General Factorial Design

Yibi Huang

- General Factorial Design

Chapter 08B-1

Three Way Interactions

We say factor A, B, and C have three-way interactions if

- $A B$ interaction changes with the levels of C, or
- BC interaction changes with the levels of A , or
- AC interaction changes with the levels of B.
E.g., in a 3-way design, based on the means model $y_{i j k l}=\mu_{i j k}+\varepsilon_{i j k l}$, 3-way interaction of level $\left(i_{1}, i_{2}\right)$ for factor A , level $\left(j_{1}, j_{2}\right)$ for factor B , and level $\left(k_{1}, k_{2}\right)$ for factor C is

$$
\left.\begin{array}{rl}
& \mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}-\mu_{i_{1} j_{1} k_{2}} \\
= & (\underbrace{\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1} k_{1}}+\mu_{i_{2} j_{2} k_{1}}}_{\text {AB interaction at level } k_{1} \text { of } \mathrm{C}})-(\underbrace{}_{i_{2} j_{1} k_{2}}+\mu_{i_{1} j_{2} k_{2}}-\mu_{i_{2} j_{2} k_{2}} \\
= & (\underbrace{\mu_{i_{1} j_{1} k_{2}}-\mu_{i_{2} j_{1} k_{2}}-\mu_{i_{1} j_{2} k_{2}}+\mu_{i_{2} j_{2} k_{2}}}_{\text {AB interaction at level } k_{2} \text { of } C}) \\
= & (\underbrace{\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{1} k_{2}}+\mu_{i_{1} j_{1} k_{2} k_{2}}}_{\text {AC interaction at level } i_{1} \text { of } A})-\mu_{i_{2} j_{1} k_{2}}
\end{array}\right)-(\underbrace{\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{2} j_{2} k_{1}}-\mu_{i_{2} j_{1} k_{2}}+\mu_{i_{2} j_{2} k_{2}}}_{\text {AC interaction at level } j_{1} \text { of } \mathrm{B}}))
$$

Chapter 08B-2

Higher Order Interactions

- We say 4 factors have 4-way interactions means the 3-way interaction of any 3 of the 4 factors changes with the levels of a 4th factor.
- We say k factors have k-way interactions means the $(k-1)$-way interaction of any $(k-1)$ of the k factors changes with the levels of a k th factor.

Hierarchy

- Since k-way interactions are defined on ($k-1$)-way interactions, we cannot skip orders.
- E.g., when we say there are no $A B$ interactions, we also imply that there are no higher order interactions that involve $A B$ interactions, like $A B D$ interactions, or $A B C D$ interactions.

Chapter 08B-3

General Factorial Designs

The model and analysis of multi-way factorial are generalization of those of two-way factorial. E.g., consider a 4-way factorial with factors A, B, C, and D.
means model : $y_{i j k l m}=\mu_{i j k l}+\varepsilon_{i j k l m}$ for $\left\{\begin{array}{l}i=1, \ldots, a, j=1, \ldots, b, \\ k=1, \ldots, c, l=1, \ldots, d, \\ m=1, \ldots, n .\end{array}\right.$
effects model: $y_{i j k l m}=$

$$
\begin{aligned}
& =\underbrace{\mu}_{\text {grand mean }}+\underbrace{\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{l}}_{\text {main effects }} \\
& +\underbrace{\alpha \beta_{i j}+\alpha \gamma_{i k}+\alpha \delta_{i l}+\beta \gamma_{j k}+\beta \delta_{j l}+\gamma \delta_{k l}}_{\text {2-way interactions }}
\end{aligned}
$$

$$
+\underbrace{\alpha \beta \gamma_{i j k}+\alpha \beta \delta_{i j l}+\alpha \gamma \delta_{i k l}+\beta \gamma \delta_{j k l}}_{\text {3-way interactions }}
$$

$+\underbrace{\alpha \beta \gamma \delta_{i j k l}}_{\text {4-way interaction }}+\underbrace{\varepsilon_{i j k / m}}_{\text {error }}$

