STAT 24400 Lecture 6 Section 3.5 Conditional Distributions

Yibi Huang Department of Statistics University of Chicago

Conditional Distributions of Discrete Random Variables

Example 1 — Gas Station (Revisit)

A gas station has both **self-service** and **full-service** islands, each with a single regular unleaded pump with 2 hoses.

X= the # of hoses in use on the self-service island, and Y= the # of hoses in use on the full-service island

The joint PMF of X and Y:

What is
$$P(Y = 1 | X = 2)$$
?

p	o(x,y)	0	$_1^Y$	2	$\mathop{Row}_{p_X(x)} \mathop{Sum}$
_	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50

1	p(x,y)	0	$_1^Y$	2	$\begin{array}{c} \operatorname{Row}\operatorname{Sum}\\ p_X(x) \end{array}$
_	0	0.10	0.04	0.02	0.16
X	1	0.08	0.04 0.20	0.02 0.06	0.34
	2	0.06	0.14	0.30	0.50

By the definition of conditional probability,

$$P(Y = 1 \mid X = 2) = \frac{P(X = 2, Y = 1)}{P(X = 2)} = \frac{p(2, 1)}{p_X(2)} = \frac{0.14}{0.50} = 0.28.$$

	p(x, y)	0	$_1^Y$	2	$\begin{array}{c} Row\;Sum \\ p_X(x) \end{array}$
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50

By the definition of conditional probability,

$$P(Y = 1 \mid X = 2) = \frac{P(X = 2, Y = 1)}{P(X = 2)} = \frac{p(2, 1)}{p_X(2)} = \frac{0.14}{0.50} = 0.28.$$

The conditional PMF of Y given X=2 is

$$p_{Y|X}(y \mid x = 2) = \frac{P(X = 2, Y = y)}{P(X = 2)} = \frac{p(2, y)}{p_X(2)}$$

$$\frac{y}{p_{Y|X}(y \mid x = 2)} \begin{vmatrix} 0.06 \\ 0.50 \end{vmatrix} = 0.12 & \frac{0.14}{0.50} = 0.28 & \frac{0.30}{0.50} = 0.60$$

Similarly, the conditional PMF of Y given X=0 is

e conditional PMF of
$$Y$$
 given $X=0$ is
$$p_{Y|X}(y\mid x=0) = \frac{\mathrm{P}(X=0,Y=y)}{\mathrm{P}(X=0)} = \frac{p(0,y)}{p_X(0)}$$

$$\frac{y}{p_{Y|X}(y\mid x=0)} \mid \frac{0}{0.16} = 0.625 \quad \frac{0.04}{0.16} = 0.25 \quad \frac{0.02}{0.16} = 0.125$$

Similarly, the conditional PMF of Y given X=0 is

$$\begin{aligned} p_{Y|X}(y \mid x=0) &= \frac{\mathrm{P}(X=0,Y=y)}{\mathrm{P}(X=0)} = \frac{p(0,y)}{p_X(0)} \\ \frac{y}{p_{Y|X}(y \mid x=0)} & \frac{0}{0.16} = 0.625 & \frac{0.04}{0.16} = 0.25 & \frac{0.02}{0.16} = 0.125 \end{aligned}$$

and the conditional PMF of Y given X=1 is

$$\begin{split} p_{Y|X}(y\mid x=1) &= \frac{\mathrm{P}(X=1,Y=y)}{\mathrm{P}(X=1)} = \frac{p(1,y)}{p_X(1)} \\ \frac{y}{p_{Y|X}(y\mid x=1)} & \frac{0.08}{0.34} \approx 0.235 \quad \frac{0.20}{0.34} \approx 0.588 \quad \frac{0.06}{0.34} \approx 0.176 \end{split}$$

Conditional Distributions

Suppose X & Y are two discrete r.v.'s with joint PMF p(x,y) and marginal PMF's $p_X(x)$ and $p_Y(y)$ respectively

