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Analysis of Paired Data (Section
10.3)



Example: Coffee & Blood Flow During Exercise

Doctors studying healthy men measured myocardial blood flow
(MBF)1 during bicycle exercise after giving the subjects a placebo
or a dose of 200 mg of caffeine that was equivalent to drinking two
cups of coffee2.

There were 8 subjects, each was tested twice, 4 of them were
randomly selected to receive caffeine in the first test and placebo
in the second test; the other 4 received placebo first and caffeine
second.

There was a 24-hour gap between the two tests (washout period).
1MBF was measured by taking positron emission tomography (PET) images after

oxygen-15 labeled water was infused in the patients.
2Namdar et. al (2006). Caffeine decreases exercise-induced myocardial flow reserve.

Journal of the American College of Cardiology 47, 405-410.
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Data for the Coffee & Blood Flow Experiment

Myocardial Blood Flow (ml/min/g)
Subject 1 2 3 4 5 6 7 8 Mean SD
Placebo 6.37 5.44 5.58 5.27 5.11 4.89 4.70 3.20 5.07 0.91
Caffeine 4.52 5.69 4.70 3.81 4.06 3.22 2.96 3.53 4.06 0.89
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Discussion

• Why did 4 subjects caffeine first and placebo second and the
other 4 received placebo first and caffeine second?

• Why do we need a washout period (the 24 hour gap) between
the two tests?

• Can we analyze the data of the experiment like two
independent samples?
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Hypothesis Tests for Paired Data

• Paired data cannot be analyzed like 2-sample data since the 2
measurements on the same subject are dependent.

• Nonetheless, if measurements on different pairs can be
reasonably assumed independent, we can take differences of
the two measurements within each pair and analyze the
differences like one-sample data.

Subject 1 2 3 4 5 6 7 8 Mean SD
Placebo 6.37 5.44 5.58 5.27 5.11 4.89 4.70 3.20 5.07 0.91
Caffeine 4.52 5.69 4.70 3.81 4.06 3.22 2.96 3.53 4.06 0.89
Diff (Placebo − Caffeine) 1.85 −0.25 0.88 1.46 1.05 1.67 1.74 −0.33 1.01 0.87

To test H0: µ1 − µ2 = ∆0, the test statistic is

t =
d̄ − ∆0

sd/
√

n
∼ tn−1 where

d̄ = sample mean of the diffs
sd = sample SD of the diffs
n = # of pairs.

5



Example: Coffee & Blood Flow During Exercise

Subject 1 2 3 4 5 6 7 8 Mean SD
Placebo 6.37 5.44 5.58 5.27 5.11 4.89 4.70 3.20 5.07 0.91
Caffeine 4.52 5.69 4.70 3.81 4.06 3.22 2.96 3.53 4.06 0.89
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In this example, d̄ = 1.01, sd = 0.87. Please note that

d̄ = x̄placebo − x̄caffeine

1.01 = 5.07 − 4.06
but

sd , splacebo − scaffeine

0.87 , 0.91 − 0.89

sd ≈ 0.87 is the sample SD of the 8 differences:

caffeine = c(4.52, 5.69, 4.7, 3.81, 4.06, 3.22, 2.96, 3.53)

placebo = c(6.37, 5.44, 5.58, 5.27, 5.11, 4.89, 4.7, 3.2)

diff = placebo - caffeine

sd(diff)

[1] 0.8683554
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Example: Coffee & Blood Flow During Exercise

As d̄ = 1.01, sd = 0.87, n = 8 pairs, the test statistic for H0:
µ1 − µ2 = 0 is

t =
d̄ − ∆0

sd/
√

n
=

1.01 − 0

0.87/
√

8
≈ 3.28

with n − 1 = 8 − 1 = 7 degrees of freedom.

The two-sided P-value can be found in R to be ≈ 0.0135.

2 * pt(3.28, df = 7, lower.tail = F)

[1] 0.01348706

x0

dt
(x

0,
 d

f)

−3.28 3.28
Or using the t-table, one can find the 2-sided
P-value to be between 2(0.005) = 0.01 and 2(0.01) = 0.02.