Chapter 08B-4

General Factorial Designs

$$
\begin{aligned}
y_{i j k l m}= & \mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{l} \\
& +\alpha \beta_{i j}+\alpha \gamma_{i k}+\alpha \delta_{i l}+\beta \gamma_{j k}+\beta \delta_{j l}+\gamma \delta_{k l} \\
& +\alpha \beta \gamma_{i j k}+\alpha \beta \delta_{i j l}+\alpha \gamma \delta_{i k l}+\beta \gamma \delta_{j k l} \\
& +\alpha \beta \gamma \delta_{i j k l}+\varepsilon_{i j k l m}
\end{aligned}
$$

All the effects have zero-sum constraints that they add to 0 when summing over any subscript, e.g.,

- $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=\sum_{k} \gamma_{k}=\sum_{l} \delta_{l}=0$
- $\sum_{i} \alpha \gamma_{i k}=\sum_{k} \alpha \gamma_{i k}=0$, for all i, k, so do other 2-way interactions
- $\sum_{i} \alpha \gamma \delta_{i k l}=\sum_{k} \alpha \gamma \delta_{i k l}=\sum_{l} \alpha \gamma \delta_{i k l}=0$, for all i, k, l, so do other 3-way interactions
- $\sum_{i} \alpha \beta \gamma \delta_{i j k l}=\sum_{j} \alpha \beta \gamma \delta_{i j k l}=\sum_{k} \alpha \beta \gamma \delta_{i j k l}=\sum_{l} \alpha \beta \gamma \delta_{i j k l}=0$, for all i, j, k, l.

Chapter 08B-5

Parameter Estimates

For a 4-way model, the parameter estimates under the zero-sum constraints are

grand mean	$\widehat{\mu}=\bar{y}_{\bullet \bullet \bullet \bullet}$
main effects	$\begin{array}{ll} \hline \widehat{\alpha}_{i}=\bar{y}_{i \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet \bullet}, & \widehat{\beta}_{j}=\bar{y}_{\bullet j \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet \bullet} \\ \widehat{\gamma}_{k}=\bar{y}_{\bullet \bullet k \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet}, & \widehat{\delta}_{l}=\bar{y}_{\bullet \bullet \bullet / \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet} \end{array}$
2-way	$\begin{aligned} & \widehat{\alpha \beta} \\ & \widehat{\beta}_{i j}=\bar{y}_{i j \bullet \bullet \bullet}-\bar{y}_{i \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet} \\ & \widehat{\beta \gamma}_{j k}=\bar{y}_{\bullet j k \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet k \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet} \end{aligned}$
3-way	$\begin{aligned} \widehat{\alpha \beta \delta}_{i j l}= & \bar{y}_{i j / \bullet \bullet}-\bar{y}_{i j \bullet \bullet \bullet}-\bar{y}_{i \bullet \bullet / \bullet}-\bar{y}_{\bullet j \bullet / \bullet} \\ & +\bar{y}_{i \bullet \bullet \bullet \bullet}+\bar{y}_{\bullet j \bullet \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet \bullet} \\ \widehat{\alpha \gamma \delta}_{i k l}= & \cdots \end{aligned}$
4-way	$\widehat{\alpha \beta \gamma \delta} \delta_{i j k l}=(16$ terms $)$

Chapter 08B-6

Sum of Squares

SST can be decomposed into SS of main effects and interactions of all orders, e.g., in an $a \times b \times c \times d$ design with n replicates:

$$
\begin{aligned}
S S T= & S S_{A}+S S_{B}+S S_{C}+S S_{D} \\
& +S S_{A B}+S S_{A C}+S S_{A D}+S S_{B C}+S S_{B D}+S S_{C D} \\
& +S S_{A B C}+S S_{A C D}+S S_{A B D}+S S_{B C D} \\
& +S S_{A B C D} \\
& +S S E
\end{aligned}
$$

where SST $=\sum_{i j k l m}\left(y_{i j k l m}-\bar{y}_{\bullet \ldots . .}\right)^{2}, \operatorname{SSE}=\sum_{i j k l m}\left(y_{i j k l m}-\bar{y}_{i j k l \bullet}\right)^{2}$, and the SS for all other terms are the sum of squares of corresponding parameter estimates under the zero sum constraints, e.g.,

