Multiple Linear Regression (MLR) Handouts

Yibi Huang

- Data and Models
- Least Squares Estimate, Fitted Values, Residuals
- Sum of Squares
- Do Regression in R
- Interpretation of Regression Coefficients
- t-Tests on Individual Regression Coefficients
- F-Tests on Multiple Regression Coefficients/Goodness-of-Fit

$$
\text { MLR - } 1
$$

Data for Multiple Linear Regression

Multiple linear regression is a generalized form of simple linear regression, in which the data contains multiple explanatory variables.

	SLR		MLR				
	x	y	x_{1}	x_{2}	\ldots	x_{p}	y
case 1:	x_{1}	y_{1}	x_{11}	x_{12}	\ldots	$x_{1 p}$	y_{1}
case 2:	x_{2}	y_{2}	x_{21}	x_{22}	\ldots	$x_{2 p}$	y_{2}
		\vdots	\vdots	.		\vdots	!
case n :	x_{n}	y_{n}	$x_{n 1}$	$x_{n 2}$	\ldots	$x_{n p}$	y_{n}

- For SLR, we observe pairs of variables.

For MLR, we observe rows of variables.
Each row (or pair) is called a case, a record, or a data point

- y_{i} is the response (or dependent variable) of the i th observation
- There are p explanatory variables (or covariates, predictors, independent variables), and $x_{i k}$ is the value of the explanatory variable \mathbf{x}_{k} of the i th case

$$
\text { MLR - } 2
$$

Multiple Linear Regression Models

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i} \quad \text { where } \varepsilon_{i} \text { 's are i.i.d. } N\left(0, \sigma^{2}\right)
$$

In the model above,

- ε_{i} 's (errors, or noise) are i.i.d. $N\left(0, \sigma^{2}\right)$
- Parameters include:

$$
\begin{aligned}
\beta_{0}= & \text { intercept; } \\
\beta_{k}= & \text { regression coefficients (slope) for the } k \text { th } \\
& \quad \text { explanatory variable, } \quad k=1, \ldots, p \\
\sigma^{2}= & \operatorname{Var}\left(\varepsilon_{i}\right) \text { is the variance of errors }
\end{aligned}
$$

- Observed (known): $y_{i}, x_{i 1}, x_{i 2}, \ldots, x_{i p}$ Unknown: $\beta_{0}, \beta_{1}, \ldots, \beta_{p}, \sigma^{2}, \varepsilon_{i}$'s
- Random variables: ε_{i} 's, y_{i} 's

Constants (nonrandom): β_{k} 's, $\sigma^{2}, x_{i k}$'s

Fitting the Model - Least Squares Method

Recall for SLR, the least squares estimate ($\widehat{\beta}_{0}, \widehat{\beta}_{1}$) for $\left(\beta_{0}, \beta_{1}\right)$ is the intercept and slope of the straight line with the minimum sum of squared vertical distance to the data points

$$
\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}
$$

MLR is just like SLR. The least squares estimate ($\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{p}$) for $\left(\beta_{0}, \ldots, \beta_{p}\right)$ is the intercept and slopes of the (hyper)plane with the minimum sum of squared vertical distance to the data points

$$
\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right)^{2}
$$

Solving the Least Squares Problem (1)

From now on, we use the "hat" symbol to differentiate the estimated coefficient $\widehat{\beta}_{j}$ from the actual unknown coefficient β_{j}.
To find the ($\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}$) that minimize

$$
L\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right)^{2}
$$

one can set the derivatives of L with respect to $\widehat{\beta}_{j}$ to 0

$$
\begin{aligned}
& \frac{\partial L}{\partial \widehat{\beta}_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right) \\
& \frac{\partial L}{\partial \widehat{\beta}_{k}}=-2 \sum_{i=1}^{n} x_{i k}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right), k=1,2, \ldots, p
\end{aligned}
$$

and then equate them to 0 . This results in a system of $(p+1)$ equations in $(p+1)$ unknowns.

$$
\text { MLR - } 5
$$

Solving the Least Squares Problem (2)

The least squares estimate $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ is the solution to the following system of equations, called normal equations.

