STAT 24400 Lecture 5 Section 3.1-3.3 Joint & Marginal Distributions Section 3.4 Independent Random Variables

Yibi Huang Department of Statistics University of Chicago

Why Consider Two or More Random Variables?

- Our focus so far has been on the distribution of a single random variable.
- Many situations involve two or more variables, for example,
 - counts of several species in ecological studies ($X_1 = \text{count of deers}, X_2 = \text{count of wolves, etc}$)
 - lacktriangle the x, y, and z components of wind velocity in atmospheric studies
- As the variables are often **correlated**, we need to consider them **jointly**, not separately

Joint Probability Distributions for Discrete R.V.

Joint Distribution of Two Discrete Random Variables

The joint probability mass function (joint PMF), or, simply the joint distribution, for discrete r.v. X_1, X_2, \dots, X_k is defined as

$$\begin{split} p(x_1, x_2, \dots, x_k) &= \mathrm{P}(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k). \\ &= \mathrm{P}(\{X_1 = x_1\} \cap \{X_2 = x_2\} \cap \dots \cap \{X_k = x_k\}) \end{split}$$

Joint Distribution of Two Discrete Random Variables

The joint probability mass function (joint PMF), or, simply the joint distribution, for discrete r.v. X_1, X_2, \dots, X_k is defined as

$$\begin{split} p(x_1, x_2, \dots, x_k) &= \mathrm{P}(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k). \\ &= \mathrm{P}(\{X_1 = x_1\} \cap \{X_2 = x_2\} \cap \dots \cap \{X_k = x_k\}) \end{split}$$

Properties of joint PMF:

- 1. $p(x_1, x_2, \dots, x_k) \geq 0$.
- 2. Define the probability for an event A as,

$$\mathbf{P}(A) = \mathbf{P}((x_1, x_2, \dots, x_k) \in A) = \sum_{(x_1, x_2, \dots, x_k) \in A} p(x_1, x_2, \dots, x_k) \,.$$

3. If we set $A = \Omega$ (sample space) in (2), then

$$\mathbf{P}(\Omega) = \sum_{x_1, x_2, \dots, x_k} p(x_1, x_2, \dots, x_k) = 1.$$

Example 1 — Gas Station

A gas station has both **self-service** and **full-service** islands, each with a single regular unleaded pump with 2 hoses.

X= the # of hoses in use on the self-service island, and Y= the # of hoses in use on the full-service island

The joint PMF of X and Y:

$$\begin{array}{c|ccccc} & & Y \text{ (full-service)} \\ p(x,y) & 0 & 1 & 2 \\ X & 0 & 0.10 & 0.04 & 0.02 \\ \text{self-} & 1 & 0.08 & 0.20 & 0.06 \\ \text{service} & 2 & 0.06 & 0.14 & 0.30 \\ \end{array}$$

What is P(X = 2 and Y = 1)?

Example 1 — Gas Station

A gas station has both **self-service** and **full-service** islands, each with a single regular unleaded pump with 2 hoses.

X= the # of hoses in use on the self-service island, and Y= the # of hoses in use on the full-service island

The joint PMF of X and Y:

What is
$$P(X = 2 \text{ and } Y = 1)$$
? $p(2, 1) = 0.14$

Example 1 — Gas Station (2)

		Y (full-service)			
	p(x, y)	0	1	Ź	
X	0	0.10	0.04	0.02	
self-	1	0.08			
service	2	0.06	0.14	0.30	

What is $P(X + Y \le 1)$?

Example 1 — Gas Station (2)

What is $P(X + Y \le 1)$?

$$P(X + Y \le 1) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 1, Y = 0)$$
$$= p(0, 0) + p(0, 1) + p(1, 0)$$
$$= 0.10 + 0.04 + 0.08 = 0.22$$

Example 1 — Gas Station (3)

		Y (tull-service)			
	p(x, y)	0 `	1	Ź	
X	0	0.10	0.04	0.02	
self-	1	0.08	0.20	0.06	
service	2	0.06	0.14	0.30	

What is the probability that more self-service hoses in use than full service hoses P(X > Y)?

Example 1 — Gas Station (3)

What is the probability that more self-service hoses in use than full service hoses P(X > Y)?

$$\begin{split} \mathbf{P}(X > Y) &= \mathbf{P}(X = 1, Y = 0) + \mathbf{P}(X = 2, Y = 0) + \mathbf{P}(X = 2, Y = 1) \\ &= p(1, 0) + p(2, 0) + p(2, 1) \\ &= 0.08 + 0.06 + 0.14 = 0.28 \end{split}$$

Example 2 — Extended Hypergeometric Distributions

R red balls, B blue balls, G green balls

Suppose n balls are selected at random without replacement from the box above. Let

- ▶ X be the number of red balls obtained, and
- ▶ Y be the number of blue balls obtained.

The joint PMF of X and Y is

$$p(x,y) = \frac{\binom{R}{x}\binom{B}{y}\binom{G}{n-x-y}}{\binom{R+B+G}{n}}, \qquad \begin{aligned} 0 &\leq x \leq R \\ 0 &\leq y \leq B \\ 0 &\leq n-x-y \leq G \end{aligned}$$

If R=1, B=G=2, the joint PMF for (X,Y) for n=2 draws is

$$\begin{array}{c|ccccc} p(x,y) & 0 & 1 & 2 \\ X \hline 0 & 1/10 & 4/10 & 1/10 \\ 1 & 2/10 & 2/10 & 0 \end{array}$$

Example 3 — Coin & Die

Consider the game that, you toss a coin & roll a die at each round. If the coin lands heads, you win a prize, otherwise you win nothing. If the die shows a 1, then you stop playing, otherwise you continue. Find the joint PMF for X and Y below.

