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Expected Values of Functions of X & Y

For two random variable X, Y with

e ajoint pmf p(x,y), or
e ajoint cdf f(x,y),

the expected value of a function g(X, Y) of X and Y is defined as

2y 8, Y)p(x,y) for discrete case,

Blg(x, V)] = { =2 & for dise
[ g(x,y)f(x,y)dxdy in continuous case.



Example (Gas Station)

Recall the joint pmf for the Gas Sta- . %(fu”-iewicg)
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= the absolute diff in the # of hoses in use

of the self-service and full-service islands.
The expected value is
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E(aX +bY) =aE(X)+ bE(Y)

If g(X,Y) = aX + bY for two random variables X and Y and two
constants a and b, we have
E[g(X,Y)] = E(aX + bY) = aE(X) + bE(Y)

no matter X and Y are both discrete, both continuous, or one
discrete and one continuous.

Proof. We will prove it for the case when X and Y are continuous
with joint pdf f(x, y). The proof for the discrete case is similar. By
definition, the expected value of the function g(X, Y) = aX + bY of X
and Yis

E(aX + bY) = f (ax + by)f(x,y)dxdy
= ff axf(x,y)dxdy + jf byf(x,y)dxdy

Part | Part Il




For Part I, we first integrate over y, and then over x.

Part | = ff axf(x,y)dxdy = a f (fxf(x, y)dy) dx

= afxff(x,y)dydx = afxfx(x)dx =aEX)
S——— S———
Sx(x) EX)

For Part Il, we first integrate over x, and then over y.

Part Il = jf byf(x, y)dxdy = b f (f yf(x, y)dx) dy

=bfyff(x,y)dxdy=bfyfy(y)dy=bE(Y)
——— ———
fr» E(Y)
Putting Parts | & Il together, we get

E(aX + bY) = E(aX) + E(bY).



Expected Value for Linear Combination of Random Variables

The result E(aX + bY) = aE(X) + bE(Y) can be generalized to
linear combinations of several random variables

E(a1X1 + a2X2 + -+ aan) =aj E(X]) + ar E(Xz) + -+ ay E(Xn),

no matter the rv’s are discrete or continuous, independent or not.



Elg(X)h(Y)] = E[g(X)] E[A(Y)] if X & Y are independent

When X and Y are independent, for any functions g and A,
E[g(X)h(Y)] = E[g(X)] E[A(Y)].

In particular, E(XY) = E(X) E(Y).

Proof. We prove the discrete case. The continuous case is similar.
Using that p(x,y) = px(x)py(y) when X, Y are indep, one has

BIs(XOMN] = ) gh()p(x.y)
= D0 D, SWhOPx(py () (p(x.y) = px(x)py(y) by indep.
= 2, &800px(x) ) h(3)py(y) = E[g(X)]EA(Y)]
————— ‘

—_—
E[g(X)] E[(Y)]



Covariance

The covariance of X and Y, denoted as Cov(X, Y) or oxy, is
defined as

Cov(X,Y) = oxy = E[(X — px)(Y — puy)],
in which uy = E(X), uy = E(Y)
e Covariance is a generalization of variance:
Var(X) = Cov(X, X) = E[(X — ux)*]

e Covariance can be positive or negative:

e Cov(X,Y) > 0 means positive association between X, Y
e Cov(X,Y) < 0 means negative association between X, Y



Shortcut Formula for Covariance

Cov(X,Y) = E(XY) — E(X) E(Y)

e Like the Shortcut Formula for Variance
Var(X) = B(X?) - [E(X)]*.

e If X & Y are indep., then E(XY) = E(X) E(Y), which implies
Cov(X,Y) =0.

e However Cov(X, Y) = 0 does not imply the independence of X
and Y. In this case, we say X and Y are uncorrelated.

e Proof of the shortcut formula:

Cov(X,Y) = E[(X — pux)(Y — py)]

= E(XY — uxY — pyX + pxpty)

= E(XY) — pux E(Y) —uy E(X) +uxpy
S~—— S~——
=y =ux
= E(XY) — pxpy 9