$$
\begin{array}{cc}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i 1} \quad+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i p}=\sum_{i=1}^{n} y_{i} \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i 1}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i 1}^{2} \quad+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i 1} x_{i p}= & \sum_{i=1}^{n} x_{i 1} y_{i} \\
\vdots \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i k}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i k} x_{i 1}+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i k} x_{i p}=\sum_{i=1}^{n} x_{i k} y_{i} \\
\vdots \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i p}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i p} x_{i 1}+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i p}^{2}=\sum_{i=1}^{n} x_{i p} y_{i}
\end{array}
$$

- Don't worry about solving the equations. R and many other softwares can do the computation for us.
- In general, $\widehat{\beta}_{j} \neq \beta_{j}$, but they will be close under some conditions

Fitted Values

The fitted value or predicted value:

$$
\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{p} x_{i p}
$$

- Again, the "hat" symbol is used to differentiate the fitted value \widehat{y}_{i} from the actual observed value y_{i}.

Residuals

- One cannot directly compute the errors

$$
\varepsilon_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i 1}-\ldots-\beta_{p} x_{i p}
$$

since the coefficients $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ are unknown.

- The errors ε_{i} can be estimated by the residuals e_{i} defined as:

$$
\begin{aligned}
\text { residual } e_{i}= & \text { observed } y_{i}-\text { predicted } y_{i} \\
= & y_{i}-\widehat{y}_{i} \\
= & y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{p} x_{i p}\right) \\
= & \beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i} \\
& -\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}
\end{aligned}
$$

- $e_{i} \neq \varepsilon_{i}$ in general since $\widehat{\beta}_{j} \neq \beta_{j}$
- Graphical explanation

Properties of Residuals

Recall the least squares estimate $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ satisfies the equations

$$
\begin{aligned}
& \sum_{i=1}^{n}(\underbrace{y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}}_{=y_{i}-\widehat{y}_{i}=e_{i}=\text { residual }})=0 \text { and } \\
& \sum_{i=1}^{n} x_{i k}(\overbrace{y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}})=0, k=1,2, \ldots, p .
\end{aligned}
$$

Thus the residuals e_{i} have the properties

$$
\underbrace{\sum_{i=1}^{n} e_{i}=0}_{\text {esiduals add up to } 0 .}, \underbrace{\sum_{i=1}^{n} x_{i k} e_{i}=0, k=1,2, \ldots, p}_{\text {Residuals are orthogonal to covariates. }}
$$

Sum of Squares

Observe that

$$
y_{i}-\bar{y}=\left(\widehat{y}_{i}-\bar{y}\right)+\left(y_{i}-\widehat{y}_{i}\right)
$$

Squaring up both sides we get

$$
\left(y_{i}-\bar{y}\right)^{2}=\left(\hat{y}_{i}-\bar{y}\right)^{2}+\left(y_{i}-\widehat{y}_{i}\right)^{2}+2\left(\hat{y}_{i}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)
$$

Summing up over all the cases $i=1,2, \ldots, n$, we get

$$
\begin{array}{r}
\overbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}^{\text {SST }}=\overbrace{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}}+\overbrace{\sum_{i=1}^{n}(\underbrace{y_{i}-\widehat{y}_{i}}_{=e_{i}})^{2}}^{\text {SSR }} \\
+2 \underbrace{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)}_{=0, \text { see next page. }}
\end{array}
$$

MLR - 10

Why $\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)=0$?

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)(\underbrace{y_{i}-\widehat{y}_{i}}_{=e_{i}}) \\
& =\sum_{i=1}^{n} \widehat{y}_{i} e_{i}-\sum_{i=1}^{n} \bar{y} e_{i} \\
& =\sum_{i=1}^{n}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{p} x_{i p}\right) e_{i}-\sum_{i=1}^{n} \bar{y} e_{i} \\
& =\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} e_{i}}_{=0}+\widehat{\beta}_{1} \underbrace{\sum_{i=1}^{n} x_{i 1} e_{i}}_{=0}+\ldots+\widehat{\beta}_{p} \underbrace{\sum_{i=1}^{n} x_{i p} e_{i}}_{=0}-\bar{y} \underbrace{\sum_{i=1}^{n} e_{i}}_{=0} \\
& =0
\end{aligned}
$$

in which we used the properties of residuals that $\sum_{i=1}^{n} e_{i}=0$ and $\sum_{i=1}^{n} x_{i k} e_{i}=0$ for all $k=1, \ldots, p$.