 $X={\it the}\ \#\ {\it of}\ {\it rounds}\ {\it you}\ {\it play},\ {\it and}\ Y={\it of}\ {\it times}\ {\it you}\ {\it win}.$

Example 3 — Coin & Die

Consider the game that, you toss a coin & roll a die at each round. If the coin lands heads, you win a prize, otherwise you win nothing. If the die shows a 1, then you stop playing, otherwise you continue. Find the joint PMF for X and Y below.

 $X={\sf the}\ \#\ {\sf of}\ {\sf rounds}\ {\sf you}\ {\sf play},\ {\sf and}\ Y={\sf of}\ {\sf times}\ {\sf you}\ {\sf win}.$

Sol. Observe $X \sim \operatorname{Geometric}(1/6)$ since X = # of rolls needed to get the first \bullet . Given X = x, $Y \sim \operatorname{Bin}(x, 1/2)$.

The joint PMF is thus

$$\begin{split} p(x,y) &= \mathrm{P}(X=x,Y=y) = \mathrm{P}(X=x) \mathrm{P}(Y=y \mid X=x) \\ &= \underbrace{\left(\frac{5}{6}\right)^{x-1}\frac{1}{6}}_{\text{from Geom. distrib.}} \underbrace{\left(\frac{x}{y}\right)\left(\frac{1}{2}\right)^{y}\left(\frac{1}{2}\right)^{x-y}}_{\text{from Binomial distrib.}} \end{split}$$

for $1 \le x < \infty$ and $0 \le y \le x$.

Marginal Distribution

	p(x, y)	0	$\stackrel{Y}{1}$	2	Row Sum
	0	0.10	0.04	0.02	
X	1	0.08	0.04	0.06	
	2	0.06	0.14	0.30	

$$P(X = 0) =$$

$$\begin{array}{c|ccccc} p(x,y) & 0 & 1 & 2 & \text{Row Sum} \\ \hline 0 & 0.10 & 0.04 & 0.02 & 0.16 \\ X & 1 & 0.08 & 0.20 & 0.06 \\ 2 & 0.06 & 0.14 & 0.30 & \end{array}$$

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$$

= 0.10 + 0.04 + 0.02 = 0.16

$$\begin{array}{c|ccccc} p(x,y) & 0 & 1 & 2 & \text{Row Sum} \\ \hline 0 & 0.10 & 0.04 & 0.02 & 0.16 \\ X & 1 & 0.08 & 0.20 & 0.06 & 0.34 \\ 2 & 0.06 & 0.14 & 0.30 & & & \\ \end{array}$$

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$$

= 0.10 + 0.04 + 0.02 = 0.16

$$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$$

1	p(x, y)	0	$\stackrel{Y}{1}$	2	Row Sum
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$$

= 0.10 + 0.04 + 0.02 = 0.16

$$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$$

 $P(X = 2) = 0.06 + 0.14 + 0.30 = 0.50$

$$\begin{array}{c|ccccc} p(x,y) & 0 & 1 & 2 & \begin{array}{c|cccc} Row & Sum \\ \hline 0 & 0.10 & 0.04 & 0.02 & 0.16 \\ X & 1 & 0.08 & 0.20 & 0.06 & 0.34 \\ 2 & 0.06 & 0.14 & 0.30 & 0.50 \\ \end{array}$$

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$$

= 0.10 + 0.04 + 0.02 = 0.16

$$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$$

 $P(X = 2) = 0.06 + 0.14 + 0.30 = 0.50$

			Y	
	p(x, y)	0	1	2
	0	0.10	0.04 0.20 0.14	0.02
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30
Columi	า			

$$P(Y = 0) =$$

$$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)$$

= 0.10 + 0.08 + 0.06 = 0.24

			Y	
	p(x, y)	0	1	2
	0	0.10	0.04	0.02
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30
Column sum	1	0.24	0.38	

$$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)$$

= 0.10 + 0.08 + 0.06 = 0.24

$$P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38$$

$$\begin{split} \mathbf{P}(Y=0) &= \mathbf{P}(X=0, Y=0) + \mathbf{P}(X=1, Y=0) + \mathbf{P}(X=2, Y=0) \\ &= 0.10 + 0.08 + 0.06 = 0.24 \end{split}$$

$$P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38$$

 $P(Y = 2) = 0.02 + 0.06 + 0.30 = 0.38$

$$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)$$

= 0.10 + 0.08 + 0.06 = 0.24

$$P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38$$

 $P(Y = 2) = 0.02 + 0.06 + 0.30 = 0.38$

Marginal Distribution

The marginal probability mass functions (marginal PMF's) of X and of Y are obtained by summing p(x,y) over values of the other variable.

$$p_X(x) = \sum\nolimits_y p(x,y), \quad p_Y(y) = \sum\nolimits_x p(x,y).$$

We call them **marginal distributions** because they show up at the table margins when the joint distribution is written in a tabular form

Example 2 — Extended Hypergeometric — Marginal

For X= the # of red balls and Y= the # of blue balls obtained from drawing n balls at random w/o replacement from the box:

R red balls, R blue balls, R green balls ,

recall the joint PMF of X and Y is

$$p(x,y) = \frac{\binom{R}{x}\binom{B}{y}\binom{G}{n-x-y}}{\binom{R+B+G}{n}}, \qquad \begin{aligned} 0 &\leq x \leq R, \\ 0 &\leq y \leq B, \\ 0 &\leq n-x-y \leq G. \end{aligned}$$

Example 2 — Extended Hypergeometric — Marginal

For X= the # of red balls and Y= the # of blue balls obtained from drawing n balls at random w/o replacement from the box:

