Multiple Linear Regression (MLR) Handouts

Yibi Huang

- Data and Models
- Least Squares Estimate, Fitted Values, Residuals
- Sum of Squares
- Do Regression in R
- Interpretation of Regression Coefficients
- t-Tests on Individual Regression Coefficients
- F-Tests on Multiple Regression Coefficients/Goodness-of-Fit

Data for Multiple Linear Regression

Multiple linear regression is a generalized form of simple linear regression, in which the data contains multiple explanatory variables.

	SI	_R				MLR			
	x	У		x ₁	x ₂		\mathbf{x}_p	У	
case 1:	<i>x</i> ₁	<i>y</i> 1	-	<i>x</i> ₁₁	<i>x</i> ₁₂		<i>x</i> 1 <i>p</i>	<i>y</i> 1	
case 2:	<i>x</i> ₂	<i>y</i> 2		<i>x</i> ₂₁	<i>x</i> ₂₂		x _{2p}	<i>y</i> 2	
	÷	÷		÷	÷	••.	÷	÷	
case n:	x _n	Уn		x_{n1}	x _{n2}	•••	x _{np}	Уn	

- For SLR, we observe pairs of variables.
 For MLR, we observe rows of variables.
 Each row (or pair) is called a *case*, a *record*, or a *data point*
- ▶ y_i is the response (or dependent variable) of the *i*th observation
- There are p explanatory variables (or covariates, predictors, independent variables), and x_{ik} is the value of the explanatory variable x_k of the *i*th case

Multiple Linear Regression Models

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \varepsilon_i$$
 where ε_i 's are i.i.d. $N(0, \sigma^2)$

In the model above,

- ε_i 's (errors, or noise) are i.i.d. $N(0, \sigma^2)$
- Parameters include:

 $\beta_0 =$ intercept;

 β_k = regression coefficients (slope) for the *k*th explanatory variable, k = 1, ..., p

 $\sigma^2 = \operatorname{Var}(\varepsilon_i)$ is the variance of errors

- ► Observed (known): y_i, x_{i1}, x_{i2},..., x_{ip} Unknown: β₀, β₁,..., β_p, σ², ε_i's
- Random variables: ε_i's, y_i's Constants (nonrandom): β_k's, σ², x_{ik}'s

Fitting the Model — Least Squares Method

Recall for SLR, the least squares estimate $(\hat{\beta}_0, \hat{\beta}_1)$ for (β_0, β_1) is the intercept and slope of the straight line with the minimum sum of squared vertical distance to the data points

$$\sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2.$$

MLR is just like SLR. The least squares estimate $(\hat{\beta}_0, \ldots, \hat{\beta}_p)$ for $(\beta_0, \ldots, \beta_p)$ is the intercept and slopes of the (hyper)plane with the minimum sum of squared vertical distance to the data points

$$\sum_{i=1}^{n}(y_i-\widehat{\beta}_0-\widehat{\beta}_1x_{i1}-\ldots-\widehat{\beta}_px_{ip})^2$$

Solving the Least Squares Problem (1)

From now on, we use the "hat" symbol to differentiate the estimated coefficient $\hat{\beta}_i$ from the actual unknown coefficient β_i .

To find the $(\widehat{eta}_0,\widehat{eta}_1,\ldots,\widehat{eta}_p)$ that minimize

$$L(\widehat{\beta}_0,\widehat{\beta}_1,\ldots,\widehat{\beta}_p)=\sum_{i=1}^n(y_i-\widehat{\beta}_0-\widehat{\beta}_1x_{i1}-\ldots-\widehat{\beta}_px_{ip})^2$$

one can set the derivatives of L with respect to $\widehat{\beta}_j$ to 0

$$\frac{\partial L}{\partial \widehat{\beta}_0} = -2 \sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{i1} - \ldots - \widehat{\beta}_p x_{ip})$$

$$\frac{\partial L}{\partial \widehat{\beta}_k} = -2 \sum_{i=1}^n x_{ik} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{i1} - \ldots - \widehat{\beta}_p x_{ip}), \ k = 1, 2, \ldots, p$$

and then equate them to 0. This results in a system of (p + 1) equations in (p + 1) unknowns.

