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Four Keywords

Population: The entire group of
individuals in which we are
interested but can’t usually
assess directly.

Example: All humans, all
working-age people in
California, all crickets

Sample: The part of the
population we actually examine
and for which we do have data.

How well the sample repre-
sents the population depends
on the sample design.

Sample
Population

A parameter is a number
describing a characteristic of
the population

A statistic is a number
describing a characteristic of a
sample.
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Good and Bad Sampling Methods

Whether information collected from the sample tells us truth about
the population depends on how subjects is selected from the
population to form a sample.

Simple Random Sampling

• Basic idea: put the names of individuals in the population in a
box, shake well, and make draws from the box at random
without replacement

• produces nearly i.i.d. observations if the sample size is less
than 10% of the population size

Convenience sampling: just sampling from those who are easily
accessible

• E.g. “Man on the street” survey (cheap, convenient, popular
with TV “journalism”) 3



Population & Parameter

Population

µ − σ µ µ + σ

Population
Distribution

• Suppose we are interested in some numerical characteristic X
about individuals in a certain population.

• If it’s possible to interview each individual in the population
and record his/her X value, we can then make a histogram for
the recorded X-values and that’s the population distribution.

• The population distribution is arbitrary (not necessarily
normal). We are interested in the parameters of the
population distribution, e.g. the population mean µ and the
population variance σ2, or other parameters that describe the
population distribution.
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Sample and Statistics

Population

Sample

µ − σ µ µ + σ

Population
Distribution

A (simple) random sample is taken from the population.
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Sample and Statistics

Population

Sample
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The X-values (X1, X2, . . . , Xn) for individuals in the sample are
recorded. One can use a histogram for the sample to estimate the
population distribution. 5



Sample and Statistics

Population

Sample
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A statistic T is a function of the sample T = g(X1, . . . , Xn) that is
used to estimate the parameter of a population, e.g., the sample
mean X = 1

n
∑

i Xi is a statistic to estimate the population mean µ. 5



Sample and Statistics

Population
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Sampling Distribution
of the Sample Mean

when n is large
X ~ N(µ, σ n)

A statistic is a random variable that it’s value will vary from sample
to sample, e.g., the sample mean X is random and it’s distribution
is approx N(µ, σ/

√
n) when n is large by CLT. 5



Sample and Statistic

A statistic T = T (X1, X2, . . . , Xn) is a function of the random
sample X1, X2, . . . , Xn.

• A statistic cannot involve any unknown parameter, for
example, X − µ is not a statistic if the population mean µ is
unknown.

• A statistic T itself is a random variable, which its own
probability. This distribution of T allows us to determine the
accuracy and reliability of our estimate.

Examples

• the sample mean X is a statistic to estimate the population
mean µ

• the sample variance s2 =

∑n
i=1

(
Xi−X

)2

n−1 is a statistic to estimate
the population variance σ2
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Statistical Inference

Suppose we want to estimate a parameter θ of a population
distribution f (x|θ), e.g., θ can be

• population mean µ =
∫

x f (x|θ)dx
• population variance σ2 =

∫
(x − µ)2 f (x|θ)dx

• success probability p for a Binomial distribution, and so on

based on a random sample X1, X2, . . . , Xn of size n.

In Chapter 3-6, we assume the parameters µ, σ2, p’s are known
and can be used to calculate probabilities for the random variables
X1, X2, . . . , Xn.

In Statistics problems, the parameters of the population distribution
are unknown as we cannot observe the entire population.
Statistical inference use the observed random sample X1, . . . , Xn to
infer the UNKNOWN parameter(s): µ, σ2, p, etc.
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Statistical Inference

Statistical Inference include

• point estimate: finding an estimated value for the unknown
parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Chapter 7)

• confidence interval: giving a range for the plausible values of
the unknown parameter . . . . . . . . . . . . . . . . . . . . . . . . . . (Chapter 8)

• hypothesis testing: testing whether the unknown parameter is
a given value or not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Chapter 9)
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Point Estimate

