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Three Way Interactions
We say factor A, B, and C have three-way interactions if

I AB interaction changes with the levels of C, or
I BC interaction changes with the levels of A, or
I AC interaction changes with the levels of B.

E.g., in a 3-way design, based on the means model
yijkl = µijk + εijkl , 3-way interaction of level (i1, i2) for factor A,
level (j1, j2) for factor B, and level (k1, k2) for factor C is

µi1j1k1 − µi2j1k1 − µi1j2k1 − µi1j1k2 + µi2j2k1 + µi2j1k2 + µi1j2k2 − µi2j2k2

= (µi1j1k1−µi2j1k1−µi1j2k1 + µi2j2k1︸ ︷︷ ︸
AB interaction at level k1 of C

) − (µi1j1k2−µi2j1k2−µi1j2k2 + µi2j2k2︸ ︷︷ ︸
AB interaction at level k2 of C

)

= (µi1j1k1−µi1j2k1−µi1j1k2 + µi1j2k2︸ ︷︷ ︸
BC interaction at level i1 of A

) − (µi2j1k1−µi2j2k1−µi2j1k2 + µi2j2k2︸ ︷︷ ︸
BC interaction at level i2 of A

)

= (µi1j1k1−µi2j1k1−µi1j1k2 + µi2j1k2︸ ︷︷ ︸
AC interaction at level j1 of B

) − (µi1j2k1−µi2j2k1−µi1j2k2 + µi2j2k2︸ ︷︷ ︸
AC interaction at level j2 of B

)
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Higher Order Interactions

I We say 4 factors have 4-way interactions means the 3-way
interaction of any 3 of the 4 factors changes with the levels of
a 4th factor.

I We say k factors have k-way interactions means the
(k − 1)-way interaction of any (k − 1) of the k factors
changes with the levels of a kth factor.

Hierarchy

I Since k-way interactions are defined on (k − 1)-way
interactions, we cannot skip orders.

I E.g., when we say there are no AB interactions, we also imply
that there are no higher order interactions that involve AB
interactions, like ABD interactions, or ABCD interactions.

Chapter 08B - 3



General Factorial Designs
The model and analysis of multi-way factorial are generalization of
those of two-way factorial. E.g., consider a 4-way factorial with
factors A, B, C, and D.

means model : yijklm = µijkl + εijklm for

{
i = 1, . . . , a, j = 1, . . . , b,
k = 1, . . . , c, l = 1, . . . , d ,
m = 1, . . . , n.

effects model: yijklm = µ︸︷︷︸
grand mean

+αi + βj + γk + δl︸ ︷︷ ︸
main effects

+ αβij + αγik + αδil + βγjk + βδjl + γδkl︸ ︷︷ ︸
2-way interactions

+ αβγijk + αβδijl + αγδikl + βγδjkl︸ ︷︷ ︸
3-way interactions

+ αβγδijkl︸ ︷︷ ︸
4-way interaction

+ εijklm︸ ︷︷ ︸
error
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General Factorial Designs

yijklm = µ+ αi + βj + γk + δl

+ αβij + αγik + αδil + βγjk + βδjl + γδkl

+ αβγijk + αβδijl + αγδikl + βγδjkl

+ αβγδijkl + εijklm

All the effects have zero-sum constraints that they add to 0 when
summing over any subscript, e.g.,

I
∑

i αi =
∑

j βj =
∑

k γk =
∑

l δl = 0

I
∑

i αγik =
∑

k αγik = 0, for all i , k ,
so do other 2-way interactions

I
∑

i αγδikl =
∑

k αγδikl =
∑

l αγδikl = 0, for all i , k, l ,
so do other 3-way interactions

I
∑

i αβγδijkl =
∑

j αβγδijkl =
∑

k αβγδijkl =
∑

l αβγδijkl = 0,
for all i , j , k , l .
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Parameter Estimates

For a 4-way model, the parameter estimates under the zero-sum
constraints are

grand mean µ̂ = y•••••

main effects α̂i = y i•••• − y•••••, β̂j = y•j••• − y•••••,

γ̂k = y••k•• − y•••••, δ̂l = y•••l• − y•••••

2-way α̂βij = y ij••• − y i•••• − y•j••• + y•••••

β̂γjk = y•jk•• − y•j••• − y••k•• + y•••••
...

