STAT 234 Lecture 19 Hypothesis Tests About a Population Mean Section 9.2, 9.4

Yibi Huang Department of Statistics University of Chicago

Hypothesis Tests about Means

To know how many colleges students applied to, the dean of a certain university took a random sample of size 106 from their newly admitted students. This sample yielded an average of 9.7 college applications with a standard deviation of 7. College Board website states that counselors recommend students apply to roughly 8 colleges. Do these data provide convincing evidence that the average number of colleges all freshmen in this university apply to is <u>higher</u> than recommended?

http://www.collegeboard.com/student/apply/the-application/151680.html

Example: Number of College Applications – Hypotheses

- Population: all freshmen in this university
- The parameter of interest μ is the average number of schools applied to by <u>all</u> freshmen in this university

Example: Number of College Applications – Hypotheses

- Population: all freshmen in this university
- The parameter of interest μ is the average number of schools applied to by <u>all</u> freshmen in this university
- Two possible explanations of why the sample mean is higher than the recommended 8 schools.
 - The true population mean is higher than 8.
 - The true population mean is 8, and the difference between the true population mean and the sample mean is simply due to natural sampling variability.

Example: Number of College Applications – Hypotheses

- Population: all freshmen in this university
- The parameter of interest μ is the average number of schools applied to by <u>all</u> freshmen in this university
- Two possible explanations of why the sample mean is higher than the recommended 8 schools.
 - The true population mean is higher than 8.
 - The true population mean is 8, and the difference between the true population mean and the sample mean is simply due to natural sampling variability.
- Null Hypothesis H₀: μ = 8 (Freshmen in this university have applied 8 schools on average, as recommended)
- Alternative Hypothesis H_A: μ > 8 (Freshmen in this university have applied over 8 schools on average)

 H_0 and H_A are **ALWAYS** about population parameters, not sample statistics

Neither

$$H_0: \bar{x} = 8, \quad H_A: \bar{x} > 8$$

nor

- H₀: the 106 new students applied 8 schools on average
- H_A: the 106 new students applied 9.7 schools on average

is correct. The correct statements should be

$$H_0: \mu = 8, \quad H_A: \mu > 8$$

Also please clearly specify what is μ .

e.g., μ is the average number of colleges freshmen in this university applied to.

Number of College Applications — Test Statistic

By CLT, under H_0 : $\mu = 8$, the sampling distribution of the sample mean is

$$\bar{x} \sim N\left(\mu = 8, \text{SE} = \frac{7}{\sqrt{106}} = 0.68\right)$$
 $\mu = 8$ $\bar{x} = 9.7$

To gauge how unusual the observed sample mean $\bar{x} = 9.7$ is relative to its the hypothesized sampling distribution above, the *test statistic* we used is the *z*-statistic, which is the *z*-score of the sample mean relative to the distribution above

z-statistic =
$$\frac{\bar{x} - \mu_0}{SE} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{9.7 - 8}{7 / \sqrt{106}} \approx 2.5$$

~ $N(0, 1)$ under H₀: $\mu = \mu_0 = 8$

To test H₀: $\mu = \mu_0$ against H_A: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_A and only in such cases should H₀ be rejected.

To control the P(Type 1 error) = P(rejecting $H_0|H_0$ is true) at the significance level α , we should reject H₀ only when

z-statistic =
$$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} = \operatorname{qnorm}(1 - \alpha).$$

To test H₀: $\mu = \mu_0$ against H_A: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_A and only in such cases should H₀ be rejected.

To control the P(Type 1 error) = $P(\text{rejecting } H_0|H_0 \text{ is true})$ at the significance level α , we should reject H₀ only when

z-statistic =
$$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} = \operatorname{qnorm}(1 - \alpha).$$

To test H₀: $\mu = \mu_0$ against H_A: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_A and only in such cases should H₀ be rejected.

To control the P(Type 1 error) = P(rejecting $H_0|H_0$ is true) at the significance level α , we should reject H₀ only when

z-statistic =
$$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} = \operatorname{qnorm}(1 - \alpha).$$

To test H₀: $\mu = \mu_0$ against H_A: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_A and only in such cases should H₀ be rejected.