The point estimate of a parameter θ, is a statistic T = T (X1, . . . , Xn)
computed from the sample {X1, . . . , Xn} that is a sensible guess for
the unknown θ.
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Examples of Point Estimates

Example 1: If X1, . . . , Xn are i.i.d. N(µ, σ2), the point estimate for
the population mean µ can be

• the sample mean X = 1
n
∑n

i=1 Xi

• the median of X1, . . . , Xn

• the average of X1, . . . , Xn after discarding the minimum &
maximum

The point estimate for the population variance σ2 can be

• the sample variance S 2 =

∑n
i=1

(
Xi − X

)2

n − 1
• an alternative estimator would result from using divisor n

instead of n − 1

σ̂2 =

∑n
i=1

(
Xi − X

)2

n
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Examples of Point Estimates

Example 2: If X ∼ Bin(n, p) is Binomial, the point estimate for the
success probability p can be

• the sample proportion p̂ =
X
n

• Wilson’s plus-four estimate p̃ =
X + 2
n + 4

• adding successes and two failures to the sample and then
calculate the sample proportion of successes
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Mean Squared Error

With many possible point estimates θ̂’s for a parameter θ, how to
choose a good one among them?

A population criterion is to compare their Mean Squared Error
(MSE), defined as

Mean Squared Error (MSE) = E[(̂θ − θ)2]
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MSE = (Bias)2+ Variance

Recall the shortcut formula for the variance of any variable Y

Var(Y) = E(Y2) − (E(Y))2,

Rearranging the terms, we get

E(Y2) = (E(Y))2 + Var(Y).

Plugging in Y = θ̂ − θ, then E(̂θ − θ) = E(̂θ) − θ, we get

E[(̂θ − θ)2] = [E(̂θ) − θ]2 + Var(̂θ − θ)
∥ ∥ ∥

MSE = (Bias)2 + Var(̂θ)

where the bias of an point estimate θ̂ for θ is defined to be the
difference between the expected value of the estimate and the true
value of the parameter

Bias = E(̂θ) − θ 13



Examples of MSE

If X1, . . . , Xn are i.i.d. with population mean µ and population
variance σ2, using the sample mean X = 1

n
∑n

i=1 Xi the point
estimate for the population mean µ

• the bias is E(X) − µ = µ − µ = 0
• the variance is Var(X) = σ2/n

The MSE for X is hence

MSE = (Bias)2 + Variance = 02 +
σ2

n
=
σ2

n
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Unbiased Estimators

A point estimator θ̂ is said to be an unbiased estimator of θ if

E(̂θ) = θ

for every possible value of θ.

For unbiased estimators, MSE = Variance .
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Proof of Expected Value of Sample Variance (1)

Recall Xi’s are i.i.d. with E(Xi) = µ and Var(Xi) = σ2. In L13, we
showed that the mean and variance of the sample mean X are

E(X) = µ and Var(X) =
σ2

n

Applying the general result that E(Y2) = Var(Y) + (E(Y))2 to Xi and
X, we get

E(X2
i ) = Var(Xi) + (E(Xi))2 = σ2 + µ2

E(X
2
) = Var(X) +

(
E(X)

)2
=
σ2

n
+ µ2
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Proof of Expected Value of Sample Variance (2)

Taking expectation on both sides of the shortcut formula for sample
variance,

S 2 =

(∑n
i=1 X2

i

)
− nX

2

n − 1
.

and plugging in E(X2
i ) = σ2 + µ2 and E(X

2
) = σ

2

n + µ
2, we get

E(S 2) =
1

n − 1

[(∑n

i=1
E(X2

i )
)
− n E(X

2
)
]

=
1

n − 1

[(∑n

i=1
(σ2 + µ2)

)
− n

(
σ2

n
+ µ2

)]
=

1
n − 1

[
n(σ2 + µ2) − n

(
σ2

n
+ µ2

)]
=

1
n − 1

(n − 1)σ2 = σ2
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MSE of Sample Variance (May Skip)

To obtain the MSE, we also need to calculate the variance for the
sample variance.

