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Covariance



Covariance

The covariance of X and Y, denoted as Cov(X,Y) or σXY , is
defined as

Cov(X,Y) = σXY = E[(X − µX)(Y − µY )],

in which µX = E(X), µY = E(Y)

• Covariance is a generalization of variance as the variance of a
random variable X is just the covariance of X with itself.

Var(X) = Cov(X, X) = E[(X − µX)2]
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Sign of Covariance Reflects the Direction of (X,Y) Relation

• Cov(X,Y) > 0 means a positive relation between X, Y
• When X increases, Y tends to increase

• Cov(X,Y) < 0 means a negative relation between X, Y
• When X increases, Y tends to decrease
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Shortcut Formula for Covariance

Cov(X,Y) = E(XY) − E(X) E(Y)

• Like the Shortcut Formula for Variance
Var(X) = E(X2) − [E(X)]2.

• If X & Y are indep., then E(XY) = E(X) E(Y), which implies
Cov(X,Y) = 0.

• However Cov(X,Y) = 0 does not imply the independence of X
and Y. In this case, we say X and Y are uncorrelated.
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Proof of the Shortcut Formula for Covariance

Cov(X,Y) = E[(X − µX)(Y − µY )]

= E(XY − µXY − µY X + µXµY )

= E(XY) − µX E(Y)︸︷︷︸
=µY

−µY E(X)︸︷︷︸
=µX

+µXµY

= E(XY) − µXµY
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Example (Gas Station) — E(XY)

For the Gas Station Example in L09, recall the joint pmf is

Y (full-service)
p(x, y) 0 1 2

X 0 0.10 0.04 0.02
self- 1 0.08 0.20 0.06

service 2 0.06 0.14 0.30

Guess Cov(X,Y) > 0 or < 0?
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E(XY) =
∑

xy
xyp(x, y)

= 0 · 0 · 0.10 + 0 · 1 · 0.04 + 0 · 2 · 0.02

+ 1 · 0 · 0.08 + 1 · 1 · 0.20 + 1 · 2 · 0.06

+ 2 · 0 · 0.06 + 2 · 1 · 0.14 + 2 · 2 · 0.30

= 1.8
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Example (Gas Station) — Covariance

Recall in L09, we obtained the marginal pmfs for X and Y:

x 0 1 2
pX(x) 0.16 0.34 0.50

, E(X) = 0 ·0.16+1 ·0.34+2 ·0.5 = 1.34

y 0 1 2
pY (y) 0.24 0.38 0.38

, E(Y) = 0·0.24+1·0.38+2·0.38 = 1.14

By the shortcut formula, the covariance is

Cov(X,Y) = E(XY) − E(X) E(Y)

= 1.8 − 1.34 × 1.14 = 0.2724 > 0.

When one service island has more hoses in-use, the other also
tends to have more in-use.
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Example 5.5 (Mixed Nuts) — Covariance

Recall in Lecture 9, the joint pdf for

X = the weight of almonds, and Y = the weight of cashews

in a can of mixed nuts is

f (x, y) =

24xy if 0 ≤ x, y ≤ 1, x + y < 1

0 otherwise

c(−0.25, 1.35)

c(
−

0.
25

, 1
.3

5)

x

y

0 1
0

1 x + y = 1

Before we calculate it, guess Cov(X,Y) > 0 or < 0?
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Example 5.5 (Mixed Nuts) — E(XY)

E(XY) =
x

xy f (x, y)dxdy =
∫ 1

0

∫ 1−y

0
24x2y2 dx dy

c(−0.75, 1.35)

c(
−

0.
3,

 1
.5

)

x

y

0 1

1

(1−y,y)

1−y

fix y

integrate x
from 0 to 1−y

where

∫ 1−y

0
24x2y2 dx = 8x3y

∣∣∣∣∣x=1−y

x=0
= 8(1 − y)3y2

Putting it back to the double integral,

E(XY) =
∫ 1

0

∫ 1−y

0
24x2y2 dx dy =

∫ 1

0
8(1 − y)3y2dy =

2
15
.
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Example 5.5 (Mixed Nuts) — Covariance