Solving the Least Squares Problem (2)

The least squares estimate $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$ is the solution to the following system of equations, called *normal equations*.

$$n\widehat{\beta}_{0} + \widehat{\beta}_{1}\sum_{i=1}^{n}x_{i1} + \dots + \widehat{\beta}_{p}\sum_{i=1}^{n}x_{ip} = \sum_{i=1}^{n}y_{i}$$

$$\widehat{\beta}_{0}\sum_{i=1}^{n}x_{i1} + \widehat{\beta}_{1}\sum_{i=1}^{n}x_{i1}^{2} + \dots + \widehat{\beta}_{p}\sum_{i=1}^{n}x_{i1}x_{ip} = \sum_{i=1}^{n}x_{i1}y_{i}$$

$$\vdots$$

$$\widehat{\beta}_{0}\sum_{i=1}^{n}x_{ik} + \widehat{\beta}_{1}\sum_{i=1}^{n}x_{ik}x_{i1} + \dots + \widehat{\beta}_{p}\sum_{i=1}^{n}x_{ik}x_{ip} = \sum_{i=1}^{n}x_{ik}y_{i}$$

$$\vdots$$

$$\widehat{\beta}_{0}\sum_{i=1}^{n}x_{ip} + \widehat{\beta}_{1}\sum_{i=1}^{n}x_{ip}x_{i1} + \dots + \widehat{\beta}_{p}\sum_{i=1}^{n}x_{ip}^{2} = \sum_{i=1}^{n}x_{ip}y_{i}$$

- Don't worry about solving the equations.
 R and many other softwares can do the computation for us.
- ▶ In general, $\hat{\beta}_j \neq \beta_j$, but they will be close under some conditions

Fitted Values

The fitted value or predicted value:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \ldots + \widehat{\beta}_p x_{ip}$$

► Again, the "hat" symbol is used to differentiate the fitted value ŷ_i from the actual observed value y_i.

Residuals

One cannot directly compute the errors

$$\varepsilon_i = y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_p x_{ip}$$

since the coefficients $\beta_0, \beta_1, \ldots, \beta_p$ are *unknown*.

• The errors ε_i can be estimated by the **residuals** e_i defined as:

residual
$$e_i$$
 = observed y_i - predicted y_i
= $y_i - \hat{y}_i$
= $y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_p x_{ip})$
= $\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \varepsilon_i$
- $\hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \ldots - \hat{\beta}_p x_{ip}$

• $e_i \neq \varepsilon_i$ in general since $\widehat{\beta}_j \neq \beta_j$

Graphical explanation

Properties of Residuals

Recall the least squares estimate $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$ satisfies the equations

$$\sum_{i=1}^{n} (\underbrace{y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{i1} - \ldots - \widehat{\beta}_p x_{ip}}_{= y_i - \widehat{y}_i = e_i = \text{residual}}) = 0 \text{ and}$$
$$\sum_{i=1}^{n} x_{ik} (\underbrace{y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{i1} - \ldots - \widehat{\beta}_p x_{ip}}_{ip}) = 0, \ k = 1, 2, \dots, p.$$

Thus the residuals e_i have the properties

$$\underbrace{\sum_{i=1}^{n} e_i = 0}_{\text{ciduals add up to } 0}, \quad \underbrace{\sum_{i=1}^{n} x_{ik} e_i = 0, \ k = 1, 2, \dots, p}_{\text{Reciduals are orthogonal to covariates}}.$$

Residuals add up to 0. Residuals are orthogonal to covariates.

Sum of Squares

Observe that

$$y_i - \overline{y} = (\widehat{y}_i - \overline{y}) + (y_i - \widehat{y}_i)$$

Squaring up both sides we get

$$(y_i - \overline{y})^2 = (\widehat{y}_i - \overline{y})^2 + (y_i - \widehat{y}_i)^2 + 2(\widehat{y}_i - \overline{y})(y_i - \widehat{y}_i)$$

Summing up over all the cases $i = 1, 2, \ldots, n$, we get

Why $\sum_{i=1}^{n} (\widehat{y}_i - \overline{y})(y_i - \widehat{y}_i) = 0$?

in which we used the properties of residuals that $\sum_{i=1}^{n} e_i = 0$ and $\sum_{i=1}^{n} x_{ik}e_i = 0$ for all k = 1, ..., p. MLR - 11

Interpretation of Sum of Squares

$$\underbrace{\sum_{i=1}^{n} (y_i - \overline{y})^2}_{\text{SST}} = \underbrace{\sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2}_{\text{SSR}} + \underbrace{\sum_{i=1}^{n} (\overbrace{y_i - \widehat{y}_i}^{=e_i})^2}_{\text{SSE}}$$

