General Factorial Design

Yibi Huang

• General Factorial Design

Three Way Interactions

We say factor A, B, and C have three-way interactions if

- AB interaction changes with the levels of C, or
- BC interaction changes with the levels of A, or
- AC interaction changes with the levels of B.

E.g., in a 3-way design, based on the means model $y_{ijkl} = \mu_{ijk} + \varepsilon_{ijkl}$, 3-way interaction of level (i_1, i_2) for factor A, level (j_1, j_2) for factor B, and level (k_1, k_2) for factor C is

$$\mu_{i_{1}j_{1}k_{1}} - \mu_{i_{2}j_{1}k_{1}} - \mu_{i_{1}j_{2}k_{1}} - \mu_{i_{1}j_{2}k_{1}} - \mu_{i_{2}j_{2}k_{1}} + \mu_{i_{2}j_{2}k_{1}} + \mu_{i_{2}j_{1}k_{2}} + \mu_{i_{1}j_{2}k_{2}} - \mu_{i_{2}j_{2}k_{2}} = (\underbrace{\mu_{i_{1}j_{1}k_{1}} - \mu_{i_{2}j_{1}k_{1}} - \mu_{i_{1}j_{2}k_{1}} + \mu_{i_{2}j_{2}k_{1}}}_{AB \text{ interaction at level } k_{1} \text{ of C}} - (\underbrace{\mu_{i_{1}j_{1}k_{2}} - \mu_{i_{2}j_{1}k_{2}} - \mu_{i_{2}j_{2}k_{2}} + \mu_{i_{2}j_{2}k_{2}}}_{AB \text{ interaction at level } k_{1} \text{ of C}} = (\underbrace{\mu_{i_{1}j_{1}k_{1}} - \mu_{i_{1}j_{2}k_{1}} - \mu_{i_{1}j_{1}k_{2}} + \mu_{i_{1}j_{2}k_{2}}}_{BC \text{ interaction at level } i_{1} \text{ of A}} = (\underbrace{\mu_{i_{1}j_{1}k_{1}} - \mu_{i_{2}j_{1}k_{1}} - \mu_{i_{1}j_{1}k_{2}} + \mu_{i_{2}j_{1}k_{2}}}_{AC \text{ interaction at level } j_{1} \text{ of B}} + \underbrace{\mu_{i_{1}j_{2}k_{1}} - \mu_{i_{2}j_{2}k_{1}} - \mu_{i_{1}j_{2}k_{2}} + \mu_{i_{2}j_{2}k_{2}}}_{AC \text{ interaction at level } j_{2} \text{ of B}}$$

Higher Order Interactions

- We say 4 factors have 4-way interactions means the 3-way interaction of any 3 of the 4 factors changes with the levels of a 4th factor.
- We say k factors have k-way interactions means the (k − 1)-way interaction of any (k − 1) of the k factors changes with the levels of a kth factor.

Hierarchy

- ► Since k-way interactions are defined on (k − 1)-way interactions, we cannot skip orders.
- E.g., when we say there are no AB interactions, we also imply that there are no higher order interactions that involve AB interactions, like ABD interactions, or ABCD interactions.

General Factorial Designs

The model and analysis of multi-way factorial are generalization of those of two-way factorial. E.g., consider a 4-way factorial with factors A, B, C, and D.

means model :
$$y_{ijklm} = \mu_{ijkl} + \varepsilon_{ijklm}$$
 for
$$\begin{cases} i = 1, \dots, a, j = 1, \dots, b, \\ k = 1, \dots, c, l = 1, \dots, d, \\ m = 1, \dots, n. \end{cases}$$
effects model: $y_{ijklm} = \underbrace{\mu}_{grand mean} + \underbrace{\alpha_i + \beta_j + \gamma_k + \delta_l}_{main effects} \\ + \underbrace{\alpha\beta_{ij} + \alpha\gamma_{ik} + \alpha\delta_{il} + \beta\gamma_{jk} + \beta\delta_{jl} + \gamma\delta_{kl}}_{2\text{-way interactions}} \\ + \underbrace{\alpha\beta\gamma_{ijk} + \alpha\beta\delta_{ijl} + \alpha\gamma\delta_{ikl} + \beta\gamma\delta_{jkl}}_{3\text{-way interactions}} \\ + \underbrace{\alpha\beta\gamma\delta_{ijkl}}_{4\text{-way interaction}} + \underbrace{\varepsilon_{ijklm}}_{error}$

