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Problem 8.1 — Sprouting Barley (p.166 in Oehlert)
Brewer’s malt is produced from germinating barley, so brewers like
to know under what conditions they should germinate their barley.
The following is part of an experiment on barley germination.

I 30 lots of barley seeds, 100 seeds per lot, are randomly divided
into 10 groups of 3 lots

I Each group receives a treatment according to
I water amount used in germination — 4 ml or 8 ml
I age of seeds in weeks after harvest — 1, 3, 6, 9, or 12

I Response: # of seeds germinating

Age of Seeds (weeks)
water 1 3 6 9 12

11 7 9 13 20
4(ml) 9 16 19 35 37

6 17 35 28 45
8 1 5 1 11

8(ml) 3 7 9 10 15
3 3 9 9 25
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Basic Terminology
The sprouting barley experiment has 10 treatments. The 10
treatments has a factorial structure.

I A factor is an experimentally adjustable variable,
e.g. water amount used in germination,
age of seeds in weeks after harvest, ...

I Factors have levels, e.g.
water amount is a factor with 2 levels (4 ml or 8 ml)
age of seeds is a factor with 5 levels (1, 3, 6, 9, 12 weeks)

I A treatment is a combination of factors.
In the barley experiment, the treatments are the 2× 5
combinations of the possible levels of the two factors

(4ml, 1 wk) (4ml, 3 wks) (4ml, 6 wks) (4ml, 9 wks) (4ml, 12 wks)
(8ml, 1 wk) (8ml, 3 wks) (8ml, 6 wks) (8ml, 9 wks) (8ml, 12 wks)

Chapter 8A - 3



Full k-Way Factorial Design

I Consider k factors with respectively L1, L2, . . ., Lk levels, a
full k-way factorial design include all the L1 × L2 × · · · × Lk
combination of the k factors as treatments.

I A factorial design is said to be balanced if all the treatment
groups have the same number of replicates. Otherwise, the
design is unbalanced.

I Question: How many units are there in a 3× 2 design
with 4 replicates?

I Balanced designs have many advantages, but not always
necessary — sometimes if a unit fails (ex, a test tube gets
dropped) we might end up with unbalanced results even if the
original design was balanced
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Data for a Two-Way a × b Design with n Replicates

B-level 1 B-level 2 B-level b

A-level 1

y111
y112

...
y11n

y121
y122

...
y12n

· · · · · ·

y1b1
y1b2

...
y1bn

A-level 2

y211
y212

...
y21n

y221
y222

...
y22n

· · · · · ·

y2b1
y2b2

...
y2bn

...
...

...
. . .

...
...

...
...

. . .
...

A-level a

ya11
ya12

...
ya1n

ya21
ya22

...
ya2n

· · · · · ·

yab1
yab2

...
yabn
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Display of Data from Two Way Factorial Designs

Age of Seeds (weeks)
yijk 1 3 6 9 12

11 7 9 13 20
water 4(ml) 9 16 19 35 37

6 17 35 28 45
8 1 5 1 11

water 8(ml) 3 7 9 10 15
3 3 9 9 25

Age of Seeds (weeks) Row means
Cell means y ij• 1 3 6 9 12 y i••

water 4(ml) 8.67 13.33 21.00 25.33 34.00 20.47

water 8(ml) 4.67 3.67 7.67 6.67 17.00 7.93

Column means y•j• 6.67 8.50 14.33 16.00 25.50 y••• = 14.2

overall mean

Does water have an effect on gemination? Does the age of seeds
have an effect?
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Getting Cell Means, Row Means, Column Means in R
Cell means (average of the 3 values in each cell):

> barley = read.table("SproutingBarley.txt",header=T)

> library(mosaic)

> mean(y ~ week+ water, data=barley)

1.4 3.4 6.4 9.4 12.4

8.666667 13.333333 21.000000 25.333333 34.000000

1.8 3.8 6.8 9.8 12.8

4.666667 3.666667 7.666667 6.666667 17.000000

Row means:

> mean(y ~ water, data=barley)

4 8

20.466667 7.933333

Column means:

> mean(y ~ week, data=barley)

1 3 6 9 12

6.666667 8.500000 14.333333 16.000000 25.500000
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Graphical Display of Data — Interaction Plots

cell means Age of Seeds (weeks)
y ij• 1 3 6 9 12

water 4(ml) 8.67 13.33 21.00 25.33 34.00
water 8(ml) 4.67 3.67 7.67 6.67 17.00

Interaction plots: plotting cell means (y ij•) against levels of one
factor (A or B), with different lines for the other factor (B or A)
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Means Model for a Two-Way Factorial Design

For a a× b two-way factorial experiment with n replicates

means model : yijk = µij + εijk for

{
i = 1, . . . , a,
j = 1, . . . , b,
k = 1, . . . , n.