Interpretation of Sum of Squares

$$
\underbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}_{\text {SST }}=\underbrace{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}}_{\text {SSR }}+\underbrace{\sum_{i=1}^{n}(\overbrace{y_{i}-\widehat{y}_{i}}^{=e_{i}})^{2}}_{\text {SSE }}
$$

- SST = total sum of squares
- total variability of \mathbf{y}
- depends on the response \mathbf{y} only, not on the form of the model
- $\mathrm{SSR}=$ regression sum of squares
- variability of \mathbf{y} explained by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$
- SSE $=$ error (residual) sum of squares
- $=\min _{\beta_{0}, \beta_{1}, \ldots, \beta_{p}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i 1}-\cdots-\beta_{p} x_{i p}\right)^{2}$
- variability of \mathbf{y} not explained by \mathbf{x} 's

Degrees of Freedom

If the MLR model $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i}, \varepsilon_{i}$'s i.i.d.
$\sim N\left(0, \sigma^{2}\right)$ is true, it can be shown that

$$
\frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi_{n-p-1}^{2}
$$

If we further assume that $\beta_{1}=\beta_{2}=\cdots=\beta_{p}=0$, then

$$
\frac{\mathrm{SST}}{\sigma^{2}} \sim \chi_{n-1}^{2}, \quad \frac{\mathrm{SSR}}{\sigma^{2}} \sim \chi_{p}^{2}
$$

and SSR is independent of SSE.
Note the degrees of freedom of the 3 chi-square distributions

$$
d f T=n-1, \quad d f R=p, \quad d f E=n-p-1
$$

break down similarly

$$
d f T=d f R+d f E
$$

just like $S S T=S S R+S S E$.

$$
\text { MLR - } 13
$$

Why SSE Has $n-p-1$ Degrees of Freedom?

The n residuals e_{1}, \ldots, e_{n} cannot all vary freely.
There are $p+1$ constraints:

$$
\sum_{i=1}^{n} e_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} x_{k i} e_{i}=0 \text { for } k=1, \ldots, p
$$

So only $n-(p+1)$ of them can be freely varying.
The $p+1$ constraints comes from the $p+1$ coefficients $\beta_{0}, \ldots, \beta_{p}$ in the model, and each contributes one constraint $\frac{\partial}{\partial \beta_{k}}=0$.

Mean Square Error (MSE) — Estimate of σ^{2}

The mean squares is the sum of squares divided by its degrees of freedom:

$$
\begin{aligned}
& M S T=\frac{\mathrm{SST}}{d f T}=\frac{\mathrm{SST}}{n-1}=\text { sample variance of } Y, \\
& M S R=\frac{\mathrm{SSR}}{d f R}=\frac{\mathrm{SSR}}{p} \\
& M S E=\frac{\mathrm{SSE}}{d f E}=\frac{\mathrm{SSE}}{n-p-1}=\widehat{\sigma}^{2}
\end{aligned}
$$

- From the fact $\frac{\text { SSE }}{\sigma^{2}} \sim \chi_{n-p-1}^{2}$ and that the mean of a χ_{k}^{2} distribution is k, we know that MSE is an unbiased estimator for σ^{2}.
- Though SSE always decreases as we add terms to the model, adding unimportant terms may increases MSE.