General Factorial Designs

$$y_{ijklm} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \alpha \beta_{ij} + \alpha \gamma_{ik} + \alpha \delta_{il} + \beta \gamma_{jk} + \beta \delta_{jl} + \gamma \delta_{kl} + \alpha \beta \gamma_{ijk} + \alpha \beta \delta_{ijl} + \alpha \gamma \delta_{ikl} + \beta \gamma \delta_{jkl} + \alpha \beta \gamma \delta_{ijkl} + \varepsilon_{ijklm}$$

All the effects have zero-sum constraints that they add to 0 when summing over any subscript, e.g.,

$$\blacktriangleright \sum_{i} \alpha_{i} = \sum_{j} \beta_{j} = \sum_{k} \gamma_{k} = \sum_{l} \delta_{l} = 0$$

- $\sum_{i} \alpha \gamma_{ik} = \sum_{k} \alpha \gamma_{ik} = 0$, for all *i*, *k*, so do other 2-way interactions
- $\sum_{i} \alpha \gamma \delta_{ikl} = \sum_{k} \alpha \gamma \delta_{ikl} = \sum_{l} \alpha \gamma \delta_{ikl} = 0$, for all *i*, *k*, *l*, so do other 3-way interactions

•
$$\sum_{i} \alpha \beta \gamma \delta_{ijkl} = \sum_{j} \alpha \beta \gamma \delta_{ijkl} = \sum_{k} \alpha \beta \gamma \delta_{ijkl} = \sum_{l} \alpha \beta \gamma \delta_{ijkl} = 0$$
,
for all *i*, *j*, *k*, *l*.

Parameter Estimates

For a 4-way model, the parameter estimates under the zero-sum constraints are

$$\begin{array}{c|c} \mbox{grand mean} & \widehat{\mu} = \overline{y}_{\bullet \bullet \bullet \bullet} \\ \mbox{main effects} & \widehat{\alpha}_i = \overline{y}_{i \bullet \bullet \bullet} - \overline{y}_{\bullet \bullet \bullet \bullet}, & \widehat{\beta}_j = \overline{y}_{\bullet j \bullet \bullet} - \overline{y}_{\bullet \bullet \bullet \bullet}, \\ & \widehat{\gamma}_k = \overline{y}_{\bullet \bullet \bullet \bullet} - \overline{y}_{\bullet \bullet \bullet \bullet}, & \widehat{\delta}_l = \overline{y}_{\bullet \bullet \bullet l \bullet} - \overline{y}_{\bullet \bullet \bullet \bullet} \\ \mbox{2-way} & & \widehat{\alpha}\widehat{\beta}_{ij} = \overline{y}_{ij\bullet \bullet} - \overline{y}_{i\bullet \bullet \bullet} - \overline{y}_{\bullet j \bullet \bullet} + \overline{y}_{\bullet \bullet \bullet \bullet} \\ & & \widehat{\beta}\widehat{\gamma}_{jk} = \overline{y}_{\bullet jk \bullet \bullet} - \overline{y}_{\bullet j \bullet \bullet} - \overline{y}_{\bullet \bullet \bullet \bullet} + \overline{y}_{\bullet \bullet \bullet} \\ & & \vdots \\ \mbox{3-way} & & & \widehat{\alpha}\widehat{\beta}\delta_{ijl} = \overline{y}_{ijl \bullet \bullet} - \overline{y}_{ij\bullet \bullet \bullet} - \overline{y}_{i\bullet \bullet l \bullet} - \overline{y}_{\bullet j \bullet \bullet} \\ & & & + \overline{y}_{i \bullet \bullet \bullet} + \overline{y}_{\bullet j \bullet \bullet \bullet} + \overline{y}_{\bullet \bullet \bullet l \bullet} - \overline{y}_{\bullet \bullet \bullet} \\ & & & & \widehat{\alpha}\widehat{\gamma}\delta_{ijkl} = \cdots \\ \mbox{4-way} & & & & & \widehat{\alpha}\widehat{\beta}\widehat{\gamma}\delta_{ijkl} = (16 \text{ terms}) \end{array}$$