R red balls, R blue balls, R green balls ,

recall the joint PMF of X and Y is

$$p(x,y) = \frac{\binom{R}{x}\binom{B}{y}\binom{G}{n-x-y}}{\binom{R+B+G}{n}}, \qquad \begin{aligned} 0 &\leq x \leq R, \\ 0 &\leq y \leq B, \\ 0 &\leq n-x-y \leq G. \end{aligned}$$

The marginal PMF of X is $p_X(x) = \sum_{y} p(x, y)$

$$p_X(x) = \sum_y \frac{\binom{R}{x}\binom{B}{y}\binom{G}{n-x-y}}{\binom{R+B+G}{n}} = \frac{\binom{R}{x}\sum_y \binom{B}{y}\binom{G}{n-x-y}}{\binom{R+B+G}{n}} = \frac{\binom{R}{x}\binom{B+G}{n-x}}{\binom{R+B+G}{n}}.$$

where $\sum_y {B \choose y} {G \choose n-x-y} = {B+G \choose n-x}$ comes from the Vandermonde identity ${m+n \choose r} = \sum_{k=0}^r {m \choose k} {n \choose r-k}$. Thus X is hypergeometric.

Example 3 — Coin & Die — Marginal of Y

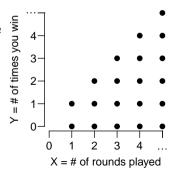
For the coin & dice game, recall the joint PMF for X=# of rounds played and Y=# of times you win is

$$p(x,y) = \left(\frac{5}{6}\right)^{x-1} \left(\frac{1}{6}\right) \cdot {x \choose y} \left(\frac{1}{2}\right)^y \left(\frac{1}{2}\right)^{x-y}, \quad 1 \le x < \infty$$
$$0 \le y \le x.$$

Note the joint PMF is only defined at the black dots on the right.

The marginal PMF for $Y=(\#\mbox{ of times you win})$ is

$$p_Y(y) = \sum_{x=\max(1,y)}^{\infty} \left(\frac{5}{6}\right)^{x-1} \left(\frac{1}{6}\right) {x \choose y} \left(\frac{1}{2}\right)^x.$$



For y = 0.

$$p_Y(0) = \sum_{s=1}^{\infty} \left(\frac{5}{6}\right)^{x-1} \!\! \left(\frac{1}{6}\right) \left(\frac{1}{2}\right)^x = \frac{1}{12} \sum_{s=1}^{\infty} \left(\frac{5}{12}\right)^{x-1} \!\! = \frac{1}{12} \frac{1}{(1-5/12)} = \frac{1}{7}.$$

For y = 1, 2, 3, ...,

$$\begin{split} p_Y(y) &= \sum_{x=y}^{\infty} \left(\frac{5}{6}\right)^{x-1} \! \left(\frac{1}{6}\right) {x \choose y} \left(\frac{1}{2}\right)^x = \frac{1}{5} \left(\frac{5}{12}\right)^y \sum_{x=y}^{\infty} {x \choose y} \left(\frac{5}{12}\right)^{x-y} \\ &= \frac{1}{5} \left(\frac{5}{12}\right)^y \frac{1}{(1-5/12)^{y+1}} = \frac{12}{35} \left(\frac{5}{7}\right)^y. \end{split}$$

where $\sum_{x=y}^{\infty} {x \choose y} \left(\frac{5}{12}\right)^{x-y} = 1/(1-5/12)^{y+1}$ comes from the **Negative Binomial expansion** in L03 that

$$\sum_{k=-m}^{\infty} {k \choose m} u^{k-m} = \frac{1}{(1-u)^{m+1}}.$$

Example 5 — Sum of Independent Poisson R.V.'s

Suppose $X_1\sim {\sf Poisson}(\lambda_1)$ and $X_2\sim {\sf Poisson}(\lambda_2)$ are independent. Find the PMF of $T=X_1+X_2.$

Example 5 — Sum of Independent Poisson R.V.'s

Suppose $X_1\sim {\sf Poisson}(\lambda_1)$ and $X_2\sim {\sf Poisson}(\lambda_2)$ are independent. Find the PMF of $T=X_1+X_2.$

Strategy: Find the joint PMF of X_1 and T, and then sum over X_1 to obtain the marginal PMF of T.

Example 5 — Sum of Independent Poisson R.V.'s

Suppose $X_1 \sim \mathsf{Poisson}(\lambda_1)$ and $X_2 \sim \mathsf{Poisson}(\lambda_2)$ are independent. Find the PMF of $T = X_1 + X_2$.

- Strategy: Find the joint PMF of X_1 and T, and then sum over X_1 to obtain the marginal PMF of T.
- ▶ To find the joint PMF of X_1 and Y, the key is to realize that $\{X_1 = x, T = t\}$ means $\{X_1 = x, X_2 = t x\}$,

$$\begin{split} p(x,t) &= \mathrm{P}(X_1 = x, T = t) \\ &= \mathrm{P}(X_1 = x, X_2 = t - x) \\ &= \mathrm{P}(X_1 = x) \mathrm{P}(X_2 = t - x) \text{ (by indep. of } X_1 \& X_2) \\ &= e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{t-x}}{(t-x)!} \end{split}$$

for $0 \le x \le t < \infty$.