To control the P(Type 1 error) = P(rejecting $H_0|H_0$ is true) at the significance level α , we should reject H₀ only when

z-statistic =
$$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} = \operatorname{qnorm}(1 - \alpha).$$

To test H₀: $\mu = \mu_0$ against H_A: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_A and only in such cases should H₀ be rejected.

To control the P(Type 1 error) = $P(\text{rejecting } H_0|H_0 \text{ is true})$ at the significance level α , we should reject H₀ only when

z-statistic =
$$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} = \operatorname{qnorm}(1 - \alpha).$$

P-value for Upper One-Sided Test

To test H₀: $\mu = \mu_0$ against H_A: $\mu > \mu_0$, the *P*-value is $P(\bar{x} > \text{observed value of } \bar{x} \mid \mu = \mu_0)$ or the blue shaded region below.

Example (College Applications) For testing H_0 : $\mu = 8$ v.s. H_A : $\mu > 8$,

$$P\text{-value} = P(\bar{x} > 9.7 | \mu = 8)$$

= $P\left(Z > \frac{9.7 - 8}{7/\sqrt{106}} \approx 2.500\right)$
= 1 - pnorm(2.5)
 ≈ 0.0062

P-value for Upper One-Sided Test

To test H₀: $\mu = \mu_0$ against H_A: $\mu > \mu_0$, the *P*-value is $P(\bar{x} > \text{observed value of } \bar{x} \mid \mu = \mu_0)$ or the blue shaded region below.

Example (College Applications) For testing H_0 : $\mu = 8$ v.s. H_A : $\mu > 8$,

$$P\text{-value} = P(\bar{x} > 9.7 | \mu = 8)$$

= $P\left(Z > \frac{9.7 - 8}{7/\sqrt{106}} \approx 2.500\right)$
= 1 - pnorm(2.5)
 ≈ 0.0062

- Critical value approach: one can compute the *z*-stat = ^{x→μ₀}/_{σ/√n} and the critical value z_α = qnorm(1 − α), and reject H₀ if the *z*-stat > z_α.
- *P-value approach*: one can compute the *P*-value from the *z*-stat and reject H₀ when the *P*-value $< \alpha$

- Critical value approach: one can compute the *z*-stat = ^{x-µ0}/_{σ/√n} and the critical value z_α = qnorm(1 − α), and reject H₀ if the *z*-stat > z_α.
- *P-value approach*: one can compute the *P*-value from the *z*-stat and reject H₀ when the *P*-value $< \alpha$

- Critical value approach: one can compute the *z*-stat = ^{x̄-µ₀}/_{σ/√n} and the critical value z_α = qnorm(1 − α), and reject H₀ if the *z*-stat > z_α.
- *P-value approach*: one can compute the *P*-value from the *z*-stat and reject H₀ when the *P*-value $< \alpha$

- Critical value approach: one can compute the *z*-stat = ^{x̄-µ0}/_{σ/√n} and the critical value z_α = qnorm(1 − α), and reject H₀ if the *z*-stat > z_α.
- *P-value approach*: one can compute the *P*-value from the *z*-stat and reject H₀ when the *P*-value $< \alpha$

If the Dean wanted to know whether the data provide convincing evidence that the average number of colleges applied is *different* than the recommended 8 schools, the alternative hypothesis would be different.

 $H_A: \mu \neq 8$

In this case, a sample mean \bar{x} far below 8 would also be evidence in favor of H_A.

To test H₀: $\mu = \mu_0$ against the **two-sided alternative** H_A : $\mu \neq \mu_0$, both \bar{x} far above or below μ_0 are evidence for H_A and hence H_0 should be rejected when $|\bar{x} - \mu_0|$ is large.

To test H₀: $\mu = \mu_0$ against the **two-sided alternative** H_A : $\mu \neq \mu_0$, both \bar{x} far above or below μ_0 are evidence for H_A and hence H_0 should be rejected when $|\bar{x} - \mu_0|$ is large.