Sum of Squares

SST can be decomposed into SS of main effects and interactions of all orders, e.g., in an $a \times b \times c \times d$ design with *n* replicates:

$$SST = SS_A + SS_B + SS_C + SS_D$$

+ $SS_{AB} + SS_{AC} + SS_{AD} + SS_{BC} + SS_{BD} + SS_{CD}$
+ $SS_{ABC} + SS_{ACD} + SS_{ABD} + SS_{BCD}$
+ SS_{ABCD}
+ SSE

where $SST = \sum_{ijklm} (y_{ijklm} - \overline{y}_{\bullet\bullet\bullet\bullet\bullet})^2$, $SSE = \sum_{ijklm} (y_{ijklm} - \overline{y}_{ijkl\bullet})^2$, and the SS for all other terms are the sum of squares of corresponding parameter estimates <u>under the zero sum constraints</u>, e.g.,

$$SS_{C} = \sum_{ijklm} (\widehat{\gamma}_{k})^{2} = abdn \sum_{k} (\widehat{\gamma}_{k})^{2}$$

$$SS_{BC} = \sum_{ijklm} (\widehat{\beta}\widehat{\gamma}_{jk})^{2} = abn \sum_{jk} (\widehat{\beta}\widehat{\gamma}_{jk})^{2}$$

$$SS_{ACD} = \sum_{ijklm} (\widehat{\alpha}\widehat{\gamma}\delta_{ikl})^{2} = bn \sum_{ikl} (\widehat{\alpha}\widehat{\gamma}\delta_{ikl})^{2}$$

$$SS_{ABCD} = \sum_{ijklm} (\widehat{\alpha}\widehat{\beta}\widehat{\gamma}\delta_{ijkl})^{2} = n \sum_{ijkl} (\widehat{\alpha}\widehat{\beta}\widehat{\gamma}\delta_{ijkl})^{2}$$

$$Chapter 08B = 7$$

Degrees of Freedom

Say factor A, B, C, and D have respectively a, b, c, d levels, and there are n replicates.

d.f. of an interaction = product of d.f.'s for the main effects of the involved factors, e.g.,

•
$$df_{AD} = (a-1)(d-1),$$

• $df_{BCD} = (b-1)(c-1)(d-1),$
• $df_{ABCD} = (a-1)(b-1)(c-1)(d-1).$

- d.f. of SST = total # of observation -1 = abcdn 1
- ▶ d.f. of SSE = total # of observation total # of treatments = abcdn - abcd = abcd(n - 1)

Example 8.10 Amylase data (p.195)

- ► Goal: to study the amylase specific activity of sprouted maize
- An $8 \times 2 \times 2$ factorial design with 3 factors:
 - ▶ analysis temperature (40, 35, 30, 25, 20, 15, 13, or 10°C)
 - ▶ growth temperature of the sprouts (25 or 13°C)
 - variety of maize (B73 or Oh43)
- 3 replicates per treatment
- Response: the amylase specific activities (IU)
- Data file: amylaze.txt is posted on Canvas

Example 8.10 Amylase data

Table 8.9: Amylase specific activity (IU), for two varieties of sprouted maize under different growth and analysis temperatures (degrees C).