In general, the variance of the sample variance of i.i.d. X1, . . . , Xn

can be shown to be

Var(S 2) =
E[(Xi − µ)4]

n
−

(n − 3)σ4

n(n − 1)
.

If X1, X2, . . . , Xn are i.i.d. normal, one can show E[(Xi − µ)4] = 3σ4

and hence the variance of S 2 simplifies to

Var(S 2) =
3(n − 1)σ4

n(n − 1)
−

(n − 3)σ4

n(n − 1)
=

3(n − 1) − (n − 3)
n(n − 1)

σ4 =
2σ4

(n − 1)
.

The MSE of S 2 is hence

MSE = (Bias)2 + Variance = 02 +
2σ4

n − 1
=

2σ4

n − 1
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A Biased Estimator for σ2 w/ Smaller MSE (May Skip)

Consider an alternative estimator for σ2 that using divisor n+1
instead of n − 1

σ̂2 =

∑n
i=1(Xi − X)2

n + 1
=

(n − 1)S 2

n + 1
The expected value and variance of σ̂2 are respectively

E(σ̂2) =
(n − 1) E(S 2)

n + 1
=

(n − 1)σ2

n + 1
,

Var(σ̂2) =
(
n − 1
n + 1

)2

Var(S 2) =
(
n − 1
n + 1

)2 2σ4

(n − 1)
=

2(n − 1)σ4

(n + 1)2

if X1, . . . , Xn’s are i.i.d. normal. Hence, σ̂2 is a biased estimator for
σ2 with

Bias = E(σ̂2) − σ2 =
(n − 1)σ2

n + 1
− σ2 =

−2σ2

n + 1
.
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The MSE of σ̂2 is

MSE = (Bias)2 + Variance =
(
−2σ2

n + 1

)2

+
2(n − 1)σ4

(n + 1)2 =
2nσ4

(n + 1)2

which is lower than the MSE of
2σ4

n − 1
for the sample variance S 2.

A biased estimator might have smaller MSE if it has a smaller
variance.
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MSE of the Sample Proportion p̂ =
X
n

If X ∼ Bin(n, p) is Binomial, a point estimate for the success

probability p is the sample proportion p̂ =
X
n

. As X is Binomial,

E(X)= np ⇒ E( p̂)=
E(X)

n
=

np
n
= p

Var(X)= np(1 − p) ⇒ Var( p̂)=
Var(X)

n2 =
np(1 − p)

n2 =
p(1 − p)

n

Thus the sample proportion p̂ is unbiased with the MSE

MSE = (Bias)2 + Variance = 02 +
p(1 − p)

n
=

p(1 − p)
n

.
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MSE for Wilson’s “Plus-Four” Estimate for Proportions

Recall Wilson’s plus-four estimate is

p̃ =
X + 2
n + 4

.

It’s expected value and variance are respectively,

E(p̃) =
E(X) + 2

n + 4
=

np + 2
n + 4

, and Var(p̃) =
Var(X)
(n + 4)2 =

np(1 − p)
(n + 4)2 .

Its bias and MSE are respectively

Bias = E( p̃) − p =
np + 2
n + 4

− p =
2 − 4p
n + 4

MSE = (Bias)2 + Variance =
(
2 − 4p
n + 4

)2

+
np(1 − p)
(n + 4)2

22



MSE’s for Sample Proportion & Wilson’s “Plus-Four”

Below are the graphs of the MSE for p̂ = X/n and p̃ =
X + 2
n + 4
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n
, MSE( p̃) =

(
2 − 4p
n + 4
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• p̂ = X/n has a smaller MSE only when p is close to 0 or 1
• p̃ = X+2

n+4 has a smaller MSE when p is NOT close to 0 or 1
• The two MSE’s are close when n is large
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Other Criteria for Choosing Point Estimates

Chapter 7 of MMSA introduced several other criteria for choosing
points estimates including

• maximum likelihood estimate (MLE) in Section 7.2
• sufficient statistic in Section 7.3
• information and efficiency in Section 7.4

All of them are important in Statistics but we don’t have enough
time to cover them in STAT 234. If interested, you can take STAT
244 to learn them.
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