To test H₀: $\mu = \mu_0$ against the **two-sided alternative** H_A : $\mu \neq \mu_0$, both \bar{x} far above or below μ_0 are evidence for H_A and hence H_0 should be rejected when $|\bar{x} - \mu_0|$ is large.

To test H₀: $\mu = \mu_0$ against the **two-sided alternative** H_A : $\mu \neq \mu_0$, both \bar{x} far above or below μ_0 are evidence for H_A and hence H_0 should be rejected when $|\bar{x} - \mu_0|$ is large.

To test H₀: $\mu = \mu_0$ against the **two-sided alternative** H_A : $\mu \neq \mu_0$, both \bar{x} far above or below μ_0 are evidence for H_A and hence H_0 should be rejected when $|\bar{x} - \mu_0|$ is large.

P-values for Two-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ against **two-sided alternative** $[H_A: \mu \neq \mu_0]$, the *P*-value is the two tail probability (the blue shaded region) below.

Example (College Applications) For testing H_0 : $\mu = 8$ v.s. H_A : $\mu \neq 8$,

P-values for Two-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ against **two-sided alternative** $[H_A: \mu \neq \mu_0]$, the *P*-value is the two tail probability (the blue shaded region) below.

Example (College Applications) For testing H_0 : $\mu = 8$ v.s. H_A : $\mu \neq 8$,

Observed if |z-statistic $| < z_{\alpha/2}$ then 2-sided *P*-value > α

- *Critical value approach*: reject H₀ if the absolute value of the *z*-statistic = $\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2} = \operatorname{qnorm}(1-\alpha/2)$
- *P-value approach*: one can compute the 2-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

Observed if |z-statistic $| < z_{\alpha/2}$ then 2-sided *P*-value > α

- *Critical value approach*: reject H₀ if the absolute value of the *z*-statistic = $\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2} = \operatorname{qnorm}(1-\alpha/2)$
- *P-value approach*: one can compute the 2-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

Observed if |z-statistic| $< z_{\alpha/2}$ then 2-sided *P*-value $> \alpha$ if |z-statistic| $> z_{\alpha/2}$ then 2-sided *P*-value $< \alpha$

- *Critical value approach*: reject H₀ if the absolute value of the *z*-statistic = $\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2} = \operatorname{qnorm}(1-\alpha/2)$
- *P-value approach*: one can compute the 2-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

Observed if |z-statistic| $< z_{\alpha/2}$ then 2-sided *P*-value $> \alpha$ if |z-statistic| $> z_{\alpha/2}$ then 2-sided *P*-value $< \alpha$

- *Critical value approach*: reject H₀ if the absolute value of the *z*-statistic = $\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2} = \operatorname{qnorm}(1-\alpha/2)$
- *P-value approach*: one can compute the 2-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

If the Dean wanted to know whether the data provide convincing evidence that the average number of colleges applied is lower than the recommended 8 schools, the alternative hypothesis would be

 $H_A:\mu < 8$

Three types of alternative hypotheses:

- Upper one-sided: $H_A: \mu > 8$
- Lower one-sided: H_A : $\mu < 8$
- Two-sided: H_A : $\mu \neq 8$

To test H₀: $\mu = \mu_0$ against the **lower one-sided** alternative H_A : $\mu < \mu_0$, only a sample mean \bar{x} far below μ_0 is evidence for H_A and H₀ should be rejected only in such cases.

To test H₀: $\mu = \mu_0$ against the **lower one-sided** alternative $H_A: \mu < \mu_0$, only a sample mean \bar{x} far below μ_0 is evidence for H_A and H₀ should be rejected only in such cases.

To test H₀: $\mu = \mu_0$ against the **lower one-sided** alternative $H_A: \mu < \mu_0$, only a sample mean \bar{x} far below μ_0 is evidence for H_A and H₀ should be rejected only in such cases.

To test H₀: $\mu = \mu_0$ against the **lower one-sided** alternative $H_A: \mu < \mu_0$, only a sample mean \bar{x} far below μ_0 is evidence for H_A and H₀ should be rejected only in such cases.

