STAT 234 Lecture 10B
 Expected Values, Covariance,and Correlation Section 5.2

Yibi Huang
Department of Statistics
University of Chicago

Expected Values of Functions of $X \& Y$

For two random variable X, Y with

- a joint mf $p(x, y)$, or
- a joint cdr $f(x, y)$,
the expected value of a function $g(X, Y)$ of X and Y is defined as

$$
\mathrm{E}[g(X, Y)]= \begin{cases}\sum_{x y} g(x, y) p(x, y) & \text { for discrete case } \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y & \text { in continuous case }\end{cases}
$$

Example (Gas Station)

Recall the joint pmf for the Gas Station Example in L09 is the table on the right. Suppose we are interested in

$$
g(X, Y)=|X-Y|
$$

	Y (full-service)			
$p(x, y)$	0	1	2	
X	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

$=$ the absolute diff in the \# of hoses in use of the self-service and full-service islands.

The expected value is

$$
\begin{aligned}
\mathrm{E}|X-Y|= & \sum_{x y}|x-y| p(x, y) \\
= & |0-0| \cdot 0.10+|0-1| \cdot 0.04+|0-2| \cdot 0.02 \\
& +|1-0| \cdot 0.08+|1-1| \cdot 0.20+|1-2| \cdot 0.06 \\
& +|2-0| \cdot 0.06+|2-1| \cdot 0.14+|2-2| \cdot 0.30 \\
= & 0.48
\end{aligned}
$$

$\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)$

If $g(X, Y)=a X+b Y$ for two random variables X and Y and two constants a and b, we have

$$
\mathrm{E}[g(X, Y)]=\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)
$$

no matter X and Y are both discrete, both continuous, or one discrete and one continuous.

Proof. We will prove it for the case when X and Y are continuous with joint pdf $f(x, y)$. The proof for the discrete case is similar. By definition, the expected value of the function $g(X, Y)=a X+b Y$ of X and Y is

$$
\begin{aligned}
\mathrm{E}(a X+b Y) & =\iint(a x+b y) f(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\underbrace{\iint a x f(x, y) \mathrm{d} x \mathrm{~d} y}_{\text {Part I }}+\underbrace{\iint b y f(x, y) \mathrm{d} x \mathrm{~d} y}_{\text {Part II }}
\end{aligned}
$$

For Part I, we first integrate over y, and then over x.

$$
\begin{aligned}
\text { Part } \mathrm{I}=\iint a x f(x, y) \mathrm{d} x \mathrm{~d} y & =a \int\left(\int x f(x, y) d y\right) \mathrm{d} x \\
& =a \int x \underbrace{\int f(x, y) d y}_{f_{X}(x)} \mathrm{d} x=a \underbrace{\int x f_{X}(x) \mathrm{d} x}_{\mathrm{E}(X)}=a \mathrm{E}(X)
\end{aligned}
$$

For Part II, we first integrate over x, and then over y.

$$
\begin{aligned}
\text { Part II }=\iint b y f(x, y) \mathrm{d} x \mathrm{~d} y & =b \int\left(\int y f(x, y) d x\right) \mathrm{d} y \\
& =b \int y \underbrace{\int f(x, y) d x}_{f_{Y}(y)} \mathrm{d} y=b \underbrace{\int y f_{Y}(y) \mathrm{d} y}_{\mathrm{E}(Y)}=b \mathrm{E}(Y)
\end{aligned}
$$

Putting Parts I \& II together, we get

$$
\mathrm{E}(a X+b Y)=\mathrm{E}(a X)+\mathrm{E}(b Y)
$$

Expected Value for Linear Combination of Random Variables

The result $\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)$ can be generalized to linear combinations of several random variables

$$
\mathrm{E}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right)=a_{1} \mathrm{E}\left(X_{1}\right)+a_{2} \mathrm{E}\left(X_{2}\right)+\cdots+a_{n} \mathrm{E}\left(X_{n}\right)
$$

no matter the rv's are discrete or continuous, independent or not.

$\mathrm{E}[g(X) h(Y)]=\mathrm{E}[g(X)] \mathrm{E}[h(Y)]$ if $X \& Y$ are independent

When X and Y are independent, for any functions g and h,

$$
\mathrm{E}[g(X) h(Y)]=\mathrm{E}[g(X)] \mathrm{E}[h(Y)] .
$$

In particular, $\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y)$.
Proof. We prove the discrete case. The continuous case is similar. Using that $p(x, y)=p_{X}(x) p_{Y}(y)$ when X, Y are indep, one has

$$
\begin{aligned}
\mathrm{E}[g(X) h(Y)] & =\sum_{x y} g(x) h(y) p(x, y) \\
& =\sum_{x} \sum_{y} g(x) h(y) p_{X}(x) p_{Y}(y) \quad\left(p(x, y)=p_{X}(x) p_{Y}(y) \text { by indep. }\right) \\
& =\underbrace{\sum_{x} g(x) p_{X}(x)}_{\mathrm{E}[g(X)]} \underbrace{\sum_{y} h(y) p_{Y}(y)}_{\mathrm{E}[h(Y)]}=\mathrm{E}[g(X)] \mathrm{E}[h(Y)]
\end{aligned}
$$

Covariance

The covariance of X and Y, denoted as $\operatorname{Cov}(X, Y)$ or $\sigma_{X Y}$, is defined as

$$
\operatorname{Cov}(X, Y)=\sigma_{X Y}=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right],
$$

in which $\mu_{X}=\mathrm{E}(X), \mu_{Y}=\mathrm{E}(Y)$

- Covariance is a generalization of variance:

$$
\operatorname{Var}(X)=\operatorname{Cov}(X, X)=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]
$$

- Covariance can be positive or negative:
- $\operatorname{Cov}(X, Y)>0$ means positive association between X, Y
- $\operatorname{Cov}(X, Y)<0$ means negative association between X, Y

Shortcut Formula for Covariance

$$
\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)
$$

- Like the Shortcut Formula for Variance
$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$.
- If $X \& Y$ are indep., then $\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y)$, which implies $\operatorname{Cov}(X, Y)=0$.
- However $\operatorname{Cov}(X, Y)=0$ does not imply the independence of X and Y. In this case, we say X and Y are uncorrelated.
- Proof of the shortcut formula:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\mathrm{E}\left(X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right) \\
& =\mathrm{E}(X Y)-\mu_{X} \underbrace{\mathrm{E}(Y)}_{=\mu_{Y}}-\mu_{Y} \underbrace{\mathrm{E}(X)}_{=\mu_{X}}+\mu_{X} \mu_{Y} \\
& =\mathrm{E}(X Y)-\mu_{X} \mu_{Y}
\end{aligned}
$$