I yijk = the kth replicate in the treatment formed from the ith
level of factor A and jth level of factor B

I εijk ’s are i.i.d. N(0, σ2)

I µij = the mean response in the treatment formed from the ith
level of factor A and jth level of factor B

I The means model regards the 2-way factorial design as a CRD
with a× b treatments, ignoring the factorial structure of the
treatments.
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Main Effects (1)
Though the means model yijk = µij + εijk ignores factorial
structure of the treatments, one can use appropriate contrasts to
explore the effects of the two factors.

E.g., if one wants to compare the effects of level 1 and 2 of factor
A, one can use the contrast

C =
µ11 + µ12 · · ·+ µ1b

b
− µ21 + µ22 · · ·+ µ2b

b
= µ1• − µ2•

In general, if one wants to compare between levels of factor A, the
contrasts are all of the form C = µi1• − µi2•. Observe

µi• = mean response at the ith level of factor A,

averaged over all levels of factor B

We call µi•, i = 1, . . . , a, as the main effects of factor A.

Similarly, µ•j , j = 1, . . . , b, are called the main effects of factor B.
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Main Effects (2)
As µi•’s and µ•j ’s are important parameters. We thus give them
new notations

µi• = µ+ αi = overall effect + effect due to factor A

µ•j = µ+ βj = overall effect + effect due to factor B

in which, µ = µ•• is the overall average of all µij ’s.

We also call αi ’s as the main effect of factor A,
and βj ’s as the main effect of factor B.

Observe that only a− 1 of the αi ’s can be arbitrary since

a∑
i=1

αi =
a∑

i=1

µi• − aµ•• =
a∑

i=1

( µi•︷ ︸︸ ︷
1

b

∑b

j=1
µij

)
− aµ••

=
1

b
µ•• −

a

ab
µ•• = 0

Similarly, one can show that
∑b

j=1 βj = 0.
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Interaction (1)
Two factors A and B are said to have a two-way interaction if
the effects of factor A change with the levels of factor B.

To be more specific, based on the means model yijk = µij + εijk ,
the effect of changing factor A from level i1 to level i2 is{

µi2j1 − µi1j1 if factor B is fixed at level j1

µi2j2 − µi1j2 if factor B is fixed at level j2

If

µi2j2 − µi1j2 − (µi2j1 − µi1j1) = µi1j1 − µi1j2 − µi2j1 + µi2j2 = 0,

then level (i1, i2) of factor A doesn’t interact with level (j1, j2) of
factor B.

If none of the levels of factor A interact the levels of factor B, i.e.,

µi1j1 − µi1j2 − µi2j1 + µi2j2 = 0, for all i1, i2, j1, j2,

then we say factor A and factor B have no interaction.
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Interaction (2)
If factor A and factor B have no interaction, we claim that

µij = µ+ αi + βj , for all i , j ,

in which µ = µ••, αi = µi• − µ••, and βi = µ•j − µ••.
Proof.

µij − µ− αi − βj
= µij − µ•• + (µ•• − µi•) + (µ•• − µ•j)
= µij − µi• − µ•j + µ••

= µij −
1

b

b∑
m=1

µim −
1

a

m∑
`=1

µ`j +
1

ab

a∑
`=1

b∑
m=1

µ`m

=
1

ab

a∑
`=1

b∑
m=1

µij −
1

ab

a∑
`=1

b∑
m=1

µim −
1

ab

a∑
`=1

b∑
m=1

µ`j +
1

ab

a∑
`=1

b∑
m=1

µ`m

=
1

ab

a∑
`=1

b∑
m=1

(µij − µim − µ`j + µ`m︸ ︷︷ ︸
=0, since no interaction

) = 0

Chapter 8A - 13



Interaction (3)

In view of the result on the previous slide, we define the
interaction terms of factor A and factor B as

αβij
def
= µij − µ− αi − βj , for all i = 1, . . . , a, j = 1, . . . , b.

The interaction terms αβij ’s have the following properties

I αβij = 0, for all i , j if the two factors do not interact

I
∑a

i=1 αβij = 0 for all j and
∑b

j=1 αβij = 0 for all i .
In other words, the row sums and column sums of the array
below are all 0

αβ11 αβ12 · · · · · · αβab
αβ21 αβ22 · · · · · · αβ2b

...
...