α 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
ν 7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
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Confidence Intervals for the Mean Difference in Paired Data

The 100(1 − α)% confidence interval for the difference is

d̄ ± tα/2,n−1
sd
√

n

where tα/2,n−1 is the critical value for the t
distribution with n−1 degrees of freedom
as shown on the right. − tα 2,n−1 tα 2,n−1

α 2α 2 1 − α

For the coffee experiment, the critical value for a 95% CI is
tα/2,n−1 = t0.05/2,8−1 ≈ 2.365.

qt(0.05/2, df = 7, lower.tail = F)

[1] 2.364624 α 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
ν 7 1.415 1.895 2.365 2.998 3.499 4.785 5.408

The 95% CI for the mean difference is hence

d̄ ± tα/2,n−1
sd
√

n
= 1.01 ± 2.365 ×

0.87
√

8
≈ 1.01 ± 0.73 = (0.28, 1.74).
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Tests/CIs for Paired Data in R

caffeine = c(4.52, 5.69, 4.7, 3.81, 4.06, 3.22, 2.96, 3.53)

placebo = c(6.37, 5.44, 5.58, 5.27, 5.11, 4.89, 4.7, 3.2)

t.test(placebo, caffeine, paired = T, conf.level = 0.95)

Paired t-test

data: placebo and caffeine

t = 3.2857, df = 7, p-value = 0.01338

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.2827867 1.7347133

sample estimates:

mean of the differences

1.00875
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Checking Conditions for Paired Data

As the inference for paired data is simply the inference for
one-sample data on the differences with the pairs, just make sure
that

• the differences are independent
• the distribution (histogram) of the differences is not too

skewed and has no outlier

Whether the distributions of the two groups are skewed or have
outlier(s) do not matter.

0.0 0.5 1.0 1.5
Difference
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Example: Paired or Not

In each of the following scenarios, determine if the data are paired?

1. We would like to know if Intel’s stock and Southwest Airlines’
stock have similar rates of return. To find out, we take a
random sample of 50 days, and record Intel’s and Southwest’s
stock on those same days.

⇒ paired

2. We randomly sample 50 items from Target stores and note
the price for each. Then we visit Walmart and collect the price
for each of those same 50 items.

⇒ paired

3. A school board would like to determine whether there is a
difference in average SAT scores for students at one high
school versus another high school in the district. To check,
they take a simple random sample of 100 students from each
high school.

⇒ not paired
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If Paired Data Were Analyzed Like 2-sample Data

Subject 1 2 3 4 5 6 7 8 Mean SD
Placebo 6.37 5.44 5.58 5.27 5.11 4.89 4.70 3.20 5.07 0.91
Caffeine 4.52 5.69 4.70 3.81 4.06 3.22 2.96 3.53 4.06 0.89
Diff (Placebo − Caffeine) 1.85 −0.25 0.88 1.46 1.05 1.67 1.74 −0.33 1.01 0.87

If we ignore pairing, and analyze the data as 2-sample data, the
two-sample t-statistic

x1 − x2√
s2

1
n +

s2
2

n

=
5.07 − 4.06√

0.912

8 +
0.892

8

≈ 2.244

would be less than the paired t-statistic
d̄

sd/
√

n
=

1.01

0.87/
√

8
≈ 3.28.

The p-value (6%) given by a two-sample t-test is larger than the one
given by a paired t-test (1.3%), less significant.

95% two-sample CI: 5.07 − 4.06 ± 2.144
√

0.912

8 +
0.892

8 ≈ 1.01 ± 0.96

95% paired CI: 1.01 ± 2.365 × 0.87/
√

8 ≈ 1.01 ± 0.73 (shorter) 12



Two-Sample Data v.s. Paired Data

Suppose the two samples are both of size n, the SEs for
two-sample data and paired data would be respectively

SE =

√
σ2

1

n
+
σ2

2

n
(two-sample)

SE = σD/
√

n (paired)

where

σ2
1 = Var(Xi), σ2

2 = Var(Yi),

σ2
D = Var(Xi − Yi) = Var(Xi) + Var(Yi) − 2 Cov(Xi,Yi)

= σ2
1 + σ

2
2 − 2 Cov(Xi,Yi)

≤ σ2
1 + σ

2
2 if Cov(Xi,Yi) > 0

Observations within a pair are usually positively correlated. ⇒
Paired CIs are usually shorter and Paired tests usually have
smaller P-values.
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Comparing Two Proportions
(Section 10.4)



Comparing Two Proportions

Choose an SRS of size n1 from a large population having
proportion p1 of successes and an independent SRS of size n2

from another population having proportion p2 of successes.