The **conditional PMF** for Y given X = x is

$$p_{Y|X}(y \mid x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{p(x, y)}{p_X(x)},$$

The **conditional PMF** for X given Y = y is

$$p_{X|Y}(x \mid y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x, y)}{p_Y(y)},$$

			Y		
	p(x, y)	0	1	2	$\begin{array}{ c c }\hline p_X(x)\\ \hline 0.16\\ \end{array}$
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50
	$p_Y(y)$	0.24	0.38	0.38	

			Y		
	p(x, y)	0	1	2	$\begin{array}{ c c }\hline p_X(x)\\ \hline 0.16\\ \end{array}$
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50
	$p_Y(y)$	0.24	0.38	0.38	

			Y		row
	$p(y \mid x)$	0	1	2	sum
	0	$\frac{0.10}{0.16} = 0.625$	$\frac{0.04}{0.16} = 0.25$	$\frac{0.02}{0.16} = 0.125$	1
X	1	$\frac{0.08}{0.34} \approx 0.235$	0.01	$\frac{0.06}{0.34} \approx 0.176$	1
	2	$\frac{0.06}{0.50} = 0.12$	$\frac{0.14}{0.50} = 0.28$	$\frac{0.30}{0.50} = 0.6$	1
	$p_Y(y)$	0.24	0.38	0.38	

- \blacktriangleright Each row is a PMF for Y given some x value
- \blacktriangleright Observed the row sums of $p_{Y\mid X}(y\mid x)$ are all 1

			Y		
	p(x, y)	0	1	2	$p_X(x)$
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50
	$\overline{p_Y(y)}$	0.24	0.38	0.38	

		Y		
$p(x \mid y)$	0	1	2	$p_X(x)$
0	$\frac{0.10}{0.24} \approx 0.417$	$\frac{0.04}{0.38} \approx 0.105$	$\frac{0.02}{0.38} \approx 0.053$	0.16
X 1	$\frac{0.08}{0.24} \approx 0.333$	$\frac{0.20}{0.38} \approx 0.526$	$\frac{0.06}{0.38} \approx 0.158$	0.34
2	$\frac{0.06}{0.24} = 0.25$	$\frac{0.14}{0.38} \approx 0.368$	$\frac{0.30}{0.38} \approx 0.790$	0.50
column sum	1	1	1	

- ightharpoonup Each column is a PMF for X given some y value
- \blacktriangleright Observed the column sums $p_{X\mid Y}(x\mid y)$ are all 1

In summary,

A conditional PMF of Y given X=x is $p_{Y\mid X}(y\mid x)=\frac{p(x,y)}{p_X(x)}$ which satisfies

$$0 \leq p_{Y\mid X}(y\mid x) \leq 1 \quad \text{and} \quad \sum_{x} p_{Y\mid X}(y\mid x) = 1, \quad \text{for all } x.$$

A conditional PMF of X given Y=y is $p_{X\mid Y}(x\mid y)=\frac{p(x,y)}{p_{Y}(y)}$ which satisfies

$$0 \leq p_{X\mid Y}(x\mid y) \leq 1 \quad \text{and} \quad \sum p_{X\mid Y}(x\mid y) = 1, \quad \text{for all } y.$$

Example 2 — Poisson

For independent r.v.'s $X_1 \sim \mathsf{Poisson}(\lambda_1)$ and $X_2 \sim \mathsf{Poisson}(\lambda_2)$, recall in L05, we show that

$$T=X_1+X_2\sim \mathsf{Poisson}(\lambda_1+\lambda_2).$$

 ${f Q}$: Given $T=X_1+X_2=t$, what's the conditional PMF of X_1 ?

