STAT 234 Lecture 3B Discrete Random Variables Section 3.1-3.2 of MMSA

Yibi Huang
Department of Statistics
University of Chicago

Random Variables

Random Variables

- So far we have considered probabilities for events (subsets) in a space space.
- But sample spaces are often "complicated", e.g.,
- Coin tossing: a string of outcomes such as TTHHTTT HT HTTTTH...
- Collecting responses for a survey: a long list of the answers to all the items:
(Yes;1980;3;2000\$;Chicago;No;1;Maybe;N/A;7;...)
- In most cases, we are interested in some specific numerical properties computed from the "outcome" itself, e.g.,
- \# of tosses required to get the first heads
- \# of people answered yes to item \#5 in a survey.
- Such a numerical outcome from a random phenomenon is a random variable.

Random Variable

Formally speaking, a random variable is a real-valued function on the sample space S and maps elements of S, ω, to real numbers.

$$
\begin{array}{lll}
S & X & \mathbb{R} \\
\omega & \longmapsto & x=X(\omega)
\end{array}
$$

Ex 1. Let X be the number of heads in 3 tosses of a coin. Sample space $S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$. Then

$$
\begin{array}{llll}
X(H H H)=3, & X(H H T)=2, & X(H T H)=2, & X(H T T)=1, \\
X(T H H)=2, & X(T H T)=1, & X(T T H)=1, & X(T T T)=0
\end{array}
$$

Ex 2. Let Y be the number of tosses required to get a head.
$S=\{H, T H, T T H, T T T H$, TTTTTH, $\ldots\}$ Then

$$
Y(H)=1, Y(T H)=2, Y(T T H)=3, Y(T T T H)=4, \ldots
$$

Discrete and Continuous Random Variable

There are two types of random variables:

- Discrete random variables can only take a finite or countable infinite number of different values
- Example: Number of heads obtained, number of batteries replaced last year
- Continuous random variables take real (decimal) values
- Example: lifetime of a battery, someone's blood pressure

Distribution of a Discrete Random
Variable

Coin Example

Let $X=$ number of heads in 4 tosses of a fair coin.

$$
P(X=0)=P(\{T T T T\})=1 / 16
$$

Coin Example

Let $X=$ number of heads in 4 tosses of a fair coin.

$$
\begin{aligned}
& P(X=0)=P(\{T T T T\})=1 / 16 \\
& P(X=1)=P(\{H T T T, T H T T, T T H T, T T T H\})=4 / 16
\end{aligned}
$$

Coin Example

Let $X=$ number of heads in 4 tosses of a fair coin.

$$
\begin{aligned}
& P(X=0)=P(\{T T T T\})=1 / 16 \\
& P(X=1)=P(\{H T T T, T H T T, T T H T, T T T H\})=4 / 16 \\
& P(X=2)=P(\{H H T T, H T H T, H T T H, T H H T, T H T H, T T H H\})=6 / 16
\end{aligned}
$$

Coin Example

Let $X=$ number of heads in 4 tosses of a fair coin.

$$
\begin{aligned}
& P(X=0)=P(\{T T T T\})=1 / 16 \\
& P(X=1)=P(\{H T T T, T H T T, T T H T, T T T H\})=4 / 16 \\
& P(X=2)=P(\{H H T T, H T H T, H T T H, \text { THHT }, \text { THTH,TTHH }\})=6 / 16 \\
& P(X=3)=P(\{H H H T, H H T H, H T H H, T H H H\})=4 / 16 \\
& P(X=4)=P(\{H H H H\})=1 / 16
\end{aligned}
$$

Coin Example

Let $X=$ number of heads in 4 tosses of a fair coin.

$$
\begin{aligned}
& P(X=0)=P(\{T T T T\})=1 / 16 \\
& P(X=1)=P(\{H T T T, T H T T, T T H T, T T T H\})=4 / 16 \\
& P(X=2)=P(\{H H T T, H T H T, H T T H, \text { THHT }, \text { THTH,TTHH }\})=6 / 16 \\
& P(X=3)=P(\{H H H T, H H T H, H T H H, T H H H\})=4 / 16 \\
& P(X=4)=P(\{H H H H\})=1 / 16
\end{aligned}
$$

The probability for each possible value of X is

$$
\begin{array}{l|ccccc}
\text { Possible Value } x \text { of } X & 0 & 1 & 2 & 3 & 4 \\
\hline \text { Probability } P(X=x) & \frac{1}{16} & \frac{4}{16} & \frac{6}{16} & \frac{4}{16} & \frac{1}{16}
\end{array}
$$

Note: these probabilities add up to 1 :

$$
\frac{1}{16}+\frac{4}{16}+\frac{6}{16}+\frac{4}{16}+\frac{1}{16}=1
$$

Probability Mass Function (pmf)

Probability Mass Function (mf)

The probability mass function (mf) of a random variable X is a function $p(x)$ that maps each possible value x_{i} to the corresponding probability $P\left(X=x_{i}\right)$.

- A pmf $p(x)$ must satisfy $0 \leq p(x) \leq 1$ and $\sum_{x} p(x)=1$.

Example (coin tossing on the previous slide)

Possible Values of X	0	1	2	3	4
Probabilities	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

The pmf of X is

$$
p(x)= \begin{cases}1 / 16 & \text { if } x=0 \text { or } 4 \\ 4 / 16 & \text { if } x=1 \text { or } 3 \\ 6 / 16 & \text { if } x=2 \\ 0 & \text { if } x \neq 0,1,2,3,4\end{cases}
$$

Example: Geometric Distribution

Let X be the number of tosses required to obtain the first heads, when tossing a coin with a probability of p to land heads.

The pmf of X is

if x is a positive integer and $p(x)=0$ if not.

- We say X has a geometric distribution since the mf is a geometric sequence
- Does $\sum_{x=1}^{\infty} p(x)=1$?

Example: A Card Game

Consider a card game that you draw ONE card from a well-shuffled deck of cards. You win

- \$1 if you draw a heart,
- \$5 if you draw an ace (including the ace of hearts),
- \$10 if you draw the king of spades and
- \$0 for any other card you draw.

What's the emf of your reward X ?

Example: A Card Game

Consider a card game that you draw ONE card from a well-shuffled deck of cards. You win

- \$1 if you draw a heart,
- \$5 if you draw an ace (including the ace of hearts),
- \$10 if you draw the king of spades and
- \$0 for any other card you draw.

What's the pmf of your reward X ?

| Outcome | x | $p(x)$ |
| :--- | ---: | :---: | :--- |
| Heart (not ace) | 1 | $12 / 52$ |
| Ace | 5 | $4 / 52$ |
| King of spades | 10 | $1 / 52$ |
| All else | 0 | $35 / 52$ |\(\Rightarrow \quad p(x)= \begin{cases}35 / 52 \& if x=0

12 / 52 \& if x=1

4 / 52 \& if x=5

1 / 52 \& if x=10

0 \& for all other values of x\end{cases}\)