. . .
...

αβa1 αβa2 · · · · · · αβab

See the next slide for the proof.
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Interaction (4)

a∑
i=1

αβij =
a∑

i=1

(µij − µi• − µ•j + µ••)

= µ•j −
( a∑

i=1

1

b
µi•

)
− aµ•j + aµ••

= µ•j −
1

b
µ•• −

a

a
µ•j +

a

ab
µ••

= 0,

which is valid for all j = 1, . . . , b.

HW today: Show that
∑b

j=1 αβij = 0 for all i .
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Main-Effect-Interaction Model for 2-Way Factorial Designs
The main-effect-interaction model for a two-way factorial design is

yijk = µ+ αi + βj + αβij + εijk for

{
i = 1, . . . , a,
j = 1, . . . , b,
k = 1, . . . , n.

Unlike the means model yijk = µij + εijk that there is no
constraints on the parameter µij ’s, the main-effect-interaction
model has several constraints

a∑
i=1

αi =
b∑

j=1

βj =
a∑

i=1

αβij =
a∑

j=1

αβij = 0, for all i , j .

The means model and the main-effect-interaction model are
related as follows

µ = µ••, αi = µi• − µ••, βj = µ•j − µ••
αβij = µij − µi• − µ•j + µ••
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Main-Effect-Interaction Model for 2-Way Factorial Designs

µ11 µ12 · · · · · · µab

µ21 µ22 · · · · · · µ2b

...
...

. . .
......

...
. . .

...
µa1 µa2 · · · · · · µab

= µ +

α1

α2

......
αa

+ β1 β2 · · · · · · βb

+

αβ11 αβ12 · · · · · · αβab
αβ21 αβ22 · · · · · · αβ2b
...

...
. . .

......
...

. . .
...

αβa1 αβa2 · · · · · · αβab
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Additive Model

A model is said to be additive if all interaction terms are 0.

yijk = µ+ αi + βj + εijk for

{
i = 1, . . . , a,
j = 1, . . . , b,
k = 1, . . . , n.

In other words, additive models for two-way factorial designs
assume no interactions between the two factors.

An additive model also has constraints on parameters

a∑
i=1

αi =
b∑

j=1

βj = 0.
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Interaction Plot Revisit

Plot cell means (y ij•) against levels of one factor (i or j), with
different lines for the other factor (j or i)

barley = read.table("SproutingBarley.txt",header=T)

with(barley, interaction.plot(week,water,y,type="b",

xlab="Age of Seed (week)"))

with(barley, interaction.plot(water,week,y,type="b",

xlab="Water Amount (ml)"))
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Interaction Plots Revisit(2)

Parallel lines indicate no interaction.

Interaction No Interaction
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Interaction Plot Revisit (3)

What does the interaction plot below tell us?
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Estimation of Parameters (1)
Parameter estimation in a balanced factorial design is
straightforward. For the means model and the effects model,

I yijk = µij + εijk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (means model)
I yijk = µ+ αi + βj + αβij + εijk(main-effect-interaction model)

the parameter estimates are

µ̂ij = y ij•

µ̂ = y•••,

α̂i = y i•• − y•••,

β̂j = y•j• − y•••

α̂βij = y ij• − y i•• − y•j• + y•••

Observe the estimates also satisfy the zero-sum constraints:

a∑
i=1

α̂i =
b∑

j=1

β̂j =
a∑

i=1

α̂βij =
a∑

j=1

α̂βij = 0, for all i , j .
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Estimation of Parameters (2)

Since the design is balanced, for any of the reduced models below,

I yijk = µ+ εijk . . . . . . . . . . . . . . . (no main effects, no interaction)

I yijk = µ+ αi + εijk . . . . . . . . . . . . . . . . . . (main effects of A only)

I yijk = µ+ βj + εijk . . . . . . . . . . . . . . . . . . (main effects of B only)

I yijk = µ+ αi + βj + εijk . . . . . . . . . . . . . . . . . . . . (additive model)

the estimates of µ, αi ’s, and βj ’s are identical with those for the
main-effects-interaction model:

µ̂ = y•••, α̂i = y i•• − y•••, β̂j = y•j• − y•••

If NOT balanced, the estimates will change with the model.