Population Population Sample Count of Sample
Proportion Size Successes Proportion

1 p1 n1 X1 p̂1 = X1/n1

2 p2 n2 X2 p̂2 = X2/n2
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Large Sample Confidence Intervals for p1 − p2

When n1 and n2 are both large,

p̂1 − p̂2 ∼̇ N
(
p1 − p2, σ

2 =
p1(1 − p1)

n1
+

p2(1 − p2)
n2

)
An approximate (1 − α)100% CI for p1 − p2 is

estimate ± zα/2SE

where

estimate = p̂1 − p̂2, SE =

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

Use this method only when the number of successes and the
number of failures in both samples are at least 10, i.e.,

n1 p̂1, n1(1 − p̂1), n2 p̂2, n2(1 − p̂2) all ≥ 10.

15



Example: Aspirin and Heart Attacks (1)

The Physicians’ Health Study was a 5-year randomized study
published testing whether regular intake of aspirin reduces
mortality from cardiovascular disease3.

• Participants were male physicians 40-84 years old in 1982
with no prior history of heart attack, stroke, and cancer, no
current liver or renal disease, no contraindication of aspirin, no
current use of aspirin

• Every other day, the male physicians participating in the study
took either one aspirin tablet or a placebo.

• Response: whether the participant had a heart attack
(including fatal or non-fatal) during the 5 year period.

3Source: Preliminary Report: Findings from the Aspirin Component of the Ongoing

Physicians’ Health Study. New Engl. J. Med., 318: 262-64,1988.
16



Example: Aspirin and Heart Attacks (2)

Result:
Heart Attack?

Group Yes No Sample Size

Placebo 189 10845 11034 ⇒ p̂1 =
189

11034 ≈ 0.0171

Aspirin 104 10933 11037 ⇒ p̂2 =
104

11037 ≈ 0.0094

The zα/2 for a 99% CI is z0.01/2 ≈ 2.576, so the 99% CI for p1 − p2 is

p̂1 − p̂2 ± z0.01/2

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

= 0.0171 − 0.0094 ± 2.576

√
0.0171(1 − 0.0171)

11034
+

0.0094(1 − 0.0094)
11037

= 0.0077 ± 0.0040 = (0.0037, 0.0117)

Interpretation: As 99% confidence, the probability of heart attack in
aspirin group is 0.0037 to 0.0117 lower than the corresponding
probability in the placebo group 17



Testing the Equality of Two Proportions (1)

While we test
H0 : p1 = p2

the SE for p̂1 − p̂2 under H0 is√
p1(1 − p1)

n1
+

p2(1 − p2)
n2

=

√
p(1 − p)

(
1
n1
+

1
n2

)
where p is the common value of p1 and p2.

How to estimate the common p?
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Testing the Equality of Two Proportions (2)

When p1 = p2 = p, both p̂1 and p̂2 are unbiased estimates for the
common p. we can combine the two samples, and get the pooled
estimate for p:

p̂ =
X1 + X2

n1 + n2
=

n1

n1 + n2
p̂1 +

n2

n1 + n2
p̂2

The SE for testing H0: p1 = p2 is hence

SE =

√
p̂(1 − p̂)

(
1
n1
+

1
n2

)
and the z-statistic for testing H0: p1 = p2 is

z =
estimate

SE
=

p̂1 − p̂2√
p̂(1 − p̂)

(
1
n1
+ 1

n2

)
Under H0, the z-statistic is approx. N(0, 1) provided that

n1 p̂, n1(1 − p̂), n2 p̂, n2(1 − p̂) all ≥ 10. 19



Example: Aspirin and Heart Attacks (4)

Group Sample Size Heart Attack
Placebo 11034 189
Aspirin 11037 104

For testing H0 : p1 = p2,

p̂1 − p̂2 =
189

11034
−

104
11037

≈ 0.0077

p̂ =
189 + 104

11034 + 11037
≈ 0.0132

SE =

√
p̂(1 − p̂)

(
1
n1
+

1
n2

)

≈

√
0.0132(1 − 0.0132)

(
1

11034
+

1
11037

)
≈ 0.00154

z-statistic =
p̂1 − p̂2

SE
≈

0.0077
0.00154

≈ 5.001
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Example: Aspirin and Heart Attacks (4)

The 2-sided p-value is 0.00000057 by R.