 $p(x,t)=e^{-\lambda_1}\frac{\lambda_1^x}{x!}e^{-\lambda_2}\frac{\lambda_2^{t-x}}{(t-x)!},\quad \text{for } 0\leq x\leq t<\infty.$

Summing over x, we get the marginal PMF of T

The joint PMF of X_1 and $T = X_1 + X_2$ is

$$p_T(t) = \sum_{x=0}^t p(x,t) = \sum_{x=0}^t e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{t-x}}{(t-x)!} = \frac{e^{-\lambda_1 - \lambda_2}}{t!} \sum_{x=0}^t \frac{t!}{x!(t-x)!} \lambda_1^x \lambda_2^{t-x}$$

$$p_T(t) = \sum_{t=0}^{t} p(x, t) = \sum_{t=0}^{t} e^{-\lambda_1} \frac{\lambda_1^x}{x!} e^{-\lambda_2} \frac{\lambda_2^{t-x}}{(t-x)!}$$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$

 $= \frac{e^{-\lambda_1 - \lambda_2}}{t!} \sum_{t=0}^{t} {t \choose x} \lambda_1^x \lambda_2^{t-x} \quad (*)$

 $=e^{-\lambda_1-\lambda_2}\frac{(\lambda_1+\lambda_2)^t}{\mu}.$

At the step (*), $\sum_{x=0}^{t} {t \choose x} \lambda_1^x \lambda_2^{t-x} = (\lambda_1 + \lambda_2)^t$ comes from the Binomial expansion

This shows $T = X_1 + X_2 \sim \mathsf{Poisson}(\lambda_1 + \lambda_2)$.

Joint Distribution of Continuous Random Variables

Joint Distribution of Two Continuous Random Variables

Let X and Y be continuous rv. Then f(x,y) is their joint probability density function or joint PDF for X and Y if for any two-dimensional set A

$$P[(X,Y) \in A] = \iint_A f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

In particular, if A is the two-dimensional rectangle $\{a \leq x \leq b, c \leq y \leq d\}$, then

$$P[(X,Y) \in A] = P(a \le X \le b, c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy$$

Conditions for a joint PDF

- lt must be nonnegative: $f(x,y) \ge 0$ for all x and y
- $\iint f(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1$

Each can of mixed nuts contains almonds, cashews, and peanuts

- Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*
- ▶ Weights of the 3 types of nuts in a can are random but the **total** is **exactly 1 lb**

- Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*
- ▶ Weights of the 3 types of nuts in a can are random but the **total** is **exactly 1 lb**
- In a randomly selected can, let

 $X=\ \mbox{weight of almonds, and}\ Y=\ \mbox{weight of cashews.}$

The weight of peanuts in the can is thus (1-X-Y)

- Each can of mixed nuts contains almonds, cashews, and peanuts
- ▶ Weights of the 3 types of nuts in a can are random but the **total** is **exactly 1 lb**
- In a randomly selected can, let

$$X=\ \mbox{weight of almonds, and}\ Y=\ \mbox{weight of cashews.}$$

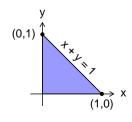
The weight of peanuts in the can is thus (1 - X - Y)

 \blacktriangleright Natural constraints on X & Y:

$$0 \leq X \leq 1, \quad 0 \leq Y \leq 1, \quad X+Y < 1$$

 \blacktriangleright Joint PDF of X & Y:

$$f(x,y) = \begin{cases} 24xy & \text{if } 0 \leq x \leq 1, \ 0 \leq y \leq 1, \ x+y < 1 \\ 0 & \text{otherwise} \end{cases}$$



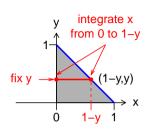
Checking Conditions on a Joint PDF

Clearly, $f(x,y) \ge 0$. It remains to check $\iint f(x,y) dx dy = 1$.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{1} \int_{0}^{1-y} 24xy dx dy$$

To compute the double integral above,

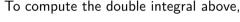
1. hold one variable fixed (e.g., y)



Checking Conditions on a Joint PDF

Clearly, $f(x,y) \ge 0$. It remains to check $\iint f(x,y) dx dy = 1$.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d}x \mathrm{d}y = \int_{0}^{1} \int_{0}^{1-y} 24xy \, \mathrm{d}x \, \mathrm{d}y$$

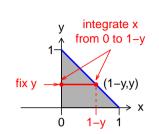


- 1. hold one variable fixed (e.g., y)
- integrate the other variable x along the line of the fixed y
 key: express the end points of the line in terms of the fixed y, which will be the upper and lower limits for the integral over x

$$\int_{0}^{1-y} 24xy \, dx = 12x^{2}y \bigg|_{0}^{x=1-y} = 12(1-y)^{2}y$$

3. integrate the variable y that is fixed in the prior steps

$$\int_0^1 \int_0^{1-y} 24xy \, dx \, dy = \int_0^1 12(1-y)^2 y \, dy = 6y^2 - 8y^3 + 3y^4 \Big|_0^1 = 1.$$



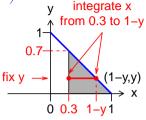
22 / 44

What is P(X > 0.3) = P(at least 30% almonds in a can)?

What is P(X > 0.3) = P(at least 30% almonds in a can)?

$$P(X > 0.3) = \iint_{x>0.3} f(x,y) dxdy = \int_0^{0.7} \int_{0.3}^{1-y} 24xy dxdy$$
 fix y

where



$$\int_{0.3}^{1-y} 24xy \, dx = 12x^2y \bigg|_{x=0.3}^{x=1-y} = 12((1-y)^2 - 0.3^2)y = 12(0.91y - 2y^2 + y^3).$$

Finding Probabilities From the Joint PDF $\mathrm{P}(X>0.3)$

What is P(X > 0.3) = P(at least 30% almonds in a can)?

$$P(X > 0.3) = \iint_{x>0.3} f(x,y) dxdy = \int_0^{0.7} \int_{0.3}^{1-y} 24xy dxdy$$
 fix y fix y

where

$$\int_{0.3}^{1-y} 24xy \, dx = 12x^2 y \bigg|_{x=0.3}^{x=1-y} = 12((1-y)^2 - 0.3^2)y = 12(0.91y - 2y^2 + y^3).$$

Putting it back to the double integral, we get

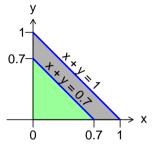
$$\int_{0}^{0.7} \int_{0.3}^{1-y} 24xy \, dx \, dy = \int_{0}^{0.7} 12(0.91y - 2y^2 + y^3) \, dy = 5.46y^2 - 8y^3 + 3y^4 \Big|_{0}^{0.7} = 0.6517.$$

What is the probability that less than 30% are peanuts in a randomly selected can?

