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Expected Values of Functions of X & Y

For two random variable X, Y with

• a joint pmf p(x, y), or
• a joint cdf f (x, y),

the expected value of a function g(X,Y) of X and Y is defined as

E[g(X,Y)] =


∑

xy g(x, y)p(x, y) for discrete case,∫ ∞
−∞

∫ ∞
−∞

g(x, y) f (x, y) dx dy in continuous case.
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Example (Gas Station)

Y (full-service)
p(x, y) 0 1 2

X 0 0.10 0.04 0.02
self- 1 0.08 0.20 0.06

service 2 0.06 0.14 0.30

Recall the joint pmf for the Gas Sta-
tion Example in L09 is the table on the
right. Suppose we are interested in

g(X,Y) = |X − Y |

= the absolute diff in the # of hoses in use

of the self-service and full-service islands.

The expected value is

E |X − Y | =
∑

xy
|x − y|p(x, y)

= |0 − 0| · 0.10 + |0 − 1| · 0.04 + |0 − 2| · 0.02

+ |1 − 0| · 0.08 + |1 − 1| · 0.20 + |1 − 2| · 0.06

+ |2 − 0| · 0.06 + |2 − 1| · 0.14 + |2 − 2| · 0.30

= 0.48 3



E(aX + bY) = a E(X) + b E(Y)

If g(X,Y) = aX + bY for two random variables X and Y and two
constants a and b, we have

E[g(X,Y)] = E(aX + bY) = a E(X) + b E(Y)

no matter X and Y are both discrete, both continuous, or one
discrete and one continuous.

Proof. We will prove it for the case when X and Y are continuous
with joint pdf f (x, y). The proof for the discrete case is similar. By
definition, the expected value of the function g(X,Y) = aX + bY of X
and Y is

E(aX + bY) =
x

(ax + by) f (x, y)dxdy

=
x

ax f (x, y)dxdy︸                ︷︷                ︸
Part I

+
x

by f (x, y)dxdy︸                ︷︷                ︸
Part II

4



For Part I, we first integrate over y, and then over x.

Part I =
x

ax f (x, y)dxdy = a
∫ (∫

x f (x, y)dy
)

dx

= a
∫

x
∫

f (x, y)dy︸        ︷︷        ︸
fX (x)

dx = a
∫

x fX(x)dx︸        ︷︷        ︸
E(X)

= a E(X)

For Part II, we first integrate over x, and then over y.

Part II =
x

by f (x, y)dxdy = b
∫ (∫

y f (x, y)dx
)

dy

= b
∫

y
∫

f (x, y)dx︸         ︷︷         ︸
fY (y)

dy = b
∫

y fY (y)dy︸        ︷︷        ︸
E(Y)

= b E(Y)

Putting Parts I & II together, we get

E(aX + bY) = E(aX) + E(bY).
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Expected Value for Linear Combination of Random Variables

The result E(aX + bY) = a E(X) + b E(Y) can be generalized to
linear combinations of several random variables

E(a1X1 + a2X2 + · · · + anXn) = a1 E(X1) + a2 E(X2) + · · · + an E(Xn),

no matter the rv’s are discrete or continuous, independent or not.
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E[g(X)h(Y)] = E[g(X)] E[h(Y)] if X & Y are independent

When X and Y are independent, for any functions g and h,

E[g(X)h(Y)] = E[g(X)] E[h(Y)].

In particular, E(XY) = E(X) E(Y).

Proof. We prove the discrete case. The continuous case is similar.
Using that p(x, y) = pX(x)pY (y) when X, Y are indep, one has

E[g(X)h(Y)] =
∑

xy
g(x)h(y)p(x, y)

=
∑

x

∑
y

g(x)h(y)pX(x)pY (y) (p(x, y) = pX(x)pY (y) by indep.)

=
∑

x
g(x)pX(x)︸            ︷︷            ︸
E[g(X)]

∑
y

h(y)pY (y)︸           ︷︷           ︸
E[h(Y)]

= E[g(X)] E[h(Y)]
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Covariance

The covariance of X and Y, denoted as Cov(X,Y) or σXY , is
defined as

Cov(X,Y) = σXY = E[(X − µX)(Y − µY )],

in which µX = E(X), µY = E(Y)

• Covariance is a generalization of variance:

Var(X) = Cov(X, X) = E[(X − µX)2]

• Covariance can be positive or negative:

• Cov(X,Y) > 0 means positive association between X, Y
• Cov(X,Y) < 0 means negative association between X, Y
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Shortcut Formula for Covariance

Cov(X,Y) = E(XY) − E(X) E(Y)

• Like the Shortcut Formula for Variance
Var(X) = E(X2) − [E(X)]2.

• If X & Y are indep., then E(XY) = E(X) E(Y), which implies
Cov(X,Y) = 0.

• However Cov(X,Y) = 0 does not imply the independence of X
and Y. In this case, we say X and Y are uncorrelated.

• Proof of the shortcut formula:
Cov(X,Y) = E[(X − µX)(Y − µY )]

= E(XY − µXY − µY X + µXµY )

= E(XY) − µX E(Y)︸︷︷︸
=µY

−µY E(X)︸︷︷︸
=µX

+µXµY

= E(XY) − µXµY 9