Recall in L09, we calculated the marginal pdf’s for X and for Y:

fX(x) = 12x(1 − x)2, fY (y) = 12y(1 − y)2, for 0 ≤ x, y ≤ 1.

using which we can calculate

E(X) =
∫ 1

0
x fX(x)dx =

∫ 1

0
12x2(1 − x)2dx

=

∫ 1

0
12x2 − 24x3 + 12x4dx = 4x3 − 6x4 +

12
5

x5
∣∣∣∣∣1
0
=

2
5

Likewise, E(Y) = 2/5. By the shortcut formula, the covariance is

Cov(X,Y) = E(XY) − E(X) E(Y) =
2

15
−

2
5
×

2
5
= −

2
75

When the amount of almond is increased, the amount of cashew is
likely reduced.
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Cov(aX + c, bY + d) = ab Cov(X,Y)

Recall variance has the scaling property

Var(aX + b) = a2 Var(X).

The scaling property for Covariance is

Cov(aX + c, bY + d)

= E{[aX + c − E(aX + c)][bY + d − E(bY + d)]}

= E[(aX + c − a E(X) − c)(bY + d − b E(Y) − d)]

= E[(aX − a E(X))(bY − b E(Y))]

= ab E[(X − µX)(Y − µY )]

= ab Cov(X,Y)
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Correlation



How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance

[Cov(X,Y)]2 ≤ Var(X) Var(Y)

Moreover, the covariance reaches its maximum possible
magnitude if and only if X and Y has a perfect linear relation
Y = aX + b, a , 0.

Thus, one can assess the strength of linear relation between X,Y
by comparing Cov(X,Y) with

√
Var(X) Var(Y).
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Correlation

Correlation = ρXY = Corr(X,Y) =
Cov(X,Y)

√
Var(X) Var(Y)

=
σXY

σXσY
.

• −1 ≤ ρXY ≤ 1 since Cov(X,Y) ≤
√

Var(X) Var(Y)
• The closer ρXY is to 1 or to −1, the stronger the linear relation

between X and Y

−1 0 1

Neg. Assoc. Pos. Assoc.

Strong Weak No Assoc Weak Strong

Perfect Perfect

• ρXY = 1 or −1 if and only if Y = aX + b and a , 0,
i.e., X and Y has an perfect linear relation
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Covariance Is NOT Scale Invariant but Correlation Is!

Example. Let

• X = amount of time studying STAT 234 per week, and
• Y = grade in STAT 234

If X is measured in minutes rather than in hours, Cov(X,Y) would
be 60 times as large.

The strength of XY relation should be the same no matter X is
measured in minutes or in hours.

Correlation ρXY is scale invariant and has no unit.

Corr(aX + c, bY + d) =
Cov(aX + c, bY + d)

√
Var(aX + c) Var(bY + d)

=
ab Cov(X,Y)√

a2 Var(X)b2 Var(Y)
= (sign of ab) Corr(X,Y)
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Example (Gas Station) — Correlation

Recall in L09, we obtained the marginal pmfs for X and Y:

x 0 1 2
pX(x) 0.16 0.34 0.50

,
y 0 1 2

pY (y) 0.24 0.38 0.38

E(X2) = 02 · 0.16 + 12 · 0.34 + 22 · 0.5 = 2.34

Var(X) = E(X2) − (E(X))2 = 2.34 − 1.342 = 0.5444

E(Y2) = 02 · 0.24 + 12 · 0.38 + 22 · 0.38 = 1.9

Var(Y) = E(Y2) − (E(Y))2 = 1.9 − 1.142 = 0.6004

Corr(X,Y) =
Cov(X,Y)

√
Var(X) Var(Y)