=

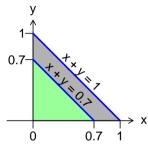
=

=



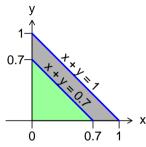
What is the probability that less than 30% are peanuts in a randomly selected can?

$$\begin{split} & P(\text{less than 30\% are Peanuts}) \\ &= P(\text{at least 70\% are almonds or cashews}) \\ &= \\ &= \end{split}$$



What is the probability that less than 30% are peanuts in a randomly selected can?

$$\begin{split} & \text{P(less than 30\% are Peanuts)} \\ & = \text{P(at least 70\% are almonds or cashews)} \\ & = \text{P}(X+Y>0.7) \\ & = \end{split}$$



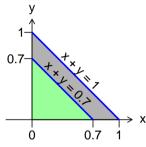
What is the probability that less than 30% are peanuts in a randomly selected can?

P(less than 30% are Peanuts)

= P(at least 70% are almonds or cashews)

$$= P(X + Y > 0.7)$$

$$=1-\mathrm{P}(X+Y\leq 0.7)$$
 by Complement Rule



Finding Probabilities From the Joint PDF $\mathrm{P}(X+Y>0.7)$

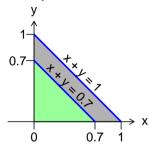
What is the probability that less than 30% are peanuts in a randomly selected can?

P(less than 30% are Peanuts)

 $= \! \mathrm{P}(\text{at least 70\% are almonds or cashews})$

$$= P(X + Y > 0.7)$$

$$=1-\mathrm{P}(X+Y\leq 0.7)$$
 by Complement Rule



where

$$\mathrm{P}(X+Y>0.7)=$$
 integral of $f(x,y)$ over the **gray** region $\mathrm{P}(X+Y<0.7)=$ integral of $f(x,y)$ over the **green** region

Finding Probabilities From the Joint PDF $\mathrm{P}(X+Y>0.7)$ (Cont'd)

$$P(X+Y<0.7) = \iint_{x+y<0.7} f(x,y) \mathrm{d}x \mathrm{d}y = \int_0^{0.7} \int_0^{0.7-y} 24xy \, \mathrm{d}x \mathrm{d}y = \int_0^{0.7-y} \int_0^{0.7-y}$$

Finding Probabilities From the Joint PDF $\mathrm{P}(X+Y>0.7)$ (Cont'd)

$$P(X+Y<0.7) = \iint_{x+y<0.7} f(x,y) \mathrm{d}x \mathrm{d}y = \int_0^{0.7} \int_0^{0.7-y} 24xy \, \mathrm{d}x \mathrm{d}y \qquad \text{integrate x from 0 to 0.7-y}$$
 where
$$\int_0^{0.7-y} 24xy \, \mathrm{d}x = 12x^2y \bigg|_{x=0}^{x=0.7-y} = 12(0.7-y)^2y.$$
 Fix y fix

$$\int_0^{0.7} \int_0^{0.7-y} 24xy \, dx \, dy = \int_0^{0.7} 12(0.7-y)^2 y \, dy = \int_0^{0.7} (-4y) \, d(0.7-y)^3$$
$$= -4y(0.7-y)^3 \Big|_0^{0.7} + \int_0^{0.7} 4(0.7-y)^3 \, dy$$
$$= 0 - (0.7-y)^4 \Big|_0^{0.7} = (0.7)^4 = 0.2401.$$

Hence, P(less than 30% peanut) = 1 - 0.2401 = 0.7599.

Obtaining Marginal PDF's From Joint PDF

Given the joint PDF f(x,y) of two continuous random variables, the *marginal* probability density function (p), or simply the marginal density, of X and Y, can be obtained by integrating the joint PDF over the other variable.

$$\begin{split} f_X(x) &= \int_{-\infty}^{\infty} f(x,y) \, \mathrm{d}y, \quad \text{for } -\infty < x < \infty, \\ f_Y(y) &= \int_{-\infty}^{\infty} f(x,y) \, \mathrm{d}x, \quad \text{for } -\infty < y < \infty. \end{split}$$

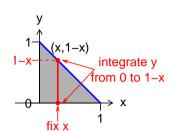
Recall the **marginal PMF's** of discrete random variables are obtained by summing the joint PMF over values of the other variable.

$$p_X(x) = \sum\nolimits_y p(x,y), \quad p_Y(y) = \sum\nolimits_x p(x,y).$$

Back to Example 6 (Deluxe Mixed Nuts)

The marginal PDFs of X (almond) is

$$\begin{split} f_X(x) &= \int_{-\infty}^{\infty} f(x,y) \mathrm{d}y = \int_{0}^{1-x} 24xy \mathrm{d}y = 12xy^2 \Big|_{y=0}^{y=1-x} \\ &= 12x(1-x)^2, \text{ for } 0 \leq x \leq 1. \end{split}$$



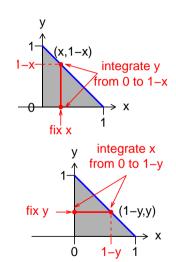
Back to Example 6 (Deluxe Mixed Nuts)

The marginal PDFs of X (almond) is

$$\begin{split} f_X(x) &= \int_{-\infty}^{\infty} f(x,y) \mathrm{d}y = \int_0^{1-x} 24xy \mathrm{d}y = 12xy^2 \Big|_{y=0}^{y=1-x} \\ &= 12x(1-x)^2, \text{ for } 0 \leq x \leq 1. \end{split}$$