SST = total sum of squares

- total variability of y
- depends on the response y only, not on the form of the model
- SSR = regression sum of squares
 - variability of y explained by x₁,..., x_p
- SSE = error (residual) sum of squares
 - $\bullet = \min_{\beta_0, \beta_1, \dots, \beta_p} \sum_{i=1}^n (y_i \beta_0 \beta_1 x_{i1} \dots \beta_p x_{ip})^2$
 - variability of y not explained by x's

Degrees of Freedom

If the MLR model $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \varepsilon_i$, ε_i 's i.i.d. $\sim N(0, \sigma^2)$ is true, it can be shown that

$$\frac{\text{SSE}}{\sigma^2} \sim \chi^2_{n-p-1},$$

If we further assume that $\beta_1=\beta_2=\dots=\beta_p=0,$ then

$$\frac{\mathsf{SST}}{\sigma^2} \sim \chi^2_{n-1}, \quad \frac{\mathsf{SSR}}{\sigma^2} \sim \chi^2_p$$

and SSR is independent of SSE.

Note the degrees of freedom of the 3 chi-square distributions

$$dfT = n - 1$$
, $dfR = p$, $dfE = n - p - 1$

break down similarly

$$dfT = dfR + dfE$$

just like SST = SSR + SSE.

Why SSE Has n - p - 1 Degrees of Freedom?

The *n* residuals e_1, \ldots, e_n cannot all vary freely.

There are p + 1 constraints:

$$\sum_{i=1}^n e_i = 0 \quad \text{and} \quad \sum_{i=1}^n x_{ki}e_i = 0 \text{ for } k = 1, \dots, p.$$

So only n - (p + 1) of them can be *freely varying*.

The p + 1 constraints comes from the p + 1 coefficients β_0, \ldots, β_p in the model, and each contributes one constraint $\frac{\partial}{\partial \beta_k} = 0$.

Mean Square Error (MSE) — Estimate of σ^2

The **mean squares** is the sum of squares divided by its degrees of freedom:

$$MST = \frac{SST}{dfT} = \frac{SST}{n-1} = \text{sample variance of } Y,$$
$$MSR = \frac{SSR}{dfR} = \frac{SSR}{p},$$
$$MSE = \frac{SSE}{dfE} = \frac{SSE}{n-p-1} = \hat{\sigma}^2$$

- From the fact SSE _{σ²} ~ χ²_{n-p-1} and that the mean of a χ²_k distribution is k, we know that MSE is an unbiased estimator for σ².
- Though SSE always decreases as we add terms to the model, adding unimportant terms may increases MSE.

Example: Housing Price

Price	BDR	FLR	FP	RMS	ST	LOT	BTH	CON	GAR	LOC	
53	2	967	0	5	0	39	1.5	1	0.0	0	
55	2	815	1	5	0	33	1.0	1	2.0	0	Price = Selling price in \$1000
56	3	900	0	5	1	35	1.5	1	1.0	0	$BDR\ =\ Number\ of\ bedrooms$
58	3	1007	0	6	1	24	1.5	0	2.0	0	FLR = Floor space in sq. ft.
64	3	1100	1	7	0	50	1.5	1	1.5	0	FP = Number of fireplaces
44	4	897	0	7	0	25	2.0	0	1.0	0	RMS = Number of rooms
49	5	1400	0	8	0	30	1.0	0	1.0	0	ST = Storm windows
70	3	2261	0	6	0	29	1.0	0	2.0	0	(1 if present, 0 if absent)
72	4	1290	0	8	1	33	1.5	1	1.5	0	LOT = Front footage of lot in feet
82	4	2104	0	9	0	40	2.5	1	1.0	0	BTH = Number of bathrooms
85	8	2240	1	12	1	50	3.0	0	2.0	0	CON = Construction
45	2	641	0	5	0	25	1.0	0	0.0	1	(1 if frame, 0 if brick)
47	3	862	0	6	0	25	1.0	1	0.0	1	(I II IIalle, O II blick)
49	4	1043	0	7	0	30	1.5	0	0.0	1	$GAR\ =\ Garage\ size$
56	4	1325	0	8	0	50	1.5	0	0.0	1	(0 = no garage,
60	2	782	0	5	1	25	1.0	0	0.0	1	1= one-car garage, etc.)
62	3	1126	0	7	1	30	2.0	1	0.0	1	
64	4	1226	0	8	0	37	2.0	0	2.0	1	LOC = Location
											(1 if property is in zone A,
											0 otherwise)
50	2	691	0	6	0	30	1.0	0	2.0	0	
65	3	1023	0	7	1	30	2.0	1	1.0	0	
MLR - 16											