Example: Housing Price

Price	BDR	FLR	FP	RMS	ST	LOT	BTH	CON	GAR	LOC	
53	2	967	0	5	0	39	1.5		0.0	0	
55	2	815	1	5	0	33	1.0		2.0	0	Price $=$ Selling price in \$1000
56	3	900	0	5	1	35	1.5	1	1.0	0	BDR $=$ Number of bedrooms
58	3	1007	0	6	1	24	1.5		2.0	0	FLR $=$ Floor space in sq. ft .
64	3	1100	1	7	0	50	1.5		1.5	0	FP = Number of fireplaces
44	4	897	0	7	0	25	2.0		1.0	0	RMS $=$ Number of rooms
49	5	1400	0	8	0	30	1.0	0	1.0	0	ST = Storm windows
70	3	2261	0	6	0	29	1.0		2.0	0	(1 if present, 0 if absent)
72	4	1290	0	8	1	33	1.5		1.5	0	LOT = Front footage of lot in feet
82	4	2104	0	9	0	40	2.5		1.0	0	BTH $=$ Number of bathrooms
85	8	2240	1	12	1	50	3.0		2.0	0	CON $=$ Construction
45	2	641	0	5	0	25	1.0		0.0	1	(1 if frame, 0 if brick)
47	3	862	0	6	0	25	1.0		0.0	1	(1 if frame, 0 if brick)
49	4	1043	0	7	0	30	1.5	0	0.0	1	GAR $=$ Garage size
56	4	1325	0	8	0	50	1.5	0	0.0	1	($0=$ no garage,
60	2	782	0	5	1	25	1.0	0	0.0	1	$1=$ one-car garage, etc.)
62	3	1126	0	7	1	30	2.0	1	0.0	1	
64	4	1226	0	8	0	37	2.0		2.0	1	(1 if property is in zone A,
											0 otherwise)

50	2	691	0	6	0	30	1.0		2.	0
65	3	1023	0	7	1	30	2.0	1	1.	0
								MLR	R -	

How to Do Regression Using R?

> housing = read.table("housing.txt",h=TRUE) \# to load the data
> lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)

Call:
lm (formula $=$ Price \sim FLR + LOT + BDR + GAR + ST, data $=$ housing)
Coefficients:

(Intercept)	FLR	LOT	BDR	GAR	ST
24.63232	0.02009	0.44216	-3.44509	3.35274	11.64033

The $\operatorname{lm}()$ command above asks R to fit the model

$$
\text { Price }=\beta_{0}+\beta_{1} \mathrm{FLR}+\beta_{2} \mathrm{LOT}+\beta_{3} \mathrm{BDR}+\beta_{4} \mathrm{GAR}+\beta_{5} \mathrm{ST}+\varepsilon
$$

and R gives us the regression equation

$$
\widehat{\text { Price }}=24.63+0.02 \mathrm{FLR}+0.44 \mathrm{LOT}-3.45 \mathrm{BDR}+3.35 \mathrm{GAR}+11.64 \mathrm{ST}
$$

$\widehat{\text { Price }}=24.63+0.02 \mathrm{FLR}+0.44 \mathrm{LOT}-3.45 \mathrm{BDR}+3.35 \mathrm{GAR}+11.64 \mathrm{ST}$
The regression equation tells us:

- an extra square foot in floor area increases the price by $\$ 20$,
- an extra foot in front footage by $\$ 440$
- an additional bedroom by $-\$ 3450$
- an additional space in the garage by $\$ 3350$
- using storm windows by $\$ 11640$

Question:

Why an additional bedroom makes a house less valuable?

Interpretation of Regression Coefficients

- $\beta_{0}=$ intercept $=$ the mean value of y when all $x_{j}{ }^{\prime}$ are 0 .
- may not have practical meaning e.g., β_{0} is meaningless in the housing price model as no housing unit has 0 floor space.
- β_{j} : regression coefficient for x_{j}, is the mean change in the response y when x_{j} is increased by one unit holding all other x_{j} 's constant
- Interpretation of β_{j} depends on the presence of other covariates in the model e.g., the meaning of the $2 \beta_{1}$'s in the following 2 models are different

Model 1: $\quad y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}$
Model 2: $\quad y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\varepsilon_{i}$.

What's Wrong?

```
# Model 1
> lm(Price ~ BDR, data=housing)
\begin{tabular}{rr} 
(Intercept) & BDR \\
43.487 & 3.921
\end{tabular}
```

The regression coefficient for BDR is 3.921 in the Model 1 above but -3.445 in the Model 2 below.

```
# Model 2
```

> lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)

(Intercept)	FLR	LOT	BDR	GAR	ST
24.63232	0.02009	0.44216	-3.44509	3.35274	11.64033

Considering BDR alone, house prices increase with $B D R$.
However, an extra bedroom makes a housing unit less valuable when when other covariates (FLR, LOT, etc) are fixed.