3-way α̂βδijl = y ijl•• − y ij••• − y i••l• − y•j•l•

+y i•••• + y•j••• + y•••l• − y•••••

α̂γδikl = · · ·
4-way α̂βγδijkl = (16 terms)
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Sum of Squares
SST can be decomposed into SS of main effects and interactions of all
orders, e.g., in an a× b × c × d design with n replicates:

SST = SSA + SSB + SSC + SSD

+ SSAB + SSAC + SSAD + SSBC + SSBD + SSCD

+ SSABC + SSACD + SSABD + SSBCD

+ SSABCD

+ SSE

where SST =
∑

ijklm(yijklm − y•••••)2, SSE =
∑

ijklm(yijklm − y ijkl•)2, and
the SS for all other terms are the sum of squares of corresponding
parameter estimates under the zero sum constraints, e.g.,

SSC =
∑

ijklm
(γ̂k)2 = abdn

∑
k
(γ̂k)2

SSBC =
∑

ijklm
(β̂γjk)2 = abn

∑
jk

(β̂γjk)2

SSACD =
∑

ijklm
(α̂γδikl)

2 = bn
∑

ikl
(α̂γδikl)

2

SSABCD =
∑

ijklm
(α̂βγδijkl)

2 = n
∑

ijkl
(α̂βγδijkl)

2
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Degrees of Freedom

Say factor A, B, C, and D have respectively a, b, c , d levels, and
there are n replicates.

I d.f. of a main effect = number of levels −1.
e.g., dfA = a− 1, dfC = c − 1.

I d.f. of an interaction = product of d.f.’s for the main effects
of the involved factors, e.g.,

I dfAD = (a− 1)(d − 1),
I dfBCD = (b − 1)(c − 1)(d − 1),
I dfABCD = (a− 1)(b − 1)(c − 1)(d − 1).

I d.f. of SST = total # of observation −1 = abcdn − 1

I d.f. of SSE = total # of observation − total # of treatments
= abcdn − abcd = abcd(n − 1)
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Example 8.10 Amylase data (p.195)

I Goal: to study the amylase specific activity of sprouted maize
I An 8 × 2 × 2 factorial design with 3 factors:

I analysis temperature (40, 35, 30, 25, 20, 15, 13, or 10◦C)
I growth temperature of the sprouts (25 or 13◦C)
I variety of maize (B73 or Oh43)

I 3 replicates per treatment

I Response: the amylase specific activities (IU)

I Data file: amylaze.txt is posted on Canvas
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Example 8.10 Amylase data194 Factorial Treatment Structure

Table 8.9: Amylase specific activity (IU), for two varieties of sprouted
maize under different growth and analysis temperatures (degrees C).

Analysis Temperature
GT Var. 40 35 30 25 20 15 13 10

25 B73 391.8 427.7 486.6 469.2 383.1 338.9 283.7 269.3
311.8 388.1 426.6 436.8 408.8 355.5 309.4 278.7
367.4 468.1 499.8 444.0 429.0 304.5 309.9 313.0

O43 301.3 352.9 376.3 373.6 377.5 308.8 234.3 197.1
271.4 296.4 393.0 364.8 364.3 279.0 255.4 198.3
300.3 346.7 334.7 386.6 329.2 261.3 239.4 216.7

13 B73 292.7 422.6 443.5 438.5 350.6 305.9 319.9 286.7
283.3 359.5 431.2 398.9 383.9 342.8 283.2 266.5
348.1 381.9 388.3 413.7 408.4 332.2 287.9 259.8

O43 269.7 380.9 389.4 400.3 340.5 288.6 260.9 221.9
284.0 357.1 420.2 412.8 309.5 271.8 253.6 254.4
235.3 339.0 453.4 371.9 313.0 333.7 289.5 246.7

effects change, and with this weighting antibiotic 1 has a mean response 6
units lower on average than antibiotic 2 and is thus preferred to antibiotic 2.

Analogous examples have zero column effects for weighted averages and
nonzero column effects in the usual decomposition. Note in the weighted
decomposition that column effects add to zero and the interactions add to
zero across columns, but row effects and interaction effects down columns
only add to zero with 1,2,1 weights.

If factors A and B do not interact, then the A and B main effectsare
the same regardless of how we weight the means. In the absenceof AB in-
teraction, testing the main effects of A and B computed usingour equallyWeighting

matters due to
interaction

weighted averages gives the same results as for any other weighting. Simi-
larly, if there is no ABC interaction, then testing AB, AC, orBC using the
standard ANOVA gives the same results as for any weighting.

