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Covariance



Covariance

The covariance of X and Y, denoted as Cov(X, Y) or oxy, is
defined as

Cov(X,Y) = oxy = E[(X — px)(Y — py)],
in which uy = E(X), uy = E(Y)

e Covariance is a generalization of variance as the variance of a
random variable X is just the covariance of X with itself.

Var(X) = Cov(X, X) = E[(X — ux)*]



Sign of Covariance Reflects the of (X, Y) Relation

e Cov(X,Y) > 0 means a positive relation between X, Y
e When X increases, Y tends to increase

e Cov(X,Y) < 0 means a negative relation between X, Y
e When X increases, Y tends to decrease
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Shortcut Formula for Covariance

Cov(X,Y) = E(XY) - E(X)E(Y)

e Like the Shortcut Formula for Variance
Var(X) = B(X?) - [E(X)]*.

e If X & Y are indep., then E(XY) = E(X) E(Y), which implies
Cov(X,Y) =0.

e However Cov(X, Y) = 0 does not imply the independence of X
and Y. In this case, we say X and Y are uncorrelated.



Proof of the Shortcut Formula for Covariance

Cov(X,Y) = E[(X — ux)(Y — uy)]
= B(XY — uxY — py X + pxpty)

= E(XY) — ux E(Y) —py E(X) +uxpy
S~—— S~——
=My =ux
= E(XY) — uxpy



Example (Gas Station) — E(XY)

For the Gas Station Example in L09, recall the joint pmf is

Y (full-service)

pey | 0 1 2 o @
X 0 010 004 002 ~:- « @ ® ® o:
self- 1 0.08 0.20 0.06 @ o2

service 2 | 006 014 030 ° ® ¢ ¢

Guess Cov(X,Y) > 0or < 0?



Example (Gas Station) — E(XY)

For the Gas Station Example in L09, recall the joint pmf is

Y (full-service)

pey | 0 1 2 o @
X 0 010 004 002 ~:- « @ ® ® o:
self- 1 0.08 0.20 0.06 @ o2

service 2 | 0.06 014 030 ° ® ¢ °

Guess Cov(X,Y) > 0or<0?

BXY)= ) xp(xy)
=0-0-0.10+0-1-0.04+0-2-0.02
+1-0-0.08+1-1-0.20+1-2-0.06
+2:0:-0.06+2-1-0.14+2-2-0.30
=138 6



Example (Gas Station) — Covariance

Recall in L09, we obtained the marginal pmfs for X and Y

X ‘ 0 1
px(x) | 0.16 034 050

E(X)=0-0.16+1-0.34+2-0.5 = 1.34

y o 1 2
pr(y) | 024 038 038°

E(Y)=0-0.24+1-0.38+2-0.38 = 1.14

By the shortcut formula, the covariance is

Cov(X,Y) = E(XY) - E(X)E(Y)
=18-1.34x1.14 =0.2724 > 0.

When one service island has more hoses in-use, the other also
tends to have more in-use.



Example 5.5 (Mixed Nuts) — Covariance

Recall in Lecture 9, the joint pdf for
X = the weight of almonds, and Y = the weight of cashews

in a can of mixed nuts is

24xy f0<x,y<lLx+y<l
floy) = _
0 otherwise

Before we calculate it, guess Cov(X, Y) > 0 or < 0?



Example 5.5 (Mixed Nuts) — E(XY)

1 pl-y ;
B : ) integrate x
E(XY) = ff xyf(x,y)dxdy = fofo 24x7y"dxdy . y from 0 to 1-y

fixy —s¢




Example 5.5 (Mixed Nuts) — E(XY)

1 pl-y )
E(XY) = ff xyf(x,y)dxdy = f f 24x22 dxdy Yy Integratex
0Jo

from 0 to 1-y
1_
where fixy — . (1-y.y)
I
x=1-y 0 1_y 1

= 8(1 -y

I-y
f 24x%y* dx = 8x7y
0 x=0

Putting it back to the double integral,

1 pl-y 1 )
E(XY) = f f 24x%y?* dxdy = f 8(1 —y)’y*dy = 5
0 Jo 0




Example 5.5 (Mixed Nuts) — Covariance

Recall in L09, we calculated the marginal pdf’s for X and for Y:
fx(x) = 12x(1 = %), fr(y) = 12y(1 —y)%, for0 < x,y < 1.

using which we can calculate

1 1
E(X) = f xfx(x)dx = f 12x*(1 = x)%dx
0

0

: 2 3 4 3 g 12 502
:lex —24x" + 12x"dx =4x" = 6x" + —X°| = =
0 5 o 5
Likewise, E(Y) = 2/5. By the shortcut formula, the covariance is
2 2 2

2
Cov(X.¥) = E(XY) ~EX)E(Y) = 7z~ 5 X 5 ===

When the amount of almond is increased, the amount of cashew is
likely reduced.