Does this make sense?

$$
\text { MLR - } 20
$$

More R Commands

> lm1 = lm(Price ~ FLR+RMS+BDR+GAR+LOT+ST+CON+LOC, data=housing)
> summary (lm1) \# Regression output with more details \# including multiple R-squared, \# and the estimate of sigma
> lm1\$coef
> lm1\$fitted
> lm1\$res
\# show the estimated beta's
\# show the fitted values
\# show the residuals
> lm1 = lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)
> summary (lm1)

Call:
lm (formula $=$ Price $\sim \mathrm{FLR}+\mathrm{LOT}+\mathrm{BDR}+\mathrm{GAR}+\mathrm{ST}$, data $=$ housing)

Residuals:

Min	$1 Q$	Median	3Q	Max
-9.7530	-2.9535	0.1779	3.7183	12.9728

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	24.632318	4.836743	5.093	$5.56 \mathrm{e}-05$	$* * *$
FLR	0.020094	0.003668	5.478	$2.31 \mathrm{e}-05$	$* * *$
LOT	0.442164	0.150023	2.947	0.007965	$* *$
BDR	-3.445086	1.279347	-2.693	0.013995	$*$
GAR	3.352739	1.560239	2.149	0.044071	$*$
ST	11.640334	2.688867	4.329	0.000326	$* * *$

Residual standard error: 5.79 on 20 degrees of freedom Multiple R-squared: 0.8306,Adjusted R-squared: 0.7882
F-statistic: 19.61 on 5 and 20 DF, p-value: $4.306 \mathrm{e}-07$
MLR - 22

t-Tests on Individual Regression Coefficients

For a MLR model $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{p} X_{i p}+\varepsilon_{i}$, to test the hypotheses,

$$
H_{0}: \beta_{j}=c \quad \text { v.s. } \quad H_{a}: \beta_{j} \neq c
$$

the t-statistic is

$$
t=\frac{\widehat{\beta}_{j}-c}{\mathrm{SE}\left(\widehat{\beta}_{j}\right)}
$$

in which $\operatorname{SE}\left(\widehat{\beta}_{j}\right)$ is the standard error for $\widehat{\beta}_{j}$.

- General formula for $\operatorname{SE}\left(\widehat{\beta}_{j}\right)$ is a bit complicate but unimportant in STAT222 and hence is omitted
- R can compute $\operatorname{SE}\left(\widehat{\beta}_{j}\right)$ for us
- Formula for $\operatorname{SE}\left(\widehat{\beta}_{j}\right)$ for a few special cases will be given later

This t-statistic also has a t-distribution with $n-p-1$ degrees of freedom

	Estimate	Std. Error	value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	24.632318	4.836743	5.093	5.56e-05	*
FLR	0.020094	0.003668	5.478	$2.31 \mathrm{e}-05$	*
LOT	0.442164	0.150023	2.947	0.007965	**
. . (some	rows are	mitted)			
ST	11.640334	2.688867	4.329	0.000326	***

- the first column gives variable names
- the column Estimate gives the LS estimate $\widehat{\beta}_{j}$'s for β_{j} 's
- the column Std. Error gives $\operatorname{SE}\left(\widehat{\beta}_{j}\right)$, the standard error of $\widehat{\beta}_{j}$
- the column t value gives t-value $=\frac{\widehat{\beta}_{j}}{\operatorname{SE}\left(\widehat{\beta}_{j}\right)}$
- column $\operatorname{Pr}(>|t|)$ gives the P-value for testing $\mathrm{H}_{0}: \beta_{j}=0$ v.s. $\mathrm{H}_{\mathrm{a}}: \beta_{j} \neq 0$.
E.g., for LOT, we see
$\widehat{\beta}_{L O T} \approx 0.442, \operatorname{SE}\left(\widehat{\beta}_{L O T}\right) \approx 0.150, t=\frac{\widehat{\beta}_{L O T}}{\operatorname{SE}\left(\widehat{\beta}_{L O T}\right)} \approx \frac{0.442}{0.150} \approx 2.947$.
The P-value 0.007965 is the 2 -sided P-value for testing H_{0} : $\beta_{L O T}=0$

$$
\text { MLR - } 24
$$

Nested Models

We say Model 1 is nested in Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).
E.g., for the 4 models below,

$$
\begin{aligned}
& \text { Model A:Y= } \beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model B:Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& \text { Model C }: Y=\beta_{0}+\beta_{1} X_{1}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model D:Y}=\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\varepsilon
\end{aligned}
$$