How to Do Regression Using R?

```
> housing = read.table("housing.txt",h=TRUE)
                                              # to load the data
> lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)
Call:
lm(formula = Price ~ FLR + LOT + BDR + GAR + ST, data = housing)
Coefficients:
(Intercept)
                                                   GAR
                  FLR
                             LOT
                                        BDR.
                                                              ST
  24.63232
              0.02009 0.44216 -3.44509
                                               3.35274
                                                        11,64033
```

The lm() command above asks R to fit the model

 $\mathsf{Price} = \beta_0 + \beta_1 \mathsf{FLR} + \beta_2 \mathsf{LOT} + \beta_3 \mathsf{BDR} + \beta_4 \mathsf{GAR} + \beta_5 \mathsf{ST} + \varepsilon$

and R gives us the regression equation

Price = 24.63 + 0.02FLR + 0.44LOT - 3.45BDR + 3.35GAR + 11.64ST

$\widehat{\mathsf{Price}} = 24.63 + 0.02 \mathsf{FLR} + 0.44 \mathsf{LOT} - 3.45 \mathsf{BDR} + 3.35 \mathsf{GAR} + 11.64 \mathsf{ST}$

The regression equation tells us:

- an extra square foot in floor area increases the price by <u>\$20</u>,

Question:

Why an additional bedroom makes a house less valuable?

Interpretation of Regression Coefficients

- β_0 = intercept = the mean value of y when all x_j ' are 0.
 - may not have practical meaning
 e.g., β₀ is meaningless in the housing price model as no housing unit has 0 floor space.
- β_j: regression coefficient for x_j, is the mean change in the response y when x_j is increased by one unit holding all other x_j's constant
 - Interpretation of β_j depends on the presence of other covariates in the model
 e.g., the meaning of the 2 β₁'s in the following 2 models are different

What's Wrong?

<pre># Model 1 > lm(Price ~</pre>	BDR,	data=housing
(Intercept) 43.487		BDR 3.921

The regression coefficient for BDR is 3.921 in the Model 1 above but -3.445 in the Model 2 below.

)

Model 2
> lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)
(Intercept) FLR LOT BDR GAR ST
24.63232 0.02009 0.44216 -3.44509 3.35274 11.64033

Considering BDR alone, house prices *increase* with BDR.

However, an extra bedroom makes a housing unit less valuable when when other covariates (FLR, LOT, etc) are fixed.

Does this make sense?

More R Commands

- > summary(lm1)

> lm1 = lm(Price ~ FLR+RMS+BDR+GAR+LOT+ST+CON+LOC, data=housing)

- # Regression output with more details
- # including multiple R-squared,
- # and the estimate of sigma

> lm1\$coef

show the estimated beta's

- > lm1\$fitted
- > lm1\$res

- # show the fitted values
 - # show the residuals

> lm1 = lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)
> summary(lm1)

Call: lm(formula = Price ~ FLR + LOT + BDR + GAR + ST, data = housing)

Residuals:

Min 1Q Median 3Q Max -9.7530 -2.9535 0.1779 3.7183 12.9728

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	24.632318	4.836743	5.093	5.56e-05	***
FLR	0.020094	0.003668	5.478	2.31e-05	***
LOT	0.442164	0.150023	2.947	0.007965	**
BDR	-3.445086	1.279347	-2.693	0.013995	*
GAR	3.352739	1.560239	2.149	0.044071	*
ST	11.640334	2.688867	4.329	0.000326	***

Residual standard error: 5.79 on 20 degrees of freedom Multiple R-squared: 0.8306,Adjusted R-squared: 0.7882 F-statistic: 19.61 on 5 and 20 DF, p-value: 4.306e-07

t-Tests on Individual Regression Coefficients

For a MLR model $Y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip} + \varepsilon_i$, to test the hypotheses,

$$H_0: \beta_j = c$$
 v.s. $H_a: \beta_j \neq c$

the *t*-statistic is

$$t = \frac{\widehat{\beta}_j - c}{\mathsf{SE}(\widehat{\beta}_j)}$$

in which $SE(\widehat{\beta}_j)$ is the standard error for $\widehat{\beta}_j$.