Factorial effects are only defined in the context of a particular weighting
scheme for averages. As long as we are comparing hierarchical models, we
know that the parameter tests make sense for any weighting. When we testUse correct

weighting lower-order terms in the presence of an including interaction, we must use
the correct weighting.
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Example 8.10 Amylase data — Interaction Plots

5.
5

5.
7

5.
9

at

m
ea

n 
of

  l
og

(y
)

1 2 3 4 5 6 7 8

gt=1
gt=2

I Does the main effect at appear
significant?

I How about the main effect gt?

I How about at:gt interaction?

5.
4

5.
6

5.
8

6.
0

at

m
ea

n 
of

  l
og

(y
)

1 2 3 4 5 6 7 8

v = 1
v = 2

I Does the main effect at appear
significant?

I and the main effect v?

I at:v interaction?

Chapter 08B - 11



Example 8.10 Amylase data — Interaction Plots (2)

5.
70

5.
80

5.
90

gt

m
ea

n 
of

  l
og

(y
)

1 2

v = 1
v = 2

I Does the main effect gt appear
significant?

I and main effect v?

I gt:v interaction?

Chapter 08B - 12



General Factorial In R

amyl = read.table("amylaze.txt", h=T)

amyl$at = as.factor(amyl$atemp)

amyl$gt = as.factor(amyl$gtemp)

amyl$v = as.factor(amyl$variety)

To make the variance constant, the response is log-transformed
(see p.215-216 in the textbook).

We fit a full model with all 2-way and 3-way interactions.

logfit1 = lm(log(y) ~ at+gt+v+at:gt+at:v+gt:v + at:gt:v, data=amyl)

A simpler syntax is

logfit1 = lm(log(y) ~ at*gt*v, data=amyl)

The syntax at*gt*v will automatically include all relevant main
effects and lower order interactions in the model.
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Example 8.10 Amylase data — ANOVA Table

> logfit1 = lm(log(y) ~ at*gt*v, data=amyl)

> anova(logfit1)

Analysis of Variance Table

Response: log(y)

Df Sum Sq Mean Sq F value Pr(>F)

at 7 3.01613 0.43088 78.8628 < 2.2e-16 ***

gt 1 0.00438 0.00438 0.8016 0.3739757

v 1 0.58957 0.58957 107.9085 2.305e-15 ***

at:gt 7 0.08106 0.01158 2.1195 0.0539203 .

at:v 7 0.02758 0.00394 0.7212 0.6543993

gt:v 1 0.08599 0.08599 15.7392 0.0001863 ***

at:gt:v 7 0.04764 0.00681 1.2457 0.2916176

Residuals 64 0.34967 0.00546

Only analysis temperature (at), variety (v), and the growth
temperature by variety interaction (gt:v) are highly significant.

Can I fit a model like yijkl = µ+ αi + γk + βγjk + εijkl?

logfit2 = lm(log(y) ~ at + v + gt:v, data=amyl)
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8.11 Hierarchy

A model is hierarchical if any term in the model implies the
presence of all the composite lower-order terms.

I yijkl = µ+ αi + γk + βγjk + εijkl is not hierarchical because
including the term βγjk must includes both βj and γk as well.

I yijk = µ+ αi + βj + αβij + εijk is hierarchical.

I A hierarchical model with a term αβγijk must also include:

I the included main effects: αi + βj + γk
I and the included two-way effects: αβij + αγik + βγjk .

Unless having a specific reason, we should stick to hierarchical
models.

I This is because a k-way interaction in defined upon its
composite lower-order terms. It is strange to consider a ABC
interaction while claiming A and B have no 2-way interaction.
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Back to the Amylase Data
Here is a model that is still hierarchical, but leaves off
non-significant model terms.

> logfit2 = lm(log(y) ~ at + gt + v + at:gt + gt:v, data=amyl)

> anova(logfit2)

Analysis of Variance Table

Response: log(y)

Df Sum Sq Mean Sq F value Pr(>F)

at 7 3.01613 0.43088 79.0981 < 2.2e-16 ***

gt 1 0.00438 0.00438 0.8040 0.3726670

v 1 0.58957 0.58957 108.2305 < 2.2e-16 ***

at:gt 7 0.08106 0.01158 2.1258 0.0503809 .

gt:v 1 0.08599 0.08599 15.7861 0.0001571 ***

Residuals 78 0.42489 0.00545

Though insignificant, the main effect gt cannot be left out since
the two-way interaction gt:v is significant.