=
0.2724

√
0.5444 × 0.6004

≈ 0.476.
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Example 5.5 (Mixed Nuts) — Correlation

Recall in L09, we calculated the marginal pdf’s for X and for Y:

fX(x) = 12x(1 − x)2, fY (y) = 12y(1 − y)2, for 0 ≤ x, y ≤ 1.

using which we can calculate

E(X2) =
∫ 1

0
x2 fX(x)dx =

∫ 1

0
12x3(1 − x)2dx

=

∫ 1

0
12x3 − 24x4 + 12x5dx = 3x4 −

24x5

5
+ 2x6

∣∣∣∣∣1
0
=

1
5

Var(X) = E(X2) − (E(X))2 =
1
5
− (

2
5

)2 =
1
25

Similar, one can calculate Var(Y) = 1/25

Corr(X,Y) =
Cov(X,Y)

√
Var(X) Var(Y)

=
−2/75

√
(1/25)(1/25)

= −
2
3
≈ −0.667.
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More Properties of Covariance

Cov(X,Y) = E[(X − E(X))(Y − E(Y))] = E(XY) − E(X) E(Y)

In the following, a, b are constants. X, Y, Z are random variables

• Symmetry: Cov(X,Y) = Cov(Y, X)
• Homogeneity: Cov(aX, bY) = ab Cov(X,Y)
• Right-linearity: Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)
• Left-linearity: Cov(X,Y + Z) = Cov(X,Y) + Cov(X,Z)
• Cov(a, X) = 0.

17



Proofs for Properties of Covariance

The proofs for these propertie are all straightforward from
definition. We just prove the Right-linearity as an example.

Cov(X + Y,Z) = E((X + Y)Z) − E(X + Y) E(Z)

= E(XZ) + E(YZ) − [E(X) + E(Y)] E(Z)

= E(XZ) − E(X) E(Z)︸                  ︷︷                  ︸
Cov(X,Z)

+E(YZ) − E(Y) E(Z)︸                  ︷︷                  ︸
Cov(Y,Z)

= Cov(X,Z) + Cov(Y,Z)

Note in the proof above, we used the property of expected value
that

E(X + Y) = E(X) + E(Y)

E(XZ + YZ) = E(XZ) + E(YZ)
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Variance of Linear Combinations of Two Random Variables

Recall that expectation has the following linear property:

E(aX + bY) = a E(X) + b E(Y).

We also have shown that Var(aX + b) = a2 Var(X).

How about Var(aX + bY)?

Var(aX + bY) = a2 Var(X) + 2ab Cov(X,Y) + b2 Var(Y)

• If X is independent of Y, Var(X ± Y) = Var(X) + Var(Y)
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Proof of Var(aX + bY)

Var(aX + bY) = Cov(aX + bY , aX + bY)

= Cov(aX, aX + bY)︸                 ︷︷                 ︸ + Cov(bY , aX + bY)︸                 ︷︷                 ︸ (right-linearity)

↓ ↓

=
︷                             ︸︸                             ︷
Cov(aX, aX)+Cov(aX, bY)+

︷                            ︸︸                            ︷
Cov(bY, aX)+Cov(bY, bY) (left-linearity)

= Var(aX) + 2 Cov(aX, bY) + Var(bY) (symmetry)

= a2 Var(X) + 2ab Cov(X,Y) + b2 Var(Y) (homogeneity)
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Linear Combinations of Random Variables

For any random variables X1, X2, . . . , Xn., a linear combination of
X1, X2, . . . , Xn is

a1X1 + a2X2 + · · · + anXn,

where a1, a2, . . . , an are constant numbers. For example,

• The sum X1 + X2 + · · · + Xn is a linear combination of
X1, . . . , Xn with all ai’s = 1.

• The average
X1 + X2 + · · · + Xn

n
is a linear combination of X1, X2, . . . , Xn with all ai’s = 1/n.