- B is nested in A. since A reduces to B when $\beta_{3}=0$
- C is also nested in $A \ldots \ldots$. since A reduces to C when $\beta_{2}=0$
- \mathbf{D} is nested in $\mathrm{B} \ldots \ldots$...since B reduces to D when $\beta_{1}=\beta_{2}$
- B and C are NOT nested in either way
- D is NOT nested in C

Nested Relationship is Transitive

If Model 1 is nested in Model 2, and Model 2 is nested in Model 3, then Model 1 is also nested in Model 3.

For example, for models in the previous slide,

$$
D \text { is nested in } B \text {, and } B \text { is nested in } A \text {, }
$$

implies D is also nested in A, which is clearly true because Model A reduces to Model D when

$$
\beta_{1}=\beta_{2}, \text { and } \beta_{3}=0
$$

When two models are nested (Model 1 is nested in Model 2),

- the smaller model (Model 1) is called the reduced model, and
- the more general model (Model 2) is called the full model.

SST of Nested Models

Question: Compare the SST for Model A and the SST for Model B. Which one is larger? Or are they equal?

What about the SST for Model C? For Model D?

$$
\text { MLR - } 27
$$

SSE of Nested Models

When a reduced model is nested in a full model, then

$$
\text { (i) } S S E_{\text {reduced }} \geq S S E_{\text {full }} \text {, and (ii) } S S R_{\text {reduced }} \leq S S R_{\text {full }} \text {. }
$$

Proof. We will prove (i) for

- the full model $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}$ and
- the reduced model $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{3} x_{i 3}+\varepsilon_{i}$.

The proofs for other nested models are similar.

$$
\begin{aligned}
S S E_{\text {full }} & =\min _{\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}} \sum_{i=1}^{n}\left(y_{1}-\beta_{0}-\beta_{1} x_{i 1}-\beta_{2} x_{i 2}-\beta_{3} x_{i 3}\right)^{2} \\
& \leq \min _{\beta_{0}, \beta_{1}, \beta_{3}} \sum_{i=1}^{n}\left(y_{1}-\beta_{0}-\beta_{1} x_{i 1}-\beta_{3} x_{i 3}\right)^{2} \\
& =S S E_{\text {reduced }}
\end{aligned}
$$

Part (ii) follows directly from (i), the identity $S S T=S S R+S S E$, and the fact that all MLR models of the same data set have a common SST

$$
\text { MLR - } 28
$$

General Framework for Testing Nested Models

H_{0} : reduced model is true v.s. H_{a} : full model is true

- As the reduced model is nested in the full model,

$$
S S E_{\text {reduced }} \geq S S E_{\text {full }}
$$

- Simplicity or Accuracy?
- The full model fits the data better (with smaller SSE) but is more complicate
- The reduced model doesn't fit as well but is simpler.
- If $\mathrm{SSE}_{\text {reduced }} \approx \mathrm{SSE}_{\text {full, }}$, one can sacrifice a bit of accuracy in exchange for simplicity
- If $\mathrm{SSE}_{\text {reduced }} \gg \mathrm{SSE}_{\text {full }}$, it would cost to much in accuracy in exchange for simplicity. The full model is preferred.

The F-Statistic

$$
F=\frac{\left(S S E_{\text {reduced }}-S S E_{\text {full }}\right) /\left(d f_{\text {reduced }}-d f_{\text {full }}\right)}{M S E_{\text {full }}}
$$

- $S S E_{\text {reduced }}-S S E_{\text {full }}$ is the reduction in SSE from replacing the reduced model with the full model.
- $d f_{\text {reduced }}$ is the $d f$ for error for the reduced model.
- $d f_{\text {full }}$ is the $d f$ for error for the full model.
- $F \geq 0$ since $S S E_{\text {reduced }} \geq S S E_{\text {full }} \geq 0$
- The smaller the F-statistic, the more we favor the reduced model
- Under H_{0}, the F-statistic has an F-distribution with $d f_{\text {reduced }}-d f_{\text {full }}$ and $d f_{\text {full }}$ degrees of freedom.