The marginal PDFs of Y (cashew) is

$$\begin{split} f_Y(y) &= \int_{\infty}^{\infty} f(x,y) \mathrm{d}x = \int_{0}^{1-y} 24xy \mathrm{d}x = 12x^2 y \bigg|_{x=0}^{x=1-y} \\ &= 12y(1-y)^2, \text{ for } 0 \leq y \leq 1 \,. \end{split}$$



Joint Cumulative Distribution Functions (Joint CDF)

Joint Cumulative Distribution Functions (Joint CDF)

The joint cumulative distribution function of the k random variables X_1,X_2,\dots,X_k is the function defined by

$$F(x_1, \dots, x_k) = P(X_1 \le x_1, \dots, X_k \le x_k).$$

The random variables X_1, X_2, \dots, X_k can be discrete or continuous, or some be discrete and some be continuous.

Properties of Joint CDF for Two Random Variables

The joint CDF for any two random variables (X,Y) has the following properties

- 1. $\lim_{x\to-\infty}F(x,y)=F(-\infty,y)=0$ for all y
- 2. $\lim_{y\to -\infty} F(x,y) = F(x,-\infty) = 0$ for all x
- 3. $\lim_{x\to\infty} \lim_{y\to\infty} F(x,y) = F(\infty,\infty) = 1$
- 4. Right-continuous:

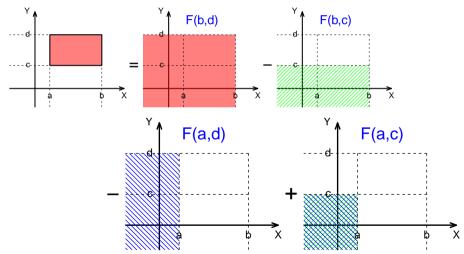
$$\lim_{h \to 0+} F(x+h, y) = \lim_{h \to 0+} F(x, y+h) = F(x, y)$$

for all x and y

Properties of Joint CDF for Two Random Variables

5. Non-decreasing: For all a < b and c < d,

$$\mathbf{P}(a < X \leq b, c < Y \leq d) = F(b,d) - F(b,c) - F(a,d) + F(a,c) \geq 0$$



Joint PDF & CDF for Continuous R.V.'s

If f(x,y) is the joint PDF for X and Y, their joint CDF is

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv.$$

Conversely, if F(x,y) is the joint CDF for X and Y, their joint PDF is

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y).$$

Independent Random Variables

Independent Random Variables

 \blacktriangleright Recall that two events A and B are independent if

$$P(A \cap B) = P(A)P(B)$$

▶ Two random variables X and Y are independent if

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$

for any sets A and B.

▶ Two discrete random variables X and Y are independent if and only if

$$p(x,y) = p_X(x)p_Y(y) \quad \text{for all } x \text{ and } y,$$

i.e., the joint PMF is the product of their marginal PMF's.

Independent Continous Random Variables

Two continuous random variables X and Y are independent if and only if

$$F(x,y) = F_X(x)F_Y(y)$$
 for all x and y ,

i.e., the joint CDF is the product of their marginal CDF's.

Their joint PDF is

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y) = \frac{\partial^2}{\partial x \partial y} F_X(x) F_Y(y) = F_X'(x) F_Y'(y) = f_X(x) f_Y(y).$$

Conversely, if $f(x,y) = f_X(x) f_Y(y)$, their joint PDF is

$$\begin{split} F(x,y) &= \int_{-\infty}^x \int_{-\infty}^y f(u,v) du dv = \int_{-\infty}^x \int_{-\infty}^y f_X(u) f_Y(v) du dv \\ &= \int_{-\infty}^x f_X(u) du \int_{-\infty}^y f_Y(v) dv = F_X(x) F_Y(y). \end{split}$$

i.e., independent if and only if joint PDF = Product of marginal PDF's

			y		
p	o(x,y)	1	2	3	
	1	0.05	0.10	0.05	
x	2	0.10	0.40	0.10	
	3	0.05	0.10	0.05	

			y		
	p(x, y)	1	2	3	$p_X(x)$
	1	0.05	0.10	0.05	0.20
x	2	0.05 0.10	0.40	0.10 0.05	0.60
	3	0.05	0.10	0.05	0.20
	$f_Y(y)$	0.20	0.60	0.20	

1. Find the marginal distributions

			y		
	p(x, y)	1	2	3	$p_X(x)$
	1	0.05	0.10	0.05	0.20
x	2	0.10	0.40	0.10	0.60
	3	0.05	0.10	0.05	0.20
	$f_Y(y)$	0.20	0.60	0.20	

- 1. Find the marginal distributions
- 2. Check whether

$$p(x,y) = p_X(x)p_Y(y)$$

			y		
p	$\rho(x,y)$	1	2	3	$p_X(x)$
_	1	0.05	0.10	0.05	0.20
x	2	0.10	0.40 0.10	0.10 0.05	0.60
	3	0.05	0.10	0.05	0.20
-	$f_Y(y)$	0.20	0.60	0.20	

- 1. Find the marginal distributions
- 2. Check whether

$$p(x,y) = p_X(x)p_Y(y)$$

for all possible x, y pairs.

- $p(1,1) = 0.05 \neq 0.2 \times 0.2 = p_X(1)p_Y(1).$
- ightharpoonup X and Y are NOT independent.

Given the marginal PMFs of two **independent** r.v.'s, X and Y, find their joint PMF.

		y		
p(x, y)	1	2	3	$p_X(x)$
1				0.2
x 2				0.6
3				0.2
$p_Y(y)$	0.2	0.6	0.2	

- 1. $p(1,1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1,2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x,y) by $p_X(x)p_Y(y)$ for all x,y pairs.