• The difference X − Y is a linear combination of X and Y with
a1 = 1, a2 = −1
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Example (Total Bus Fare)

Suppose the bus fare is

$2 for senior citizens, $1 for children, and $3 for all other people

Let

X = the number of senior citizens on the bus,

Y = the number of children on the bus,

Z = the number of all other passengers on the bus

The total amount of bus fares collected is then

2X + Y + 3Z

which is a linear combination of X,Y,Z.
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Expected Values for Linear Combinations of RV’s

For the linear combination

a1X1 + a2X2 + · · · + anXn,

the expected value is

E(a1X1 + a2X2 + · · · + anXn)

= E(a1X1) + E(a2X2) + · · · + E(anXn) by linearity of expected value

= a1 E(X1) + a2 E(X2) + · · · + an E(Xn) since E(aX) = a E(X)
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Variance of a Linear Combination of RV’s

Var

 n∑
i=1

aiXi

 = n∑
i=1

a2
i Var(Xi) + 2

∑
i< j

aia j Cov(Xi, X j)

• There is a covariance term for every pair of Xi and X j

• When X1, . . . , Xn are independent, then

Var(X1 + X2 + . . . + Xn) = Var(X1) + Var(X2) + . . . + Var(Xn).

• When Var(Xi) = σ2 for i = 1, . . . , n,
and Cov(Xi, X j) = ρ for 1 ≤ i , j ≤ n, then

Var(X1 + . . . + Xn) = nσ2 + n(n − 1)ρ.
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Example: Variance of the Binomial Distribution

In Lecture 6A, we computed the expected value for the Binomial
distribution Bin(n, p), but the variance is given without proof.

µ = E(X) = np, σ2 = Var(X) = np(1 − p).

Here we will to prove the formulas using linear combinations.

First for the special case n = 1, X ∼ Bin(n = 1, p), X only takes
value 0 and 1 with the pmf below

x 0 1
p(x) 1 − p p

Hence
E(X) =

∑
x=0,1

xp(x) = 0 · (1 − p) + 1 · p = p ,

E(X2) =
∑

x=0,1
x2 p(x) = 02 · (1 − p) + 12 · p = p

Var(X) = E(X2) − (E(X))2 = p − p2 = p(1 − p)
25



For general n, recall a Binomial random variable X ∼ Bin(n, p) is
the total number of successes obtained in n independent Bernoulli
trials. For each of the n trials, define

Xi =

1 if success in the ith trial

0 if failure in the ith trial
⇒ Xi ∼ Bin(n = 1, p).

Then X = the number of successes obtained in the n trials

= X1 + X2 + . . . + Xn,

The expected value and variance of X are thus

E(X) = E(X1)︸︷︷︸
=p

+ · · · + E(Xn)︸︷︷︸
=p

= np

Var(X) = Var(X1)︸  ︷︷  ︸
=p(1-p)

+ · · · + Var(Xn)︸  ︷︷  ︸
=p(1-p)

= np(1 − p)

since Xi’s are indep. and each with mean p and variance p(1 − p)
as Xi ∼ Bin(n = 1, p).
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Example (Sample Mean)

Suppose X1, . . . , Xn are i.i.d. rv’s with mean µ and variance σ2.

• i.i.d. = “independent and have an identical distribution”

Consider the sample mean

X =
1
n

(X1 + · · · + Xn)

Then

E(X) =
1
n

[E(X1) + . . . + E(Xn)] =
1
n

(µ + . . . + µ︸       ︷︷       ︸
n copies

) = µ.

Var(X) =
1
n2 Var(X1 + X2 + . . . + Xn) since Var(aX) = a2V(X)

=
1
n2 [Var(X1) + . . . + Var(Xn)] as all Xi’s are indep.

=
1
n2 (σ2 + . . . + σ2︸          ︷︷          ︸

n copies

) =
nσ2

n2 =
σ2

n
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