Cov(aX + ¢,bY +d) = ab Cov(X,Y)

Recall variance has the scaling property
Var(aX + b) = a* Var(X).
The scaling property for Covariance is

Cov(aX + ¢, bY +d)

= E{[aX + ¢ — E(aX + o)][bY + d — E(bY + d)]}
=E[(aX+c—aEX)—-c)bY +d—-bE(Y)-d)]
= E[(aX — a E(X))(bY — bE(Y))]

= ab E[(X — ux)(Y — piy)]

=ab Cov(X,Y)



Correlation




How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance

[Cov(X, V)] < Var(X) Var(Y)



How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance
[Cov(X, V)] < Var(X) Var(Y)

Moreover, the covariance reaches its maximum possible
magnitude if and only if X and Y has a perfect linear relation
Y=aX+b,a=+0.

Thus, one can assess the strength of linear relation between X, Y
by comparing Cov(X, Y) with +/Var(X) Var(Y).



Correlation

. Cov(X,Y
Correlation = pyy = Corr(X,Y) = ovX.¥) _ oxv

VVar(X) Var(Y) Oox0y
e —1 < pxy < 1since Cov(X,Y) < v/Var(X) Var(Y)
e The closer pxy is to 1 or to —1, the stronger the linear relation
between X and Y

Neg. Assoc. Pos. Assoc.

Strong Weak No Assoc Weak Strong
I T 1
-1 0 1
Perfect Perfect

e pxy=1or-lifandonlyifY =aX+banda # 0,
i.e., X and Y has an perfect linear relation



Covariance Is NOT Scale Invariant but Correlation Is!

Example. Let

e X = amount of time studying STAT 234 per week, and
e Y = grade in STAT 234

If X is measured in minutes rather than in hours, Cov(X, Y) would
be 60 times as large.

The strength of XY relation should be the same no matter X is
measured in minutes or in hours.

Correlation pxy is scale invariant and has no unit.
Cov(aX + ¢, bY +d)

VVar(aX + c¢) Var(bY + d)
abCov(X,Y)

) Va2 Var(X)b? Var(Y)

Corr(aX + ¢,bY +d) =

= (sign of ab) Corr(X,Y)




Example (Gas Station) — Correlation

Recall in L09, we obtained the marginal pmfs for X and Y

x o 1 2 y o 1 2
px(x) [ 0.16 034 050 py(y 024 038 038

E(X*) =0%-0.16+17-0.34+2%-0.5 = 2.34
Var(X) = E(X?) — (E(X))* = 2.34 — 1.34% = 0.5444
E(Y?)=0%-024+17-038+2%-0.38=1.9
Var(Y) = E(Y?) — (E(Y))* = 1.9 — 1.14% = 0.6004

Cov(X,Y) 0.2724

Corr(X,Y) = =
VVar(X) Var(Y)  /0.5444 x 0.6004

~ 0.476.




Example 5.5 (Mixed Nuts) — Correlation

Recall in L09, we calculated the marginal pdf’s for X and for Y:
fx(x) = 12x(1 = %)%, fy(y) = 12y(1 —y)%, for0 < x,y < 1.

using which we can calculate

1 1
E(X?) = f x fy(x)dx = f 12x3(1 = x)%dx
0 0

1 5 1
24
= f 1203 = 24x* + 125dx = 3x* = 8 100 = 2
0 0
Var(X) = EQ) - B(X) = + - (27 = =
B 5 57 725
Similar, one can calculate Var(Y) = 1/25
Cov(X,Y -2/75 2
Com(X,Y) = ——VXY  _ / —Z ~ 20667

WVarX) Var(t) N353



More Properties of Covariance

Cov(X,Y) = E[(X — E(X))(Y — E(Y))] = E(XY) - E(X)E(Y)

In the following, a, b are constants. X, Y, Z are random variables

Symmetry: Cov(X,Y) = Cov(¥, X)

Homogeneity: Cov(aX, bY) = abCov(X,Y)

e Right-linearity: Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
Left-linearity: Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)
Cov(a, X) = 0.



Proofs for Properties of Covariance

The proofs for these propertie are all straightforward from
definition. We just prove the Right-linearity as an example.
Cov(X+Y,2)=E(X+Y)Z)—EX + Y)E(2)
=E(XZ2) + E(YZ) - [E(X) + E(Y)]E(Z)
=EXZ2)-EX)EZ)+E(YZ)-EY)E(Z)
Cov(X,Z) Cov(Y,Z)
= Cov(X,Z) + Cov(Y,Z)

Note in the proof above, we used the property of expected value
that

E(X + Y) = E(X) + E(Y)
E(XZ + YZ) = E(XZ) + E(YZ)



Variance of Linear Combinations of Two Random Variables

Recall that expectation has the following linear property:
E(aX + bY) = aE(X) + bE(Y).