Given the marginal PMFs of two **independent** r.v.'s, X and Y, find their joint PMF.

		y		
p(x, y)	1	2	3	$p_X(x)$
1	0.04			0.2
x 2				0.6
3				0.2
$p_Y(y)$	0.2	0.6	0.2	

- 1. $p(1,1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1,2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x,y) by $p_X(x)p_Y(y)$ for all x,y pairs.

Given the marginal PMFs of two **independent** r.v.'s, X and Y, find their joint PMF.

		y		
p(x, y)	1	2	3	$p_X(x)$
1	0.04	0.12		0.2
x 2				0.6
3				0.2
$p_Y(y)$	0.2	0.6	0.2	

- 1. $p(1,1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1,2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x,y) by $p_X(x)p_Y(y)$ for all x,y pairs.

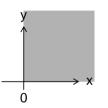
Given the marginal PMFs of two **independent** r.v.'s, X and Y, find their joint PMF.

			y		
1	o(x, y)	1	2	3	$p_X(x)$
	1	0.04	0.12	0.04	0.2
Х	2	0.12	0.12 0.36 0.12	0.12	0.6
	3	0.04	0.12	0.04	0.2
	$p_Y(y)$	0.2	0.6	0.2	

- 1. $p(1,1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1,2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x,y) by $p_X(x)p_Y(y)$ for all x,y pairs.

Suppose the lifetimes X and Y of Batteries A and B are independent with PDFs

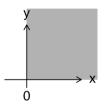
$$f_X(x)=e^{-x}\quad\text{and}\quad f_Y(y)=2e^{-2y},$$
 for $0< x,y<\infty$, then their joint PDF is
$$f(x,y)=f_X(x)f_Y(y)=2e^{-(x+2y)},\quad 0< x,y<\infty.$$



Finding Joint PDF From Marginal PDF's When Independent

Suppose the lifetimes X and Y of Batteries A and B are independent with PDFs

$$f_X(x)=e^{-x}\quad\text{and}\quad f_Y(y)=2e^{-2y},$$
 for $0< x,y<\infty$, then their joint PDF is
$$f(x,y)=f_X(x)f_Y(y)=2e^{-(x+2y)},\quad 0< x,y<\infty.$$



$$\mathbf{Q}$$
: $P(X < Y) = P(Battery A dies before Battery B) =?$

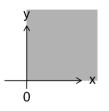
Finding Joint PDF From Marginal PDF's When Independent

Suppose the lifetimes X and Y of Batteries A and B are independent with PDFs

$$f_X(x)=e^{-x}\quad\text{and}\quad f_Y(y)=2e^{-2y},$$

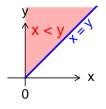
for $0 < x, y < \infty$, then their joint PDF is

$$f(x,y) = f_X(x) f_Y(y) = 2e^{-(x+2y)}, \quad 0 < x, y < \infty.$$



$$\mathbf{Q}$$
: $P(X < Y) = P(Battery A dies before Battery B) =?$

$$P(X < Y) = \iint_{x \le y} f(x, y) dx dy = \iint_{0 \le x \le y} 2e^{-(x+2y)} dx dy$$

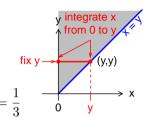


Method 1 $\iint_{0 < x < y} 2e^{-(x+2y)} dxdy = \int_{0}^{\infty} \int_{0}^{y} 2e^{-(x+2y)} dxdy$

where $\int_{0}^{y} 2e^{-(x+2y)} dx = -2e^{-(x+2y)} \Big|_{x=0}^{x=y} = 2(e^{-2y} - e^{-3y}).$

Putting it back to the double integral, we get

Futting it back to the double integral, we get
$$\int_{0}^{\infty} \int_{0}^{y} 2e^{-(x+2y)} \mathrm{d}x \mathrm{d}y = \int_{0}^{\infty} 2(e^{-2y} - e^{-3y}) \mathrm{d}y = -e^{-2y} - \frac{2}{3}e^{-3y} \bigg|^{\infty} = \frac{1}{3}$$



Method 1
$$\iint_{0 < x < y} 2e^{-(x+2y)} dx dy = \int_0^\infty \int_0^y 2e^{-(x+2y)} dx dy$$

where $\int_{-2}^{y} 2e^{-(x+2y)} dx = -2e^{-(x+2y)}\Big|_{x=0}^{x=y} = 2(e^{-2y} - e^{-3y}).$

Putting it back to the double integral, we get

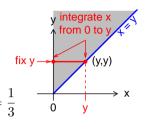
$$\int_0^\infty\!\!\int_0^y\! 2e^{-(x+2y)}\mathrm{d}x\mathrm{d}y = \int_0^\infty\!\! 2(e^{-2y}-e^{-3y})\mathrm{d}y = -e^{-2y}-\frac{2}{3}e^{-3y}\bigg|_0^\infty = \frac{1}{3}$$
 Method 2

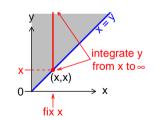
$$\iint_{0 < x < y} 2e^{-(x+2y)} dx dy = \int_0^\infty \int_{\mathbf{x}}^\infty 2e^{-(x+2y)} dy dx$$

where
$$\int_{-2}^{\infty} 2e^{-(x+2y)} dy = -e^{-(x+2y)} \Big|_{y=x}^{y=\infty} = e^{-3x}$$
.

Putting it back to the double integral, we get

$$\int_0^\infty\!\!\int_x^\infty\!\!2e^{-(x+2y)}\mathrm{d}y\mathrm{d}x = \int_0^\infty\!\!e^{-3x}\mathrm{d}x = \frac{-1}{3}e^{-3y}\bigg|_0^\infty = \frac{1}{3}$$





Example — Are X & Y Independent?

