$. Prove that X + Y and X - Y are independent.

Proof. The joint MGF for X + Y and X - Y is

$$\begin{split} M(s,t) &= \mathrm{E}(e^{s(X+Y)+t(X-Y)}) \quad \text{(by definition)} \\ &= \mathrm{E}(e^{(s+t)X+(s-t)Y}) \\ &= \mathrm{E}(e^{(s+t)X}) \, \mathrm{E}(e^{(s-t)Y}) \quad \text{(by indep of } X,Y) \\ &= M_X(s+t) M_Y(s-t) \\ &= \exp\left(\mu(s+t) + \frac{\sigma^2(s+t)^2}{2}\right) \exp\left(\mu(s-t) + \frac{\sigma^2(s-t)^2}{2}\right) \\ &= \underbrace{\exp\left(2\mu s + \sigma^2 s^2\right)}_{\mathsf{MGF for } N(2\mu,2\sigma^2)} \underbrace{\exp\left(\sigma^2 t^2\right)}_{\mathsf{MGF for } N(0,2\sigma^2)} \end{split}$$

This shows

$$X+Y \sim N(2\mu, 2\sigma^2)$$
 and $X-Y \sim N(0, 2\sigma^2)$
 $X+Y$ and $X-Y$ are independent

Characteristic Functions

- Drawback of MGF: It may not exist.
- The *characteristic function* of a random variable X is defined to be

- $lackbox{}\phi(t)$ always exists since $|e^{it}|=1$, even for Cauchy distribution.
- $ightharpoonup \phi_X(t) = M_X(it)$ if $M_x(t)$ exists (See next page)
- $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$ if X and Y are independent
- ▶ The characteristic function uniquely determines the distribution

Characteristic Functions for Common Distributions

Name and range		PMF at k		MGF	Characteristic Function
$\begin{array}{c} Binomial(n,p) \\ on\ \{0,1,\dots,n\} \end{array}$		$\binom{n}{k} p^k (1-p)^{n-k}$		$(pe^t+1-p)^n$	$(pe^{it}+1-p)^n$
$\begin{array}{c} Geometric(p) \\ on\ \{1,2,3\ldots\} \end{array}$		$(1-p)^{k-1}p$		$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{pe^{it}}{1-(1-p)e^{it}}$
Negative Binomial (r, p) on $\{r, r+1, r+2, \ldots\}$		$\binom{k-1}{r-1}p^r(1-p)^{k-r}$		$\left(\frac{pe^t}{1-(1-p)e^t}\right)^r$	$\left(\frac{pe^{it}}{1 - (1 - p)e^{it}}\right)^r$
	$\begin{array}{c} Poisson(\lambda) \\ on \ \{0,1,2,\ldots\} \end{array}$		$e^{-\lambda} \frac{\lambda^k}{k!}$	$\exp(\lambda(e^t-1))$	$\exp(\lambda(e^{it}-1))$
Name	$PDF\; f(x)$		Range	MGF	Characteristic Function
$Exponential(\lambda)$	$\lambda e^{-\lambda x}, \qquad 0 \le x < \infty$		$\frac{\lambda}{\lambda - t}$	$rac{\lambda}{\lambda - it}$	
$Gamma(\alpha,\lambda)$	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}, 0 \le x < \infty$		$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$	$\left(rac{\lambda}{\lambda-it} ight)^lpha$	
$Normal(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty$			$\exp\left(\mu it - \frac{\sigma^2 t^2}{2}\right)$	
Cauchy	$\frac{1}{\pi(1+x^2)}, -\infty < x < \infty$		does not	$e^{- t }$	