		Analysis Temperature							
GT	Var.	40	35	30	25	20	15	13	10
25	B73	391.8	427.7	486.6	469.2	383.1	338.9	283.7	269.3
		311.8	388.1	426.6	436.8	408.8	355.5	309.4	278.7
		367.4	468.1	499.8	444.0	429.0	304.5	309.9	313.0
	O43	301.3	352.9	376.3	373.6	377.5	308.8	234.3	197.1
		271.4	296.4	393.0	364.8	364.3	279.0	255.4	198.3
		300.3	346.7	334.7	386.6	329.2	261.3	239.4	216.7
13	B73	292.7	422.6	443.5	438.5	350.6	305.9	319.9	286.7
		283.3	359.5	431.2	398.9	383.9	342.8	283.2	266.5
		348.1	381.9	388.3	413.7	408.4	332.2	287.9	259.8
	O43	269.7	380.9	389.4	400.3	340.5	288.6	260.9	221.9
		284.0	357.1	420.2	412.8	309.5	271.8	253.6	254.4
		235.3	339.0	453.4	371.9	313.0	333.7	289.5	246.7

Example 8.10 Amylase data — Interaction Plots

- Does the main effect at appear significant?
- How about the main effect gt?
- How about at:gt interaction?

- Does the main effect at appear significant?
- and the main effect v?
- at:v interaction?

Example 8.10 Amylase data — Interaction Plots (2)

- Does the main effect gt appear significant?
- and main effect v?
- gt:v interaction?

General Factorial In R

```
amyl = read.table("amylaze.txt", h=T)
amyl$at = as.factor(amyl$atemp)
amyl$gt = as.factor(amyl$gtemp)
amyl$v = as.factor(amyl$variety)
```

To make the variance constant, the response is log-transformed (see p.215-216 in the textbook).

We fit a full model with all 2-way and 3-way interactions.

```
logfit1 = lm(log(y) ~ at+gt+v+at:gt+at:v+gt:v + at:gt:v, data=amyl)
```

A simpler syntax is

```
logfit1 = lm(log(y) ~ at*gt*v, data=amyl)
```

The syntax at*gt*v will automatically include all relevant main effects and lower order interactions in the model.

```
Chapter 08B - 13
```

Example 8.10 Amylase data — ANOVA Table

```
> logfit1 = lm(log(y) ~ at*gt*v, data=amyl)
> anova(logfit1)
```

Analysis of Variance Table

Response:	log(y)							
	$\mathtt{D}\mathtt{f}$	Sum Sq	Mean Sq	F value	Pr(>F)			
at	7	3.01613	0.43088	78.8628	< 2.2e-16	***		
gt	1	0.00438	0.00438	0.8016	0.3739757			
v	1	0.58957	0.58957	107.9085	2.305e-15	***		
at:gt	7	0.08106	0.01158	2.1195	0.0539203			
at:v	7	0.02758	0.00394	0.7212	0.6543993			
gt:v	1	0.08599	0.08599	15.7392	0.0001863	***		
at:gt:v	7	0.04764	0.00681	1.2457	0.2916176			
Residuals	64	0.34967	0.00546					

Only analysis temperature (at), variety (v), and the growth temperature by variety interaction (gt:v) are highly significant. Can I fit a model like $y_{ijkl} = \mu + \alpha_i + \gamma_k + \beta \gamma_{jk} + \varepsilon_{ijkl}$? logfit2 = lm(log(y) ~ at + v + gt:v, data=amyl)

8.11 Hierarchy

A model is *hierarchical* if any term in the model implies the presence of all the composite lower-order terms.

- $y_{ijkl} = \mu + \alpha_i + \gamma_k + \beta \gamma_{jk} + \varepsilon_{ijkl}$ is not hierarchical because including the term $\beta \gamma_{jk}$ must includes both β_j and γ_k as well.
- $y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$ is hierarchical.
- A hierarchical model with a term $\alpha\beta\gamma_{ijk}$ must also include:
 - the included main effects: $\alpha_i + \beta_j + \gamma_k$
 - and the included two-way effects: $\alpha\beta_{ij} + \alpha\gamma_{ik} + \beta\gamma_{jk}$.