$$
\begin{aligned}
S S_{C} & =\sum_{i j k l m}\left(\widehat{\gamma}_{k}\right)^{2}=a b d n \sum_{k}\left(\widehat{\gamma}_{k}\right)^{2} \\
S S_{B C} & =\sum_{i j k l m}\left(\widehat{\beta \gamma}_{j k}\right)^{2}=a b n \sum_{j k}\left(\widehat{\beta \gamma}_{j k}\right)^{2} \\
S S_{A C D} & =\sum_{i j k l m}\left(\widehat{\alpha \gamma \delta} \delta_{i k l}\right)^{2}=b n \sum_{i k l}\left(\widehat{\alpha \gamma \delta}_{i k l}\right)^{2} \\
S S_{A B C D} & =\sum_{i j k l m}\left(\widehat{\alpha \beta \gamma \delta} \delta_{i j k l}\right)^{2}=n \sum_{i j k l}\left(\widehat{\alpha \beta \gamma \delta_{i j k l}}\right)^{2}
\end{aligned}
$$

Chapter 08B-7

Degrees of Freedom

Say factor A, B, C, and D have respectively a, b, c, d levels, and there are n replicates.

- d.f. of a main effect $=$ number of levels -1 .
e.g., $d f_{A}=a-1, d f_{C}=c-1$.
- d.f. of an interaction = product of d.f.'s for the main effects of the involved factors, e.g.,
- $d f_{A D}=(a-1)(d-1)$,
- $d f_{B C D}=(b-1)(c-1)(d-1)$,
- $d f_{A B C D}=(a-1)(b-1)(c-1)(d-1)$.
- d.f. of SST $=$ total $\#$ of observation $-1=a b c d n-1$
- d.f. of SSE $=$ total \# of observation - total \# of treatments

$$
=a b c d n-a b c d=a b c d(n-1)
$$

Chapter 08B-8

Example 8.10 Amylase data (p.195)

- Goal: to study the amylase specific activity of sprouted maize
- An $8 \times 2 \times 2$ factorial design with 3 factors:
- analysis temperature $\left(40,35,30,25,20,15,13\right.$, or $10^{\circ} \mathrm{C}$)
- growth temperature of the sprouts (25 or $13^{\circ} \mathrm{C}$)
- variety of maize (B73 or Oh43)
- 3 replicates per treatment
- Response: the amylase specific activities (IU)
- Data file: amylaze.txt is posted on Canvas

Example 8.10 Amylase data

Table 8.9: Amylase specific activity (IU), for two varieties of sprouted maize under different growth and analysis temperatures (degrees C).

		Analysis Temperature							
GT	Var.	40	35	30	25	20	15	13	10
25	B73	391.8	427.7	486.6	469.2	383.1	338.9	283.7	269.3
		311.8	388.1	426.6	436.8	408.8	355.5	309.4	278.7
		367.4	468.1	499.8	444.0	429.0	304.5	309.9	313.0
	O43	301.3	352.9	376.3	373.6	377.5	308.8	234.3	197.1
		271.4	296.4	393.0	364.8	364.3	279.0	255.4	198.3
		300.3	346.7	334.7	386.6	329.2	261.3	239.4	216.7
13	B73	292.7	422.6	443.5	438.5	350.6	305.9	319.9	286.7
		283.3	359.5	431.2	398.9	383.9	342.8	283.2	266.5
		348.1	381.9	388.3	413.7	408.4	332.2	287.9	259.8
	O43	269.7	380.9	389.4	400.3	340.5	288.6	260.9	221.9
		284.0	357.1	420.2	412.8	309.5	271.8	253.6	254.4
		235.3	339.0	453.4	371.9	313.0	333.7	289.5	246.7

Chapter 08B-10

Example 8.10 Amylase data - Interaction Plots

- Does the main effect at appear significant?
- How about the main effect gt?
- How about at:gt interaction?

- Does the main effect at appear significant?
- and the main effect v?
- at:v interaction?

Chapter 08B-11

Example 8.10 Amylase data - Interaction Plots (2)

- Does the main effect gt appear significant?
- and main effect v ?
- gt:v interaction?

General Factorial In R

```
amyl = read.table("amylaze.txt", h=T)
amyl$at = as.factor(amyl$atemp)
amyl$gt = as.factor(amyl$gtemp)
amyl$v = as.factor(amyl$variety)
```

To make the variance constant, the response is log-transformed (see p.215-216 in the textbook).
We fit a full model with all 2-way and 3-way interactions.
$\log f i t 1=\operatorname{lm}(\log (y) \sim a t+g t+v+a t: g t+a t: v+g t: v+a t: g t: v$, data=amyl)
A simpler syntax is
$\log f i t 1=\operatorname{lm}(\log (y) \sim a t * g t * v$, data=amyl)
The syntax at*gt*v will automatically include all relevant main effects and lower order interactions in the model.