Recall in a regression model, the estimate of a coefficient will
change with the model formula.
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Fitted Values for a Main-Effect-Interaction Model

For a main-effect-interaction model, the fitted value for yijk is
simply the cell mean y ij• because

ŷijk = µ̂+ α̂i + β̂j + α̂βij

= y••• + (y i•• − y•••) + (y•j• − y•••)

+ (y ij• − y i•• − y•j• + y•••)

= y ij• = cell mean
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Fitted Values for an Additive Model

For an additive model (no interaction), the fitted value for yijk is

ŷijk = µ̂+ α̂i + β̂j

= y••• + (y i•• − y•••) + (y•j• − y•••)

= y i•• + y•j• − y•••

= row mean + column mean− overall mean
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Example 8.6 Bacteria in Cheese (p.178 in Oehlert)

I Factor A: Bacteria R50#10, added or not

I Factor B: Bacteria R21#2, added or not

I 3 replicates

I Response: total free amino acids in cheddar cheese after 56
days of ripening.

No R21
R21 added

No 1.697 2.211
R50 1.601 1.673

1.830 1.973
R50 2.032 2.091

added 2.017 2.255
2.409 2.987

⇒

Is there interaction?

No R21 R21 added
No R50 y11• = 1.709 y12• = 1.952

R50 added y21• = 2.153 y22• = 2.444
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Example 8.6 Bacteria in Cheese (p.178 in Oehlert)
B-level 1 B-level 2 row mean

A-level 1 y11• = 1.709 y12• = 1.952 y1•• = 1.831
A-level 2 y21• = 2.153 y22• = 2.444 y2•• = 2.299

column mean y•1• = 1.931 y•2• = 2.198 y••• = 2.065

µ̂ = y••• = 2.065

α̂1 = y1•• − y••• = 1.831− 2.065 = −0.234

β̂1 = y•1• − y••• = 1.931− 2.065 = −0.134

α̂β11 = y11• − y1•• − y•1• + y•••

= 1.709− 1.831− 1.931 + 2.065 = 0.012

The estimates of all other parameters can be computed using the
zero-sum constraints.

α̂1 + α̂2 = 0 ⇒ α̂2 = −α̂1 = 0.234

β̂1 + β̂2 = 0 ⇒ β̂2 = −β̂1 = 0.134

α̂β11 + α̂β12 = 0 ⇒ α̂β12 = −α̂β11 = −0.012

α̂β11 + α̂β21 = 0 ⇒ α̂β21 = −α̂β11 = −0.012

α̂β12 + α̂β22 = 0 ⇒ α̂β22 = −α̂β12 = 0.012
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Sum of Squares for Balanced 2-Way Factorial Designs (1)
An balanced a× b two-way factorial design with n replicates is also
a CRD with ab treatments, so the sum of squares identity is still
valid.

SST = SStrt + SSE

where

SST =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y•••)2 and

SStrt = n
a∑

i=1

b∑
j=1

(y ij• − y•••)2, SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y ij•)2

d.f. for SST = total # of observations− 1 = abn − 1

d.f. for SStrt = # of treatments− 1 = ab − 1

d.f. for SSE = total # of observations−# of treatments

= abn − ab = ab(n − 1)
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Sum of Squares for Balanced 2-Way Factorial Designs (2)
As the ab treatments have a factorial structure, SStrt can be
decomposed further as

SStrt = SSA + SSB + SSAB

in which

SS formula d.f.

SSA n
∑a

i=1

∑b

j=1
(y i•• − y•••)2 a− 1

SSB n
∑a

i=1

∑b

j=1
(y•j• − y•••)2 b − 1

SSAB n
∑a

i=1

∑b

j=1
(y ij•−y i••−y•j•+y•••)2 (a−1)(b−1)

SStrt n
∑a

i=1

∑b

j=1
(y ij• − y•••)2 ab − 1

Observe all the d.f.s for the SS of the main effects or interactions
equal (number of parameters)− (number of constraint(s))
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Sum of Squares for Balanced 2-Way Factorial Designs (3)
In summary

SST = SSA + SSB + SSAB + SSE

SST =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y•••)2

SSA =
a∑

i=1

b∑
j=1

n∑
k=1

(y i•• − y•••︸ ︷︷ ︸
α̂i

)2 = bn
a∑

i=1

α̂2
i

SSB =
a∑

i=1

b∑
j=1

n∑
k=1

(y•j• − y•••︸ ︷︷ ︸
β̂j

)2 = an
b∑

j=1

β̂2j

SSAB =
a∑

i=1

b∑
j=1

n∑
k=1

(y ij• − y i•• − y•j• + y•••︸ ︷︷ ︸
α̂βij

)2 = n
a∑

i=1

b∑
j=1

α̂β
2

ij

SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y ij•)2
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Expected Values for the Mean Squares
Just like CRD, the mean squares for factorial design are the sum of
squares divided by the corresponding d.f.