Unless having a specific reason, we should stick to hierarchical models.

This is because a k-way interaction in defined upon its composite lower-order terms. It is strange to consider a ABC interaction while claiming A and B have no 2-way interaction.

Back to the Amylase Data

Here is a model that is still hierarchical, but leaves off non-significant model terms.

Though insignificant, the main effect gt cannot be left out since the two-way interaction gt:v is significant.

The SS's and d.f.'s of the left-out terms are pooled into SSE, while the SS's and d.f's of the remaining stay unchanged.

Comparing the reduced model with the full 3-way model, the large *P*-value indicates the adequacy of the reduced model.

More On Model Formula in R (1)

Instead of writing terms explicitly in the model formula

```
> logfit2 = lm(log(y) ~ at + gt + v + at:gt + gt:v, data=amyl)
```

Here is another simpler expression for the same model. R will automatically create the smallest hierarchical model that include both at:gt and gt:v interactions.

More On Model Formula in R (2)

If one wants a model with all two-way interactions but no 3-way interaction, one can explicitly write down every term

logfit3a = lm(log(y) ~ at + gt + v + at:gt + gt:v + at:v, data=amyl)

Here is another way to obtain everything up to the 2-way interactions

 $logfit3b = lm(log(y) ~ (at + gt + v)^2, data=amyl)$

Here is another way to "leave out" the 3-way interaction

logfit3c = lm(log(y) ~ at*gt*v - at:gt:v, data=amyl)

You can verify the 3 model formulas are identical in R.

```
anova(logfit3a)
anova(logfit3b)
anova(logfit3c)
```

Example 8.10 Amylase data — Model Checking

Always check model assumptions!

Recall that we took log of the original response. If we didn't...

```
> fit1 = lm(y ~ at*gt*v, data=amyl); anova(fit1)
Analysis of Variance Table
```

Response:	У					
	$\mathtt{D}\mathtt{f}$	Sum Sq	Mean Sq	F value	Pr(>F)	
at	7	327811	46830	72.9366	< 2.2e-16	***
gt	1	1155	1155	1.7988	0.1845968	
v	1	63809	63809	99.3801	1.192e-14	***
at:gt	7	7158	1023	1.5925	0.1537663	
at:v	7	1174	168	0.2611	0.9665902	
gt:v	1	10648	10648	16.5839	0.0001305	***
at:gt:v	7	6257	894	1.3922	0.2240596	
Residuals	64	41092	642			

Don't drop non-significant terms before checking model assumptions. If any assumption is violated, the ANOVA table is not reliable.

Example 8.10 Amylase data — Model Checking (2)

- The residual plot indicates non-constant variance the size of residuals increases with fitted values.
- The QQ plot looks symmetric but a bit short-tailed.
- The Box-Cox method suggests a log-transformation.

Check the model again after log-transformation but \underline{before} dropping terms, i.e. check the model

```
lm(log(y)~at*v*gt, data=amyl).
```


- The non-constant variance problem is alleviated
- The QQ plot still looks short-tailed. Residuals often appear short-tailed when fiting a "large" model, which tends to overfit the data, making residuals too close to zero.
- ► Box-Cox suggests no transformation (λ = 1 is in the 95% C.I.), i.e., the log-transformed response is fine.

So the ANOVA table based on the log-transformed data seems trustworthy and we can make inference or drop terms based on it. Chapter 08B - 22

Let's check the model again after dropping insignificant terms in the log transformed model (i.e. $lm(log(y)^at*gt+gt*v, data=amyl)$).

- The residual plot looks fine
- After removing significant terms, residuals no longer appear short-tailed
- Box-Cox shows the 95% C.I. contains $\lambda = 1$. Okay.

Remark about Box-Cox: R by default will only plot λ for the range (-2, 2). The range of λ can be changed, like -2 to 10 in steps 0.25 in the command below.