Chapter 08B-13

Example 8.10 Amylase data - ANOVA Table

```
> logfit1 = lm(log(y) ~ at*gt*v, data=amyl)
> anova(logfit1)
Analysis of Variance Table
Response: log(y)
    Df Sum Sq Mean Sq F value Pr(>F)
```



```
gt 1 0.00438 0.00438 0.8016 0.3739757
v 1 0.58957 0.58957 107.9085 2.305e-15 ***
at:gt 7 0.08106 0.01158 2.1195 0.0539203 .
at:v 7 0.02758 0.00394 0.7212 0.6543993
gt:v 1 0.08599 0.08599 15.7392 0.0001863 ***
at:gt:v 7 0.04764 0.00681 1.2457 0.2916176
Residuals 64 0.34967 0.00546
```

Only analysis temperature (at), variety (v), and the growth temperature by variety interaction (gt:v) are highly significant.
Can I fit a model like $y_{i j k l}=\mu+\alpha_{i}+\gamma_{k}+\beta \gamma_{j k}+\varepsilon_{i j k l}$?
$\operatorname{logfit2}=\operatorname{lm}(\log (y) \sim a t+v+g t: v$, data=amyl)
Chapter 08B-14

8.11 Hierarchy

A model is hierarchical if any term in the model implies the presence of all the composite lower-order terms.

- $y_{i j k l}=\mu+\alpha_{i}+\gamma_{k}+\beta \gamma_{j k}+\varepsilon_{i j k l}$ is not hierarchical because including the term $\beta \gamma_{j k}$ must includes both β_{j} and γ_{k} as well.
- $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}$ is hierarchical.
- A hierarchical model with a term $\alpha \beta \gamma_{i j k}$ must also include:
- the included main effects: $\alpha_{i}+\beta_{j}+\gamma_{k}$
- and the included two-way effects: $\alpha \beta_{i j}+\alpha \gamma_{i k}+\beta \gamma_{j k}$.

Unless having a specific reason, we should stick to hierarchical models.

- This is because a k-way interaction in defined upon its composite lower-order terms. It is strange to consider a $A B C$ interaction while claiming A and B have no 2-way interaction.

Chapter 08B-15

Back to the Amylase Data

Here is a model that is still hierarchical, but leaves off non-significant model terms.

```
> logfit2 = lm(log(y) ~ at + gt + v + at:gt + gt:v, data=amyl)
> anova(logfit2)
Analysis of Variance Table
Response: log(y)
    Df Sum Sq Mean Sq F value Pr(>F)
```



```
gt 1 0.00438 0.00438 0.8040 0.3726670
v 1 0.58957 0.58957 108.2305 < 2.2e-16 ***
at:gt 7 0.08106 0.01158 2.1258 0.0503809 .
gt:v 1 0.08599 0.08599 15.7861 0.0001571 ***
Residuals 78 0.42489 0.00545
```

Though insignificant, the main effect gt cannot be left out since the two-way interaction $\mathrm{gt}: \mathrm{v}$ is significant.

The SS's and d.f.'s of the left-out terms are pooled into SSE, while the SS's and d.f's of the remaining stay unchanged.

Chapter 08B-16

Comparing the reduced model with the full 3 -way model, the large P-value indicates the adequacy of the reduced model.
> anova(logfit2,logfit1)
Analysis of Variance Table

More On Model Formula in R (1)

Instead of writing terms explicitly in the model formula
> logfit2 $=\operatorname{lm}(\log (y) \sim a t+g t+v+a t: g t+g t: v$, data=amyl)
Here is another simpler expression for the same model. R will automatically create the smallest hierarchical model that include both at:gt and gt:v interactions.
> logfit2a $=\operatorname{lm}(\log (y) \sim$ at*gt $+g t * v$, data=amyl)
> anova(logfit2a)
Analysis of Variance Table
Response: $\log (y)$
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
at $\quad 73.016130 .43088 \quad 79.0981<2.2 \mathrm{e}-16$ ***
$\begin{array}{lllll}\text { gt } & 10.00438 & 0.00438 & 0.8040 & 0.3726670\end{array}$
v $\quad 10.589570 .58957108 .2305<2.2 \mathrm{e}-16$ ***
at:gt $\quad 70.081060 .01158 \quad 2.12580 .0503809$.
gt:v $\quad 10.085990 .08599 \quad 15.78610 .0001571$ ***
Residuals 780.424890 .00545
Chapter 08B-18