MSA =
SSA

a−1
, MSB =

SSB

b−1
, MSAB =

SSAB

(a−1)(b−1)
, MSE =

SSE

ab(n−1)
.

Under the effects model for a balanced two-way factorial,

yijk = µ+ αi + βj + αβij + εijk εijk ’s are i.i.d. N(0, σ2).

one can show that

E(MSA) = σ2 +
bn

a− 1

a∑
i=1

α2
i , E(MSB) = σ2 +

an

b − 1

b∑
j=1

β2j

E(MSAB) = σ2 +
n

(a− 1)(b − 1)

a∑
i=1

b∑
j=1

αβ2ij , E(MSE) = σ2

Again the MSE is an unbiased estimator of σ2.
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ANOVA Table for Balanced Two-Way Factorial Designs

Source d.f. SS MS F

Factor A a− 1 SSA MSA = SSA
a−1 FA = MSA

MSE

Factor B b − 1 SSB MSB = SSB
b−1 FB = MSB

MSE

AB Interaction (a−1)(b−1) SSAB MSAB = SSAB
(a−1)(b−1) FAB = MSAB

MSE

Error ab(n − 1) SSE MSE = SSE
ab(n−1)

Total abn − 1 SST
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Questions of Interest in a 2-Way Factorial Design

1. Does factor A has an effect on the response?
E.g. does the age of seeds has an effect on germination?{
H0 : α1 = · · ·=αa =0

Ha : not all αi ’s = 0,
⇒ FA =

MSA

MSE
∼ Fa−1, ab(n−1) under H0.

2. Does factor B has an effect on the response?
E.g. does the water amount has an effect on germination?{
H0 : β1 = · · ·=βb =0

Ha : not all βi ’s = 0,
⇒ FB =

MSB

MSE
∼ Fb−1, ab(n−1) under H0.

3. Does the effect of factor A interact with that of factor B?
E.g., does the effect of age change with water amount?{
H0 : αβij =0 for all i , j

Ha : αβij 6=0 for some i , j
⇒ FAB =

MSAB

MSE
∼ F(a−1)(b−1), ab(n−1) under H0.
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Example 8.6 Bacteria in Cheese (p.178 in Oehlert)

SSA = bn
∑a

i=1
α̂2
i = 2× 3× [(−0.234)2 + 0.2342] = 0.656

SSB = an
∑b

j=1
β̂2j = 2× 3× [(−0.134)2 + 0.1342] = 0.214

SSAB = n
∑a

i=1

∑b

j=1
α̂β

2

ij = 3× [0.0122 × 4] ≈ 0.0017

Computing SSE needs more work. It is easier to compute the SST:

SST =
∑a

i=1

∑b

j=1

∑n

k=1
(yijk − y•••)2

= (1.697− 2.065)2 + (1.601− 2.065)2 + (1.830− 2.065)2

+ · · ·+ (2.987− 2.065)2 = 1.598

Then we can get

SSE = SST − SSA − SSB − SSAB

= 1.598− 0.656− 0.214− 0.0018 = 0.726.
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Example 8.6 Bacteria in Cheese — ANOVA table
Source d.f. SS MS F -value P-value
A(R50) 1 0.656 0.656 7.23 0.028
B(R21) 1 0.214 0.214 2.36 0.16
AB interaction 1 0.0017 0.0017 0.019 0.89
Error 8 0.726 0.091
Total 11 1.598

Only main effect A (Bacteria R50) is moderately significant.
Main effect B and interaction are not.

One can also get the ANOVA table in R as follows.

> lmcheese = lm(y ~ r50 + r21 + r50*r21, data=cheese)

> anova(lmcheese)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

r50 1 0.65614 0.65614 7.2335 0.02752 *

r21 1 0.21440 0.21440 2.3636 0.16275

r50:r21 1 0.00178 0.00178 0.0196 0.89217

Residuals 8 0.72566 0.09071
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Advantage and Disadvantage of Factorial Designs

Advantage: Factorial design is superior to one-at-a-time designs
that change only one factor at a time because factorial design can

I test the effects of both factors at once — more efficient than
one-at-a-time design, taking fewer experimental units to
attain the same goal;

I investigate interaction of factors, but one-at-a-time designs
cannot.

Disadvantage:

I If there are many factors or many levels, the size of the
experiment can be very large.
Remedy: fractional factorial designs (Chapter 18)
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