- ► General formula for SE(β_j) is a bit complicate but unimportant in STAT222 and hence is omitted
- R can compute SE($\hat{\beta}_j$) for us
- Formula for SE($\hat{\beta}_j$) for a few special cases will be given later

This *t*-statistic also has a *t*-distribution with n - p - 1 degrees of freedom

 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 24.632318
 4.836743
 5.093
 5.56e-05

 FLR
 0.020094
 0.003668
 5.478
 2.31e-05

 LOT
 0.442164
 0.150023
 2.947
 0.007965
 **

(some rows are omitted)
 ST
 11.640334
 2.688867
 4.329
 0.000326

- the first column gives variable names
- ▶ the column Estimate gives the LS estimate $\hat{\beta}_j$'s for β_j 's
- the column Std. Error gives SE($\hat{\beta}_j$), the standard error of $\hat{\beta}_j$
- the column t value gives t-value = $\frac{\widehat{\beta}_j}{SE(\widehat{\beta}_i)}$
- ► column $\Pr(>|t|)$ gives the *P*-value for testing H_0 : $\beta_j = 0$ v.s. H_a : $\beta_j \neq 0$.
- E.g., for LOT, we see

$$\widehat{\beta}_{LOT} \approx 0.442, \ \mathsf{SE}(\widehat{\beta}_{LOT}) \approx 0.150, \ t = \frac{\widehat{\beta}_{LOT}}{\mathsf{SE}(\widehat{\beta}_{LOT})} \approx \frac{0.442}{0.150} \approx 2.947.$$

The P-value 0.007965 is the 2-sided P-value for testing H_0: $\beta_{LOT} = 0$

Nested Models

We say Model 1 is **nested in** Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1). E.g., for the 4 models below,

> Model A : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$ Model B : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ Model C : $Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$ Model D : $Y = \beta_0 + \beta_1 (X_1 + X_2) + \varepsilon$

- ▶ B is nested in A since A reduces to B when $\beta_3 = 0$
- C is also nested in A.....since A reduces to C when $\beta_2 = 0$
- ▶ D is nested in Bsince B reduces to D when $\beta_1 = \beta_2$
- B and C are NOT nested in either way
- D is NOT nested in C

Nested Relationship is Transitive

If Model 1 is nested in Model 2, and Model 2 is nested in Model 3, then Model 1 is also nested in Model 3.

For example, for models in the previous slide,

D is nested in B, and B is nested in A,

implies D is also nested in A, which is clearly true because Model A reduces to Model D when

 $\beta_1 = \beta_2$, and $\beta_3 = 0$.

When two models are nested (Model 1 is nested in Model 2),

- the smaller model (Model 1) is called the reduced model, and
- the more general model (Model 2) is called the full model.

SST of Nested Models

Question: Compare the SST for Model A and the SST for Model B. Which one is larger? Or are they equal?

What about the SST for Model C? For Model D?

SSE of Nested Models

When a reduced model is nested in a full model, then

(i) $SSE_{reduced} \ge SSE_{full}$, and (ii) $SSR_{reduced} \le SSR_{full}$.

Proof. We will prove (i) for

► the full model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$ and

• the reduced model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_3 x_{i3} + \varepsilon_i$.

The proofs for other nested models are similar.

$$SSE_{full} = \min_{\beta_0, \beta_1, \beta_2, \beta_3} \sum_{i=1}^{n} (y_1 - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \beta_3 x_{i3})^2$$

$$\leq \min_{\beta_0, \beta_1, \beta_3} \sum_{i=1}^{n} (y_1 - \beta_0 - \beta_1 x_{i1} - \beta_3 x_{i3})^2$$

$$= SSE_{reduced}$$

Part (ii) follows directly from (i), the identity SST = SSR + SSE, and the fact that all MLR models of the same data set have a common SST

General Framework for Testing Nested Models

 H_0 : reduced model is true v.s. H_a : full model is true

As the reduced model is nested in the full model,

$$SSE_{reduced} \geq SSE_{full}$$

- Simplicity or Accuracy?
 - The full model fits the data better (with smaller SSE) but is more complicate
 - The reduced model doesn't fit as well but is simpler.
 - ► If SSE_{reduced} ≈ SSE_{full}, one can sacrifice a bit of accuracy in exchange for simplicity
 - If SSE_{reduced} ≫ SSE_{full}, it would cost to much in accuracy in exchange for simplicity. The full model is preferred.