To test H₀: $\mu = \mu_0$ against the **lower one-sided** alternative $H_A: \mu < \mu_0$, only a sample mean \bar{x} far below μ_0 is evidence for H_A and H₀ should be rejected only in such cases.

P-values for Lower One-Sided Hypothesis Tests

To test H₀: $\mu = \mu_0$ v.s. lower one-sided alternative | H_A: $\mu < \mu_0$ |, the *P*-value is the lower tail probability (blue shaded region) below.

Example (College Applications) For H_0 : $\mu = 8$ v.s. H_A : $\mu < 8$, the *P*-value is lower tail area 1 - 0.0062 = 0.9938, which makes sense since H_A : $\mu < 8$ is less plausible than H₀: $\mu = 8$ given $\bar{x} = 9.7 > 8$. No μ=8 reason to reject H_0 .

 $\overline{\mathbf{x}} = 9.7$ z = 07 = 2.5

15

P-values for Lower One-Sided Hypothesis Tests

To test H₀: $\mu = \mu_0$ v.s. lower one-sided alternative | H_A: $\mu < \mu_0$ |, the *P*-value is the lower tail probability (blue shaded region) below.

Example (College Applications) For H_0 : $\mu = 8$ v.s. H_A : $\mu < 8$, the *P*-value is lower tail area 1 - 0.0062 = 0.9938, which makes sense since H_A : $\mu < 8$ is less plausible than H₀: $\mu = 8$ given $\bar{x} = 9.7 > 8$. No μ=8 reason to reject H_0 .

 $\overline{\mathbf{x}} = 9.7$ z = 07 = 2.5

15

- Critical value approach: reject H₀ if z-stat = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} < -z_{\alpha} = \text{qnorm}(\alpha)$
- *P-value approach*: one can compute the lower one-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

- Critical value approach: reject H₀ if *z*-stat = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} < -z_{\alpha} = \text{qnorm}(\alpha)$
- *P-value approach*: one can compute the lower one-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

- Critical value approach: reject H₀ if *z*-stat = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} < -z_{\alpha} = \text{qnorm}(\alpha)$
- *P-value approach*: one can compute the lower one-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

- Critical value approach: reject H₀ if z-stat = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} < -z_{\alpha} = \text{qnorm}(\alpha)$
- *P-value approach*: one can compute the lower one-sided *P*-value from the *z*-statistic and reject H₀ when the *P*-value $< \alpha$

We introduced both the critical value approach and the *P*-value approach for hypothesis testing. They are equivalent but we generally *recommend the P-value approach*, for two reasons.

- The rejection rule is simpler, just compare the *P*-value with the significance level α
- More importantly, we can simply report the *P*-value and let people choose their own significance level α (= the P(Type 1 error)) and decide whether to reject or not to reject the H₀

From now on, we will just stick with the *P*-value approach.

Recap: How to Compute One-Sided & Two Sided *P*-values

The *z*-statistic for testing H₀ :
$$\mu = \mu_0$$
 is $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$.
The *P*-value depends on H_A.

The bell-shape curve above is the standard normal curve. Then we reject H₀ when *P*-value $< \alpha$.

Back to the College Applications Example

For H_A : $\mu > 8$ and H_A : $\mu \neq 8$, we *reject* H_0 since *P*-value is *low* (< 5%)

- The data provide convincing evidence that freshmen in this university have applied to more than (different from) 8 schools on average.
- The diff. betw. the null value of 8 schools and observed sample mean of 9.7 schools is beyond sampling variability.

For H_A : $\mu < 8$, there is no reason to reject H_0 : $\mu = 8$ since the alternative H_A : $\mu < 8$ is even less plausible than H_0 : $\mu = 8$ given the observed sample mean $9.7 > \mu = 8$.