We also have shown that Var(aX + b) = a? Var(X).

How about Var(aX + bY)?

Var(aX + bY) = a* Var(X) + 2ab Cov(X, Y) + b* Var(Y)

e If X is independent of ¥, Var(X + Y) = Var(X) + Var(Y)



Proof of Var(aX + bY)

Var(aX + bY) = Cov(aX + bY,aX + bY)

= Cov(aX,aX+bY) +  Cov(bY,aX +bY) (right-linearity)
\ l

= Cov(aX, aX)+Cov(aX, bY)+Cov(bY,aX)+Cov(bY,bY)  (left-linearity)

= Var(aX) + 2 Cov(aX, bY) + Var(bY) (symmetry)

= a® Var(X) + 2ab Cov(X, Y) + b* Var(Y) (homogeneity)

20



Linear Combinations of Random Variables

For any random variables X1, X, ..., X,,., a linear combination of
X1,X2,..., X, is
a X1 +a X+ -+ a,X,,

where ay, as, ..., a, are constant numbers. For example,

e The sum X; + X, + --- + X, is a linear combination of
Xi,..., X, with all g;’s = 1.

e The average
X1+ X+ + X,

n
is a linear combination of X1, X», ..., X, with all a;’s = 1/n.
e The difference X — Y is a linear combination of X and Y with

a1=l,a2:—1

21



Example (Total Bus Fare)

Suppose the bus fare is
$2 for senior citizens, $1 for children, and $3 for all other people

Let

X = the number of senior citizens on the bus,
Y = the number of children on the bus,

Z = the number of all other passengers on the bus
The total amount of bus fares collected is then
2X+Y+3Z7

which is a linear combination of X, Y, Z.

22



Expected Values for Linear Combinations of RV’s

For the linear combination
a1X] + azXQ + -+ Clan,
the expected value is

E(a1X1 + a2X2 + -0+ aan)
= E(a1X1) + E(axX1) + --- + E(a,X,)) by linearity of expected value
=a; E(X1) +a, E(Xp) + - + a, E(X),) since E(aX) = aE(X)

23



Variance of a Linear Combination of RV’s

n n
Var (Z aiXi] = Z al-2 Var(X;) + 2 Z aja;jCov(X;, X;)
=1

i=1 i= i<j

e There is a covariance term for every pair of X; and X;
e When Xi,..., X, are independent, then

Var(X; + Xo + ...+ X,) = Var(Xj) + Var(X») + ... + Var(X,,).

e When Var(X;) =c2fori=1,...,n,
and Cov(X;, X;) =pfor1 <i# j<n,then

Var(X) + ...+ X,) = no> + n(n — 1)p.

24



Example: Variance of the Binomial Distribution

In Lecture 6A, we computed the expected value for the Binomial
distribution Bin(n, p), but the variance is given without proof.

p=EX)=np, o =Var(X)=np(l-p).
Here we will to prove the formulas using linear combinations.

First for the special case n = 1, X ~ Bin(n = 1, p), X only takes
value 0 and 1 with the pmf below
x| o 1
px) | 1-p p

EX)= ), w@=0-(1-p)+1-p=[p]
EX) =), XP@=0-(1-p+1*-p=p

Var(X) = E(X?) - (B(X))? = p - p* =

Hence

25



For general n, recall a Binomial random variable X ~ Bin(n, p) is
the total number of successes obtained in n independent Bernoulli
trials. For each of the n trials, define

1 if success in the ith trial

X; = = X; ~ Bln(n = l,p).
0 if failure in the ith trial

Then X = the number of successes obtained in the n trials
=X1+Xo+...+ X,

The expected value and variance of X are thus

EX)=EX))+---+EX,) =np
—_—— ——

=p =p
Var(X) = Var(X;) + - - + Var(X,)) = np(1 — p)
— —
=p(1-p) =p(1p)

since X;’s are indep. and each with mean p and variance p(1 — p)
as X; ~ Bin(n =1, p).

26



Example (Sample Mean)

Suppose X1, ..., X, are i.i.d. rv’s with mean u and variance o2
e j.i.d. = “independent and have an identical distribution”

Consider the sample mean
- 1
X=-X1+---+Xp)
n

Then
1

_ 1
EX) = ~[BX) +... +EX)] = —(ut ...+ ) =po.

n copies

- 1
Var(X) = — Var(X; + X, + ...+ X,) since Var(aX) = a°V(X)
n

1
= ;[Var(X]) +...+ Var(X,,)] as all X;’s are indep.

1, ,. no? ol
== +.. . +0)=—F5=—
ns S n n
n copies
27
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