More On Model Formula in R (2)

If one wants a model with all two-way interactions but no 3-way interaction, one can explicitly write down every term
$\operatorname{logfit3a}=\operatorname{lm}(\log (\mathrm{y}) \sim \mathrm{at}+\mathrm{gt}+\mathrm{v}+\mathrm{at}: g \mathrm{t}+\mathrm{gt}: \mathrm{v}+\mathrm{at}: \mathrm{v}$, data=amyl)
Here is another way to obtain everything up to the 2-way interactions
$\log f i t 3 b=\operatorname{lm}(\log (y) \sim(a t+g t+v) \wedge 2, ~ d a t a=a m y l)$
Here is another way to "leave out" the 3-way interaction
$\log f i t 3 c=\operatorname{lm}(\log (y) \sim$ at*gt*v - at:gt:v, data=amyl)
You can verify the 3 model formulas are identical in R .

```
anova(logfit3a)
anova(logfit3b)
anova(logfit3c)
```


Example 8.10 Amylase data - Model Checking

Always check model assumptions!

Recall that we took log of the original response. If we didn't...

Response: y						
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
at	7	327811	46830	72.9366	< $2.2 \mathrm{e}-16$	***
gt	1	1155	1155	1.7988	0.1845968	
v	1	63809	63809	99.3801	$1.192 \mathrm{e}-14$	***
at:gt	7	7158	1023	1.5925	0.1537663	
at: v	7	1174	168	0.2611	0.9665902	
gt:v	1	10648	10648	16.5839	0.0001305	***
at:gt:v	7	6257	894	1.3922	0.2240596	
Residuals	64	41092	642			

Don't drop non-significant terms before checking model assumptions. If any assumption is violated, the ANOVA table is not reliable.

Chapter 08B-20

Example 8.10 Amylase data - Model Checking (2)

- The residual plot indicates non-constant variance - the size of residuals increases with fitted values.
- The QQ plot looks symmetric but a bit short-tailed.
- The Box-Cox method suggests a log-transformation.

Check the model again after log-transformation but before dropping terms, i.e. check the model
$\operatorname{lm}(\log (y) \sim a t * v * g t, d a t a=a m y l)$.

- The non-constant variance problem is alleviated
- The QQ plot still looks short-tailed. Residuals often appear short-tailed when fiting a "large" model, which tends to overfit the data, making residuals too close to zero.
- Box-Cox suggests no transformation ($\lambda=1$ is in the 95% C.I.), i.e., the log-transformed response is fine.

So the ANOVA table based on the log-transformed data seems trustworthy and we can make inference or drop terms based on it.

Chapter 08B-22

Let's check the model again after dropping insignificant terms in the log transformed model (i.e. $\operatorname{lm}(\log (y) \sim a t * g t+g t * v, ~ d a t a=a m y l))$.

- The residual plot looks fine
- After removing significant terms, residuals no longer appear short-tailed
- Box-Cox shows the 95% C.I. contains $\lambda=1$. Okay.

Remark about Box-Cox: R by default will only plot λ for the range $(-2,2)$. The range of λ can be changed, like -2 to 10 in steps 0.25 in the command below.

```
> library(MASS)
> boxcox(logfit2,lambda=seq(-2,10,0.25))
```

 Chapter 08B-23

Single Replicate

Some factorial experiments have only ONE replicate per treatment.

- No degree of freedom for error, cannot estimate σ^{2}
- All sum of squares (SS) can be computed as usual except that $\mathrm{SSE}=0$.
- ANOVA F-tests for main effects and interactions of all orders cannot be done!
Remedy - Pool higher order interactions into error

Problem 8.6 (p. 222, Oehlert's)

Response: dry matter yield in hundreds of pounds per acre over a 54-week study period

Factors:

- height of cut (1, 3 , or 6 inches)
- cutting interval (1, 3, 6, or 9 weeks)
- amount of nitrogen fertilizer ($0,8,16$, or 32 hundred pounds of ammonium sulfate per acre per year).