The SS’s and d.f.’s of the left-out terms are pooled into SSE, while
the SS’s and d.f’s of the remaining stay unchanged.
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Comparing the reduced model with the full 3-way model, the large
P-value indicates the adequacy of the reduced model.

> anova(logfit2,logfit1)

Analysis of Variance Table

Model 1: log(y) ~ at + gt + v + at:gt + gt:v

Model 2: log(y) ~ at * gt * v

Res.Df RSS Df Sum of Sq F Pr(>F)

1 78 0.42489

2 64 0.34967 14 0.075223 0.9834 0.4801
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More On Model Formula in R (1)
Instead of writing terms explicitly in the model formula

> logfit2 = lm(log(y) ~ at + gt + v + at:gt + gt:v, data=amyl)

Here is another simpler expression for the same model. R will
automatically create the smallest hierarchical model that include
both at:gt and gt:v interactions.

> logfit2a = lm(log(y) ~ at*gt + gt*v, data=amyl)

> anova(logfit2a)

Analysis of Variance Table

Response: log(y)

Df Sum Sq Mean Sq F value Pr(>F)

at 7 3.01613 0.43088 79.0981 < 2.2e-16 ***

gt 1 0.00438 0.00438 0.8040 0.3726670

v 1 0.58957 0.58957 108.2305 < 2.2e-16 ***

at:gt 7 0.08106 0.01158 2.1258 0.0503809 .

gt:v 1 0.08599 0.08599 15.7861 0.0001571 ***

Residuals 78 0.42489 0.00545
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More On Model Formula in R (2)
If one wants a model with all two-way interactions but no 3-way
interaction, one can explicitly write down every term

logfit3a = lm(log(y) ~ at + gt + v + at:gt + gt:v + at:v, data=amyl)

Here is another way to obtain everything up to the 2-way
interactions

logfit3b = lm(log(y) ~ (at + gt + v)^2, data=amyl)

Here is another way to “leave out” the 3-way interaction

logfit3c = lm(log(y) ~ at*gt*v - at:gt:v, data=amyl)

You can verify the 3 model formulas are identical in R.

anova(logfit3a)

anova(logfit3b)

anova(logfit3c)
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Example 8.10 Amylase data — Model Checking

Always check model assumptions!

Recall that we took log of the original response. If we didn’t...

> fit1 = lm(y ~ at*gt*v, data=amyl); anova(fit1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

at 7 327811 46830 72.9366 < 2.2e-16 ***

gt 1 1155 1155 1.7988 0.1845968

v 1 63809 63809 99.3801 1.192e-14 ***

at:gt 7 7158 1023 1.5925 0.1537663

at:v 7 1174 168 0.2611 0.9665902

gt:v 1 10648 10648 16.5839 0.0001305 ***

at:gt:v 7 6257 894 1.3922 0.2240596

Residuals 64 41092 642

Don’t drop non-significant terms before checking model
assumptions. If any assumption is violated, the ANOVA table is
not reliable.
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Example 8.10 Amylase data — Model Checking (2)
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I The residual plot indicates non-constant variance — the size
of residuals increases with fitted values.

I The QQ plot looks symmetric but a bit short-tailed.

I The Box-Cox method suggests a log-transformation.
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Check the model again after log-transformation but before
dropping terms, i.e. check the model
lm(log(y)~at*v*gt, data=amyl).

●

●

●●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

5.4 5.6 5.8 6.0

−
0.

10
0.

00
0.

10

Fitted Values

R
es

id
ua

ls

●

●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
0.

10
0.

00
0.

10

Normal Q−Q Plot

Theoretical Quantiles
S

am
pl

e 
Q

ua
nt

ile
s

−2 −1 0 1 2

21
7.

5
21

8.
5

λ

lo
g−

Li
ke

lih
oo

d

 95%

I The non-constant variance problem is alleviated
I The QQ plot still looks short-tailed. Residuals often appear

short-tailed when fiting a “large” model, which tends to
overfit the data, making residuals too close to zero.

I Box-Cox suggests no transformation (λ = 1 is in the 95%
C.I.), i.e., the log-transformed response is fine.