Testing All Coefficients Equal Zero

Testing the hypotheses

$$
\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{p}=0 \text { v.s. } \mathrm{H}_{a}: \text { not all } \beta_{1} \ldots, \beta_{p}=0
$$

is a test to evaluate the overall significance of a model.

$$
\text { Full : } y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}
$$

$$
\text { Reduced : } y_{i}=\beta_{0}+\varepsilon_{i} \quad \text { (all covariates are unnecessary) }
$$

- The LS estimate for β_{0} in the reduced model is $\widehat{\beta}_{0}=\bar{y}$, so

$$
S S E_{\text {reduced }}=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}\right)^{2}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=S S T_{\text {full }}
$$

- $d f_{\text {reduced }}=d f E_{\text {reduced }}=n-1$, because the reduced model has only one coefficient β_{0}
- dffull $=d f E_{\text {full }}=n-p-1$.

Testing All Coefficients Equal Zero

Hence

$$
\begin{aligned}
F & =\frac{\left(S S E_{\text {reduced }}-S S E_{\text {full }}\right) /\left(d f_{\text {reduced }}-d f_{\text {full }}\right)}{M S E_{\text {full }}} \\
& =\frac{\left(S S T_{\text {full }}-S S E_{\text {full }}\right) /[n-1-(n-p-1)]}{S S E_{\text {full }} /(n-p-1)} \\
& =\frac{S S R_{\text {full }} / p}{S S E_{\text {full }} /(n-p-1)} .
\end{aligned}
$$

Moreover, $F \sim F_{p, n-p-1}$ under $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0$.
In R , the F statistic and p-value are displayed in the last line of the output of the summary () command.
> lm1 $=\operatorname{lm}$ (Price \sim FLR+LOT+BDR+GAR+ST, data=housing)
> summary(lm1)
... (output omitted)
Residual standard error: 5.79 on 20 degrees of freedom Multiple R-squared: 0.8306,Adjusted R-squared: 0.7882 F-statistic: 19.61 on 5 and 20 DF, p-value: 4.306e-07

ANOVA and the F-Test

The test of all coefficients equal zero is often summarized in an ANOVA table.

| Source | df | Sum of
 Squares | Mean
 Squares |
| :---: | :---: | :---: | :---: |$\quad F$| Regression |
| :---: |$d f R=p \quad$ SSR $\quad M S R=\frac{S S R}{d f R} F=\frac{M S R}{M S E}$

Testing Some Coefficients Equal to Zero

E.g., for the housing price data, we may want to test if we can eliminate BDR and GAR from the model,
i.e., $\mathrm{H}_{0}: \beta_{B D R}=\beta_{G A R}=0$.
> lmfull = lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)
> lmreduced $=$ lm(Price \sim FLR+LOT+ST, data=housing)
> anova(lmreduced, lmfull)
Analysis of Variance Table

Model 1: Price ~ FLR + LOT + ST
Model 2: Price ~ FLR + LOT + BDR + GAR + ST
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
1221105.01
$220 \quad 670.55 \quad 2 \quad 434.46 \quad 6.4792 \quad 0.006771$ **
Note SSE is called RSS (residual sum of square) in R.

Testing Equality of Coefficients

Example. To test $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}$, the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{1} X_{2}+\beta_{1} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(X_{1}+X_{2}+X_{3}\right)+\beta_{4} X_{4}+\varepsilon
\end{aligned}
$$

1. Make a new variable $W=X_{1}+X_{2}+X_{3}$
2. Fit the reduced model by regressing Y on W and X_{4}
3. Find $\mathrm{SSE}_{\text {reduced }}$ and $\mathrm{df}_{\text {reduced }}-\mathrm{df}_{\text {full }}=\underline{2}$
4. In R
> lmfull $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4)$
$>\operatorname{lmreduced}=\operatorname{lm}(\mathrm{Y} \sim \mathrm{I}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3)+\mathrm{X} 4)$
> anova(lmreduced, lmfull)
The line lm reduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{I}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3)+\mathrm{X} 4)$ is equivalent to
$>\mathrm{W}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$
$>\operatorname{lmreduced}=\operatorname{lm}(\mathrm{Y} \sim \mathrm{W}+\mathrm{X} 4)$