Cutting Interval

| | 1 wks. 3 wks. 6 wks. 9 wks. | | | |
| ---: | :--- | ---: | ---: | ---: | ---: |
| Ht 1 F 0 | 74.1 | 65.4 | 96.7 | 147.1 |
| F 8 | 87.4 | 117.7 | 190.2 | 188.6 |
| F 16 | 96.5 | 122.2 | 197.9 | 232.0 |
| F 32 | 107.6 | 140.5 | 241.3 | 192.0 |
| Ht 3 F 0 | 61.7 | 83.7 | 88.8 | 155.6 |
| F 8 | 112.5 | 129.4 | 145.0 | 208.1 |
| F 16 | 102.3 | 137.8 | 173.6 | 203.2 |
| F 32 | 115.3 | 154.3 | 211.2 | 245.2 |
| Ht 6 F 0 | 49.9 | 72.7 | 113.9 | 143.4 |
| F 8 | 92.9 | 126.4 | 175.5 | 207.5 |
| F 16 | 100.8 | 153.5 | 184.5 | 194.2 |
| F 32 | 115.8 | 160.0 | 224.8 | 197.5 |

The data file pr8_6.txt is posted on Canvas Let's first load the data and fit a full 3 -way model.

```
pr8.6 = read.table("pr8_6.txt", h=T)
pr8.6$HT = as.factor(pr8.6$ht)
pr8.6$FERT = as.factor(pr8.6$fert)
pr8.6$INT = as.factor(pr8.6$int)
lm1 = lm(y ~ HT*FERT*INT, data=pr8.6)
anova(lm1)
```

The ANOVA table obtained is

```
Response: y
    Df Sum Sq Mean Sq F value Pr(>F)
HT 2 29 14.6
FERT 3 42072 14023.9
INT 3 73887 24629.0
HT:FERT 6 406 67.7
HT:INT 
FERT:INT 9 5352 594.6
HT:FERT:INT 18 3155 175.3
Residuals 0 0
Warning message:
In anova.lm(lm1) :
    ANOVA F-tests on an essentially perfect fit are unreliable
```

Chapter 08B-26

We pool the 3-way interaction terms as errors to get a conservative estimate of the MSE.
$>\operatorname{lm} 2=\operatorname{lm}(y \sim(H T+F E R T+I N T) \wedge 2$, data=pr8.6)
> anova(lm2)
Analysis of Variance Table
Response: y Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

HT	2	29	14.6	0.0830	0.92068

FERT $\quad 3 \quad 4207214023.9 \quad 80.01531 .334 \mathrm{e}-10$ ***
INT $\quad 37388724629.0140 .52411 .120 \mathrm{e}-12$ ***

HT:FERT	6	406	67.7	0.3860	0.87835
HT:INT	6	3005	500.9	2.8578	$0.03903 *$
FERT:INT	9	5352	594.6	3.3927	$0.01313 *$

Residuals 183155175.3

Before examining the treatment effects, first check if the model assumptions are met.
> library (MASS)
> boxcox(lm2)
The Box-Cox method below suggest a square-root transformation of the response (since 0.5 is in the 95% confidence interval for λ).

Box-Cox Transform. for Linear Models

Chapter 08B-28

```
> lm2s= lm(sqrt(y) ~ (HT+FERT+INT) ^2, data=pr8.6)
> anova(lm2s)
Analysis of Variance Table
```

Response: sqrt(y)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{llllll}\text { HT } & 2 & 0.103 & 0.052 & 0.1763 & 0.83979\end{array}$

FERT	3	82.222	27.407	93.8199	$3.510 e-11$	$* * *$

INT $3132.738 \quad 44.246151 .4617$ 5.865e-13 ***
$\begin{array}{llllll}\mathrm{HT}: \text { FERT } & 6 & 0.537 & 0.089 & 0.3062 & 0.92553\end{array}$
HT:INT $64.8730 .812 \quad 2.7800 \quad 0.04303$ *
FERT:INT $9 \quad 6.868 \quad 0.763 \quad 2.6123 \quad 0.03962$ *
Residuals 18 5.258 0.292

Chapter 08B-30

Chapter 08B-31