Suppose the joint PDF of X, Y is

$$f(x,y) = 6xy^2$$
, for $0 \le x, y \le 1$.

The marginal PDF of X is

$$f_X(x) = \int_0^1 6xy^2 \, \mathrm{d}y = 2xy^3 \bigg|_{y=0}^{y=1} = 2x(1^3 - 0^3) = 2x, \quad 0 < x < 1.$$

The marginal PDF of Y is

$$f_Y(y) = \int_0^1 6xy^2 \, \mathrm{d}x = 3x^2y^2 \bigg|_{x=0}^1 = 3y^2(1^2 - 0^2) = 3y^2, \quad 0 < y < 1.$$

Example — Are X & Y Independent?

Suppose the joint PDF of X, Y is

$$f(x,y) = 6xy^2$$
, for $0 \le x, y \le 1$.

The marginal PDF of X is

$$f_X(x) = \int_0^1 6xy^2 \, \mathrm{d}y = 2xy^3 \bigg|_{y=0}^{y=1} = 2x(1^3 - 0^3) = 2x, \quad 0 < x < 1.$$

The marginal PDF of Y is

$$f_Y(y) = \int_0^1 6xy^2 dx = 3x^2y^2 \Big|_0^1 = 3y^2(1^2 - 0^2) = 3y^2, \quad 0 < y < 1.$$

Are X and Y independent?

Example — Are X & Y Independent?

Suppose the joint PDF of X, Y is

$$f(x,y) = 6xy^2$$
, for $0 \le x, y \le 1$.

The marginal PDF of X is

$$f_X(x) = \int_0^1 6xy^2 \, dy = 2xy^3 \Big|_{y=0}^{y=1} = 2x(1^3 - 0^3) = 2x, \quad 0 < x < 1.$$

The marginal PDF of Y is

$$f_Y(y) = \int_0^1 6xy^2 dx = 3x^2y^2 \Big|_1^1 = 3y^2(1^2 - 0^2) = 3y^2, \quad 0 < y < 1.$$

Are X and Y independent?

Yes, since
$$f(x,y)=6xy^2=(2x)(3y^2)=f_X(x)f_Y(y)$$
 for all $0\leq x,y\leq 1$ and $f(x,y)=0=f_X(x)f_Y(y)$ elsewhere.

A Simple Criterion for Checking Independence

So far, it seems like one must find the marginal distributions before checking independence. However, there is an easier way...

A Simple Criterion: X and Y are independent if the joint PMF/PDF can be written as the product of a function of x and a function of y.

$$f(x,y) = g(x)h(y)$$
, for all x, y .

Here $g(x) \ge 0$ and $h(y) \ge 0$ are not necessarily PMFs/PDFs.

Are They Independent?

- 1. $p(x,y) = \frac{x+y}{36}$ for $x,y \in \{1,2,3\}$.
 - can't be factored, X and Y are NOT independent.
- 2. $p(x,y) = e^{-2}/(x!y!)$, for $x,y \in \{0,1,2,...\}$.
 - factors into $g(x) = e^{-1}/x!$ and $h(y) = e^{-1}/y!$, so independent.
- 3. f(x,y) = 8xy for $0 \le x < y \le 1$.
 - Does it factors into g(x) = 8x and h(y) = y?

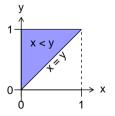
Are They Independent?

- 1. $p(x,y) = \frac{x+y}{36}$ for $x,y \in \{1,2,3\}$.
 - ightharpoonup can't be factored, X and Y are NOT independent.
- 2. $p(x,y) = e^{-2}/(x!y!)$, for $x,y \in \{0,1,2,...\}$.

 factors into $g(x) = e^{-1}/x!$ and $h(y) = e^{-1}/y!$,
 - factors into $g(x) = e^{-1}/x!$ and $h(y) = e^{-1}/y!$ so independent.
- 3. f(x,y) = 8xy for $0 \le x < y \le 1$.
 - **D**oes it factors into g(x) = 8x and h(y) = y?
 - ightharpoonup Watch out! When x > y,

$$f(x,y) = 0 \neq g(x)h(y).$$

X and Y are NOT independent.



Proof of the Simple Criterion for Independence

We prove the discrete case. The continuous case is similar. The marginal PDF of Y is

$$p_Y(y)=\sum_x p(x,y)=\sum_x g(x)h(y)=h(y)\sum_x g(x)=c_1h(y),$$

in which c_1 is the constant $\sum_x g(x)$. Similarly, one can show $p_X(x)=c_2g(x)$ where $c_2=\sum_y h(y)$. Note that

$$c_1c_2 = \sum_x g(x) \sum_y h(y) = \sum_x \sum_y g(x) h(y) = \sum_x \sum_y f(x,y) = 1$$

since p(x,y) is a joint PMF.

Thus
$$p_X(x)p_Y(x)=c_1c_2g(x)h(y)=g(x)h(y)=f(x,y).$$

Independence of Several Random Variables

More generally, a sequence of random variables X_1, X_2, \dots, X_n are (mutually) independent if and only if

$$\mathbf{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbf{P}(X_1 \in A_1) \cdots \mathbf{P}(X_n \in A_n).$$

for all sequence of events $A_1, A_2, ...$

ightharpoonup Equivalently, the random variables X_1, X_2, \ldots, X_n are (mutually) independent if and only if their joint distributions factors into the product of their marginal distributions.

$$\begin{aligned} p(x_1,x_2,\dots,x_n) &= p_1(x_1)p_2(x_2)\dots p_n(x_n) & \text{for discrete rv's} \\ f(x_1,x_2,\dots,x_n) &= f_1(x_1)f_2(x_2)\dots f_n(x_n) & \text{for continuous rv's} \end{aligned}$$

for all x_1, x_2, \dots, x_n .