Example 2 — Poisson

For independent r.v.'s $X_1 \sim \mathsf{Poisson}(\lambda_1)$ and $X_2 \sim \mathsf{Poisson}(\lambda_2)$, recall in L05, we show that

$$T = X_1 + X_2 \sim \mathsf{Poisson}(\lambda_1 + \lambda_2).$$

Q: Given $T = X_1 + X_2 = t$, what's the conditional PMF of X_1 ?

$$\begin{split} \mathbf{P}(X_1 = x \mid T = t) &= \frac{\mathbf{P}(\{X_1 = x\} \cap \{T = t\})}{\mathbf{P}(T = t)} \\ &= \frac{\mathbf{P}(\{X_1 = x\} \cap \{X_2 = t - x\})}{\mathbf{P}(T = t)} \\ &= \frac{e^{-\lambda_1} \lambda_1^x / x! \cdot e^{-\lambda_2} \lambda_2^{t - x} / (t - x)!}{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^t / t!} \\ &= \binom{t}{x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{t - x}, \ 0 \leq x \leq t. \end{split}$$

i.e., given $X_1+X_2=t,\,X_1\sim {\rm Bin}(t,\frac{\lambda_1}{\lambda_1+\lambda_2}).$

Conditional Distributions of Continuous Random Variables

Conditional Distributions of Continuous Random Variables

Suppose $X \ \& \ Y$ are two discrete r.v.'s with joint PDF f(x,y) and marginal PMF's $f_X(x)$ and $f_Y(y)$ respectively.

The **conditional PDF** for X given Y = y is

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}.$$

The **conditional PDF** for Y given X = x is

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}.$$

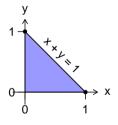
Example 3 — Deluxe Mixed Nuts

Recall in Lecture 5, the joint PDF for

X = the weight of almonds, and Y = the weight of cashews

in a can of mixed nuts is

$$f(x,y) = \begin{cases} 24xy & \text{if } 0 \leq x,y \leq 1, x+y < 1 \\ 0 & \text{otherwise} \end{cases}$$

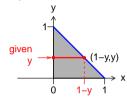


We calculated in L05 the marginal PDF's for X and for Y:

$$f_X(x) = 12x(1-x)^2, \quad f_Y(y) = 12y(1-y)^2, \text{ for } 0 \leq x,y \leq 1.$$

The conditional PDF $f_{X\mid Y}(x\mid y)$ of X (almond) given Y=y (cashew) is

$$f_{X\mid Y}(x\mid y) = \frac{f(x,y)}{f_Y(y)}$$



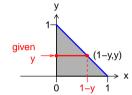
The conditional PDF $f_{X\mid Y}(x\mid y)$ of X (almond) given Y=y (cashew) is

$$f_{X|Y}(x\mid y) = \frac{f(x,y)}{f_Y(y)} = \frac{24xy}{12y(1-y)^2}$$



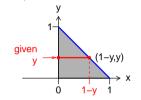
The conditional PDF $f_{X\mid Y}(x\mid y)$ of X (almond) given Y=y (cashew) is

$$\begin{split} f_{X|Y}(x\mid y) &= \frac{f(x,y)}{f_Y(y)} = \frac{24xy}{12y(1-y)^2} \\ &= \frac{2x}{(1-y)^2}, \quad \text{for } 0 \leq x \leq 1-y \,. \end{split}$$



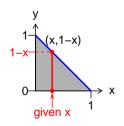
The conditional PDF $f_{X|Y}(x \mid y)$ of X (almond) given Y = y (cashew) is

$$\begin{split} f_{X|Y}(x\mid y) &= \frac{f(x,y)}{f_Y(y)} = \frac{24xy}{12y(1-y)^2} \\ &= \frac{2x}{(1-y)^2}, \quad \text{ for } 0 \leq x \leq 1-y \,. \end{split}$$



Similarly, the conditional PDF $f_{Y\mid X}(y\mid x)$ of Y (cashew) given X=x (almond) is

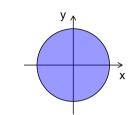
$$f_{Y|X}(y\mid x) = \frac{f(x,y)}{f_{Y}(x)} = \frac{2y}{(1-x)^2}, \quad \text{for } 0 \le y \le 1-x.$$