So the ANOVA table based on the log-transformed data seems
trustworthy and we can make inference or drop terms based on it.
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Let’s check the model again after dropping insignificant terms in
the log transformed model (i.e. lm(log(y)~at*gt+gt*v, data=amyl)).
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I The residual plot looks fine
I After removing significant terms, residuals no longer appear

short-tailed
I Box-Cox shows the 95% C.I. contains λ = 1. Okay.

Remark about Box-Cox: R by default will only plot λ for the range
(−2, 2). The range of λ can be changed, like -2 to 10 in steps 0.25 in the
command below.

> library(MASS)

> boxcox(logfit2,lambda=seq(-2,10,0.25))

Chapter 08B - 23



Single Replicate

Some factorial experiments have only ONE replicate per treatment.

I No degree of freedom for error, cannot estimate σ2

I All sum of squares (SS) can be computed as usual except that
SSE = 0.

I ANOVA F -tests for main effects and interactions of all orders
cannot be done!

Remedy — Pool higher order interactions into error
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Problem 8.6 (p. 222, Oehlert’s)

Response: dry matter yield in hundreds of pounds per acre over a
54-week study period

Factors:

I height of cut (1, 3, or 6
inches)

I cutting interval (1, 3, 6,
or 9 weeks)

I amount of nitrogen
fertilizer (0, 8, 16, or 32
hundred pounds of
ammonium sulfate per
acre per year).

Cutting Interval
1 wks. 3 wks. 6 wks. 9 wks.

Ht 1 F 0 74.1 65.4 96.7 147.1
F 8 87.4 117.7 190.2 188.6
F 16 96.5 122.2 197.9 232.0
F 32 107.6 140.5 241.3 192.0

Ht 3 F 0 61.7 83.7 88.8 155.6
F 8 112.5 129.4 145.0 208.1
F 16 102.3 137.8 173.6 203.2
F 32 115.3 154.3 211.2 245.2

Ht 6 F 0 49.9 72.7 113.9 143.4
F 8 92.9 126.4 175.5 207.5
F 16 100.8 153.5 184.5 194.2
F 32 115.8 160.0 224.8 197.5
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The data file pr8_6.txt is posted on Canvas Let’s first load the
data and fit a full 3-way model.

pr8.6 = read.table("pr8_6.txt", h=T)

pr8.6$HT = as.factor(pr8.6$ht)

pr8.6$FERT = as.factor(pr8.6$fert)

pr8.6$INT = as.factor(pr8.6$int)

lm1 = lm(y ~ HT*FERT*INT, data=pr8.6)

anova(lm1)

The ANOVA table obtained is

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

HT 2 29 14.6

FERT 3 42072 14023.9

INT 3 73887 24629.0

HT:FERT 6 406 67.7

HT:INT 6 3005 500.9

FERT:INT 9 5352 594.6

HT:FERT:INT 18 3155 175.3

Residuals 0 0

Warning message:

In anova.lm(lm1) :

ANOVA F-tests on an essentially perfect fit are unreliable
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We pool the 3-way interaction terms as errors to get a conservative
estimate of the MSE.

> lm2 = lm(y ~ (HT+FERT+INT)^2, data=pr8.6)

> anova(lm2)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

HT 2 29 14.6 0.0830 0.92068

FERT 3 42072 14023.9 80.0153 1.334e-10 ***

INT 3 73887 24629.0 140.5241 1.120e-12 ***

HT:FERT 6 406 67.7 0.3860 0.87835

HT:INT 6 3005 500.9 2.8578 0.03903 *

FERT:INT 9 5352 594.6 3.3927 0.01313 *

Residuals 18 3155 175.3

---
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Before examining the treatment effects, first check if the model
assumptions are met.

> library(MASS)

> boxcox(lm2)

The Box-Cox method below suggest a square-root transformation
of the response (since 0.5 is in the 95% confidence interval for λ).
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> lm2s= lm(sqrt(y) ~ (HT+FERT+INT)^2, data=pr8.6)

> anova(lm2s)

Analysis of Variance Table

Response: sqrt(y)

Df Sum Sq Mean Sq F value Pr(>F)

HT 2 0.103 0.052 0.1763 0.83979

FERT 3 82.222 27.407 93.8199 3.510e-11 ***

INT 3 132.738 44.246 151.4617 5.865e-13 ***

HT:FERT 6 0.537 0.089 0.3062 0.92553

HT:INT 6 4.873 0.812 2.7800 0.04303 *

FERT:INT 9 6.868 0.763 2.6123 0.03962 *

Residuals 18 5.258 0.292

---
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