2 * pnorm(5.001, lower.tail = FALSE)

[1] 5.703371e-07

Not surprisingly, we are getting strong evidence that the two
probabilities are different.
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Example: Partisanship 2015

A Gallop poll in 2015 based on a random sample of 12137 adults in
U.S. (aged ≥ 18), found that 29% self-identified as Democrats,
26% as Republicans, and 45% as independent or other. True or
False and explain: a 95% confidence interval for the difference of
proportions of American adults self-identified as Democrats and
Republicans pD − pR is

0.29 − 0.26 ± 1.96

√
0.29(1−0.29)

12137
+

0.26(1−0.26)
12137

= (0.019, 0.041)

• How many samples are there? One or two?
• The two sample percentages, 29% and 26%, are calculated based

on the same sample. They were not independent, but negatively
correlated. The more people identified as Democrats, the fewer
identified as Republicans. One cannot use a two-sample CI here.

http://http://news.gallup.com/poll/188096/democratic-republican-identification-near-historical- lows.aspx
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Example: Partisanship 2015 v.s. 2011

Continue the previous example. Another survey of 15,000
American adults in 2011 found that 35.3% identified as Democrats,
34.0% as Republicans, and 30.7% as independent or other.
Assume both surveys in 2011 and 2015 were both based on
simple random samples. Can we test whether there were more
American adults self-identified as independent or other in 2015
than in 2011 using a two-sample z-test for proportions?

Yes, the percentages identified as independent or others in 2011
and in 2015 were based on two independent samples.
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Example: Partisanship 2015 v.s. 2011

For testing H0 : p2011 = p2015,

p̂2015 − p̂2011 = 0.450 − 0.307 ≈ 0.143

p̂ =
0.450 × 12137 + 0.307 × 15000

12137 + 15000
≈ 0.371

SE =

√
p̂(1 − p̂)

(
1
n1
+

1
n2

)

≈

√
0.371(1 − 0.371)

(
1

12137
+

1
15000

)
≈ 0.00590

z-statistic =
p̂2015 − p̂2011

SE
≈

0.143
0.00590

≈ 24.2

As the z-statistic is huge, there is super strong evidence that there
were a higher percentages of American adults self-identified as in-
dependent or other in 2015 than in 2011.
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Summary of CIs and Test Statistics

Confidence Interval H0 Test Statistic(
1-sample

mean

)
x̄ ± tα/2,n−1

s
√

n
µ = µ0 t =

x̄ − µ0

s/
√

n(
1-sample
proportion

)
p̂ ± zα/2

√
p̂(1 − p̂)

n
p = p0 z =

p̂ − p0√
p0(1 − p0)/n

paired d̄ ± tα/2,n−1
sd
√

n
µ1 − µ2 = ∆0 t =

d̄ − ∆0

sd/
√

n
where di = x1i − x2i n = # of pairs(

2-sample
mean

)
x̄1 − x̄2 ± tα/2,νSE µ1 − µ2 = ∆0 t =

x̄1 − x̄2 − ∆0

SE
where SE =

√
s2

1
n1
+

s2
2

n2
if σ1 , σ2

or SE = sp

√
1
n1
+ 1

n2
where sp =

√
(n1−1)s2

1+(n2−1)s2
2

n1+n2−2 if σ1 = σ2(
2-sample

proportions

)
CI for p1 − p2: ( p̂1 − p̂2) ± zα/2 ×

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

H0: p1 = p2, z =
p̂1 − p̂2√

p̂(1 − p̂)
(

1
n1
+ 1

n2

) where p̂ =
x1 + x2

n1 + n2
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A Larger Population Does NOT Require a Larger Sample

SE are all proportional to
1√

Sample Size
.

• All the SEs depend on the sample size only, not the
population size.

• The relative size of a sample to the population size doesn’t
matter. It is the absolute size of a sample that matters.

• A larger population does NOT require a larger sample!
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