Example 4: Uniform Disk

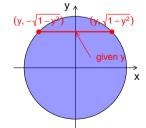
(X,Y) is chosen uniformly at random from the unit disk, $\{x^2+y^2\leq 1\}.$ The joint PDF is

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1, \\ 0, & \text{otherwise} \end{cases}$$



Marginal PMF of Y

$$\begin{split} f_Y(y) &= \int_{x = -\infty}^{\infty} f(x, y) \mathrm{d}x = \int_{x = -\sqrt{1 - y^2}}^{\sqrt{1 - y^2}} \frac{1}{\pi} \mathrm{d}x \\ &= \frac{2}{\pi} \sqrt{1 - y^2} \quad \text{for } -1 \le y \le 1 \end{split}$$



PMF for X is identical $f_X(x) = \frac{2}{\pi} \sqrt{1-x^2}$ for $-1 \leq x \leq 1.$

Example 4: Uniform Disk (2)

The Conditional PDF for X given Y = y is

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \frac{\frac{1}{\pi}}{\frac{2\sqrt{1-y^2}}{\pi}} = \frac{1}{2\sqrt{1-y^2}}$$

for $-\sqrt{1-y^2} \le x \le \sqrt{1-y^2}$, which is constant in x.

In other words, given Y = y,

$$X \sim \mathsf{Uniform}\left(-\sqrt{1-y^2},\ \sqrt{1-y^2}
ight).$$

Likewise, given X=x, Y is Uniform on $\left(-\sqrt{1-x^2},\sqrt{1-x^2}\right)$.

Note that

- \blacktriangleright the *marginal* PDF of Y (or of X) is not uniform, but
- ▶ the *conditional* PDF of $X \mid Y$ (or of $Y \mid X$) is uniform.

Example 5

Recall on p.40 of L05 slides, for X and Y w/ the joint PDF

$$f(x,y) = 6xy^2, \quad \text{ for } 0 \le x, y \le 1,$$

We found the marginal PDF's of X and of Y to be

$$f_X(x) = 2x, \ 0 < x < 1, \quad \text{and} \quad f_Y(y) = 3y^2, \ 0 < y < 1.$$

The conditional PDF of y given X = x is

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)} = \frac{6xy^2}{2x} = 3y^2, \quad 0 < y < 1.$$

which is exactly the marginal PDF of Y.

Recall in L05, we said X and Y are **independent** since $f(x,y)=6xy^2=(2x)(3y^2)=f_X(x)f_Y(y)$ for all $0\leq x,y\leq 1$ and $f(x,y)=0=f_X(x)f_Y(y)$ elsewhere.

Conditional = Marginal, when Independent

What is the conditional distribution of Y given X = x if X and Y are independent?

$$f_{Y|X}(y \mid X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y).$$

i.e., conditional PDF Y|X is the marginal PDF of Y.

Conditional = Marginal, when Independent

What is the conditional distribution of Y given X=x if X and Y are independent?

$$f_{Y|X}(y \mid X = x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)} = \frac{f_{X}(x)f_{Y}(y)}{f_{X}(x)} = f_{Y}(y).$$

i.e., conditional PDF Y|X is the marginal PDF of Y.

In fact, the following three are equivalent definitions of the independence of X and Y

- $f_{Y|X}(y\mid X=x)=f_Y(y)$ (conditional $Y\mid X=$ marginal of Y)
- $lackbox{} f_{X\mid Y}(x\mid Y=y)=f_X(x)$ (conditional $X\mid Y=$ marginal of X)

Conditional = Marginal, when Independent

What is the conditional distribution of Y given X=x if X and Y are independent?

$$f_{Y|X}(y \mid X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y).$$

i.e., conditional PDF Y|X is the marginal PDF of Y.

In fact, the following three are equivalent definitions of the independence of X and Y

- $f_{Y|X}(y\mid X=x)=f_Y(y)$ (conditional $Y\mid X=$ marginal of Y)

All the things above apply to joint/conditional/marginal ${\bf PMF}$ for discrete X,Y., too.