- > library(MASS)
- > boxcox(logfit2,lambda=seq(-2,10,0.25))

Some factorial experiments have only ONE replicate per treatment.

- \blacktriangleright No degree of freedom for error, cannot estimate σ^2
- ► All sum of squares (SS) can be computed as usual except that SSE = 0.
- ANOVA F-tests for main effects and interactions of all orders cannot be done!
- Remedy Pool higher order interactions into error

Problem 8.6 (p. 222, Oehlert's)

 $\frac{\text{Response: dry matter yield in hundreds of pounds per acre over a}{54\text{-week study period}}$

	Cutting Interval					
Factors:		1 wks.	3 wks.	6 wks.	9 wks.	
height of cut (1 3 or 6	Ht 1 F 0	74.1	65.4	96.7	147.1	
	F 8	87.4	117.7	190.2	188.6	
inches)	F 16	96.5	122.2	197.9	232.0	
 cutting interval (1, 3, 6, 	F 32	107.6	140.5	241.3	192.0	
or 9 weeks)	Ht 3 F 0	61.7	83.7	88.8	155.6	
, amount of nitrogram	F 8	112.5	129.4	145.0	208.1	
amount of hitrogen	F 16	102.3	137.8	173.6	203.2	
fertilizer (0, 8, 16, or 32	F 32	115.3	154.3	211.2	245.2	
hundred pounds of	Ht 6 F 0	49.9	72.7	113.9	143.4	
ammonium sulfate per	F 8	92.9	126.4	175.5	207.5	
acre per year).	F 16	100.8	153.5	184.5	194.2	
	F 32	115.8	160.0	224.8	197.5	

The data file pr8_6.txt is posted on Canvas Let's first load the data and fit a full 3-way model.

```
pr8.6 = read.table("pr8_6.txt", h=T)
pr8.6$HT = as.factor(pr8.6$ht)
pr8.6$FERT = as.factor(pr8.6$fert)
pr8.6$INT = as.factor(pr8.6$int)
lm1 = lm(y ~ HT*FERT*INT, data=pr8.6)
anova(lm1)
```

The ANOVA table obtained is

```
Response: y
           Df Sum Sq Mean Sq F value Pr(>F)
HT
            2
                  29
                        14.6
FERT
            3 42072 14023.9
TNT
            3
               73887 24629.0
HT:FERT
            6 406 67.7
HT:INT
            6 3005 500.9
FERT: INT
            9 5352 594.6
HT:FERT:INT 18 3155 175.3
Residuals
            0
                   0
Warning message:
In anova.lm(lm1) :
 ANOVA F-tests on an essentially perfect fit are unreliable
```

We pool the 3-way interaction terms as errors to get a *conservative* estimate of the MSE.

```
> lm2 = lm(y ~ (HT+FERT+INT)^2, data=pr8.6)
> anova(lm2)
Analysis of Variance Table
```

Before examining the treatment effects, first check if the model assumptions are met.

- > library(MASS)
- > boxcox(lm2)

The Box-Cox method below suggest a square-root transformation of the response (since 0.5 is in the 95% confidence interval for λ).


```
> lm2s= lm(sqrt(y) ~ (HT+FERT+INT)^2, data=pr8.6)
> anova(lm2s)
Analysis of Variance Table
```

```
      Response:
      sqrt(y)

      Df
      Sum Sq
      Mean Sq
      F value
      Pr(>F)

      HT
      2
      0.103
      0.052
      0.1763
      0.83979

      FERT
      3
      82.222
      27.407
      93.8199
      3.510e-11
      ***

      INT
      3
      132.738
      44.246
      151.4617
      5.865e-13
      ***

      HT:FERT
      6
      0.537
      0.089
      0.3062
      0.92553

      HT:INT
      6
      4.873
      0.812
      2.7800
      0.04303
      *

      FERT:INT
      9
      6.868
      0.763
      2.6123
      0.03962
      *

      Residuals
      18
      5.258
      0.292
      *
```