The F-Statistic

$$F = \frac{(SSE_{reduced} - SSE_{full})/(df_{reduced} - df_{full})}{MSE_{full}}$$

- SSE_{reduced} SSE_{full} is the reduction in SSE from replacing the reduced model with the full model.
- ► *df_{reduced}* is the df for error for the reduced model.
- ► *df_{full}* is the df for error for the full model.
- $F \ge 0$ since $SSE_{reduced} \ge SSE_{full} \ge 0$
- The smaller the F-statistic, the more we favor the reduced model
- Under H₀, the *F*-statistic has an *F*-distribution with df_{reduced} - df_{full} and df_{full} degrees of freedom.

Testing All Coefficients Equal Zero

Testing the hypotheses

H₀:
$$\beta_1 = \cdots = \beta_p = 0$$
 v.s. H_a: not all $\beta_1 \ldots, \beta_p = 0$

is a test to evaluate the overall significance of a model.

Full :
$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p X_{ip} + \varepsilon_i$$

Reduced : $y_i = \beta_0 + \varepsilon_i$ (all covariates are unnecessary)

• The LS estimate for β_0 in the reduced model is $\widehat{\beta}_0 = \overline{y}$, so

$$SSE_{reduced} = \sum_{i=1}^{n} (y_i - \widehat{\beta}_0)^2 = \sum_i (y_i - \overline{y})^2 = SST_{full}$$

If df_{reduced} = dfE_{reduced} = n − 1, because the reduced model has only one coefficient β₀

•
$$df_{full} = dfE_{full} = n - p - 1.$$

Testing All Coefficients Equal Zero

Hence

$$F = \frac{(SSE_{reduced} - SSE_{full})/(df_{reduced} - df_{full})}{MSE_{full}}$$
$$= \frac{(SST_{full} - SSE_{full})/[n - 1 - (n - p - 1)]}{SSE_{full}/(n - p - 1)}$$
$$= \frac{SSR_{full}/p}{SSE_{full}/(n - p - 1)}.$$

Moreover, $F \sim F_{p,n-p-1}$ under H₀: $\beta_1 = \beta_2 = \cdots = \beta_p = 0$. In R, the *F* statistic and *p*-value are displayed in the last line of the output of the summary() command.

> lm1 = lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)
> summary(lm1)
... (output omitted)

Residual standard error: 5.79 on 20 degrees of freedom Multiple R-squared: 0.8306,Adjusted R-squared: 0.7882 F-statistic: 19.61 on 5 and 20 DF, p-value: 4.306e-07

ANOVA and the *F*-Test

The test of all coefficients equal zero is often summarized in an ANOVA table.

		Sum of	Mean	
Source	df	Squares	Squares	F
Regression	dfR = p	SSR	$MSR = \frac{SSR}{dfR}$	$F = \frac{MSR}{MSE}$
Error	dfE = n - p - 1	SSE	$MSE = \frac{SSE}{dfE}$	
Total	dfT = n - 1	SST		

Testing Some Coefficients Equal to Zero

```
E.g., for the housing price data, we may want to test if we can eliminate BDR and GAR from the model, i.e., H_0: \beta_{BDR} = \beta_{GAR} = 0.
```

```
> lmfull = lm(Price ~ FLR+LOT+BDR+GAR+ST, data=housing)
> lmreduced = lm(Price ~ FLR+LOT+ST, data=housing)
> anova(lmreduced, lmfull)
Analysis of Variance Table
Model 1: Price ~ FLR + LOT + ST
Model 2: Price ~ FLR + LOT + BDR + GAR + ST
Res.Df RSS Df Sum of Sq F Pr(>F)
1 22 1105.01
2 20 670.55 2 434.46 6.4792 0.006771 **
```

Note SSE is called RSS (residual sum of square) in R.

Testing Equality of Coefficients

Example. To test H₀: $\beta_1 = \beta_2 = \beta_3$, the reduced model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_1 X_2 + \beta_1 X_3 + \beta_4 X_4 + \varepsilon$$
$$= \beta_0 + \beta_1 (X_1 + X_2 + X_3) + \beta_4 X_4 + \varepsilon$$

- 1. Make a new variable $W = X_1 + X_2 + X_3$
- 2. Fit the reduced model by regressing Y on W and X_4
- 3. Find SSE_{reduced} and df_{reduced} df_{full} = 2

4. In R

> lmfull = lm(Y ~ X1 + X2 + X3 + X4) > lmreduced = lm(Y ~ I(X1 + X2 + X3) + X4) > anova(lmreduced, lmfull) The line lmreduced = lm(Y ~ I(X1 + X2 + X3) + X4) is equivalent to > W = X1 + X2 + X3

> lmreduced = lm(Y ~ W + X4)