When the *P*-value is below the significance level, we say

- H₀ is rejected
- There is strong evidence that freshmen in this university had applied to over 8 schools on average (H_A is true)
- The mean number of schools freshmen in this university had applied is *significantly* over 8

We don't say

- The H_A is accepted
- We fail to reject H_A

When the *P*-value exceeds the significance level, we say

- We fail to reject H₀
- No strong evidence that freshmen in this university had applied to over 8 schools on average (H_A is true)
- The mean number of schools freshmen in this university had applied is *not significantly* over 8

We don't say

- the H₀ is accepted
- we fail to accept H_A
- there is strong evidence that H₀ is true because we might have made a Type 2 error, and the chance of making a Type 2 error is not controlled, which can be quite big

Please note that the terms: *significant(ly)* and *reject*, are only used to state the <u>conclusions</u> of the hypotheses tests. Do NOT use them in the hypotheses. It's incorrect to state the hypotheses as

- H₀: The mean number of schools students have applied is *not significantly* over 8
- H_A: The mean number of schools students have applied is *significantly* over 8

or

- H₀: We don't reject that the mean number of schools students have applied is 8
- H_A: We reject that the mean number of schools students applied is 8

Interpretation of *P*-Values — Upper One-Sided Tests

The *P*-value is the probability of getting data such that the evidence for the H_A is at least as strong as our observed data, if in fact H_0 : $\mu = \mu_0$ were true.

Weaker Evidence for H_A : $\mu > \mu_0$ Stronger Evidence for H_A : $\mu > \mu_0$

Interpretation of *P*-Values — Upper One-Sided Tests

The *P*-value is the probability of getting data such that the evidence for the H_A is at least as strong as our observed data, if in fact H_0 : $\mu = \mu_0$ were true.

Weaker Evidence for H_A : $\mu > \mu_0$ Stronger Evidence for H_A : $\mu > \mu_0$

Interpretation of *P*-Values — Lower One-Sided Tests

The *P*-value is the probability of getting data such that the evidence for the H_A is at least as strong as our observed data, if in fact H_0 : $\mu = \mu_0$ were true.

Stronger Evidence for H_A : $\mu < \mu_0$ Weaker Evidence for H_A : $\mu < \mu_0$

Interpretation of *P*-Values — Lower One-Sided Tests

The *P*-value is the probability of getting data such that the evidence for the H_A is at least as strong as our observed data, if in fact H_0 : $\mu = \mu_0$ were true.

Stronger Evidence for H_A : $\mu < \mu_0$ Weaker Evidence for H_A : $\mu < \mu_0$

Interpretation of *P*-Values — Two-Sided Tests

The *P*-value is the probability of getting data such that the evidence for the H_A is at least as strong as our observed data, if in fact H_0 : $\mu = \mu_0$ were true.

Interpretation of *P*-Values — Two-Sided Tests

The *P*-value is the probability of getting data such that the evidence for the H_A is at least as strong as our observed data, if in fact H_0 : $\mu = \mu_0$ were true.

As CLT is used in the hypothesis test above, we need to check the same conditions as we construct confidence intervals for the population mean.

- Observations must be independent
 - Use your knowledge to judge if the data might be dependent
- The population distribution of the number of colleges students apply to should not be extremely skewed.
- In the *z*-statistic = $\frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}$, if the unknown population SD σ is replaced with the sample SD *s*, we need to further check that
 - sample size cannot be too small (MMSA said at least 40)
 - no outliers & not too skewed ⇒ Check the histogram of data!

1. Set the hypotheses

- $H_0: \mu = \mu_0$
- $H_A: \mu < \text{or} > \text{or} \neq \mu_0$
- 2. Check assumptions and conditions
 - Independence
 - Normality: nearly normal population or n ≥ 40, no extreme skew – or use the *t* distribution (next lecture)
- 3. Calculate a *test statistic*

$$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

"Rejection region" approach:

- 4. Choose a significance level α and reject H₀ when
 - *z*-stat > *z*_α for H_A: μ > μ₀
 - z-stat < $-z_{\alpha}$ for H_A : $\mu < \mu_0$
 - $|z\text{-stat}| > z_{\alpha/2}$ for H_A : $\mu \neq \mu_0$

"P-value" approach

- 4. Compute the P-value as on p.18
- 5. (optional) Choose a significance level $\boldsymbol{\alpha}$ and make a decision
 - If *P*-value < α, reject H₀
 - If *P*-value > α , do not reject H_0