Chapter 5 Multiple Comparisons

Yibi Huang

- Why Worry About Multiple Comparisons?
- Familywise Error Rate
- Simultaneous Confidence Intervals
- Bonferroni's Method
- Tukey-Kramer Procedure for Pairwise Comparisons
- Dunnett's Procedure for Comparing with a Control
- Scheffè's Method for Comparing All Contrasts

Chapter 5-1

Why Worry About Multiple Comparisons?

Recall that, at level $\alpha=0.05$, a hypothesis test will make a Type I error 5% of the time

- Type I error $=\mathrm{H}_{0}$ being falsely rejected when it is true

What if we conduct multiple hypothesis tests?

- When $100 \mathrm{H}_{0}$'s are tested at 0.05 level, even if all H_{0} 's are true, it's normal to have 5 being rejected.
- When multiple tests are done, it's very likely that some significant results may be NOT be TRUE FINDINGS. The significance must be adjusted

Chapter 5-2

Why Worry About Multiple Comparisons?

- In an experiment, when the ANOVA F-test is rejected, we will attempt to compare ALL pairs of treatments, as well as contrasts to find treatments that are different from others.

For an experiment with g treatments, there are

- $\binom{g}{2}=\frac{g(g-1)}{2}$ pairwise comparisons to make, and
- numerous contrasts.
- When many H_{0} 's are tested, it's very likely that some of them are falsely rejected even if all of H_{0} 's are true as we would falsely reject every true H_{0} at 5% level about 5% of the time.

Chapter 5-3

Data Snooping

- If one looks at data first and decide which contrast to test based on what they see, that is called data snooping, e.g.,
- when one decides to compare treatment $A \& E$ because A has the highest mean and E the lowest
- or if one decides to test the contrast

$$
C=\frac{\mu_{A}+\mu_{C}}{2}-\frac{\mu_{B}+\mu_{D}}{2}
$$

because A and C have higher means than B and D

- Data snooping is problematic because when people choose the pair of treatments with the greatest difference or contrast with a big effect after looking at data, they have implicitly tested many pairs and contrasts that are unlikely to be significant. Effectively, they have conducted many tests. They cannot pretend as if they just do one test.
- If a comparison or contrast is determined after looking at the data (data snooping), one must adjust for multiple comparison.

Chapter 5-4

5.1 Familywise Error Rate (FWER)

Given a single null hypothesis H_{0},

- recall a Type I error occurs when H_{0} is true but is rejected;
- the level (or size, or Type I error rate) of a test is is the chance of making a Type I error.

Given a family of null hypotheses $\mathrm{H}_{01}, \mathrm{H}_{02}, \ldots, \mathrm{H}_{0 k}$,

- a familywise Type I error occurs if $\mathrm{H}_{01}, \mathrm{H}_{02}, \ldots, \mathrm{H}_{0 k}$ are all true but at least one of them is rejected;
- The familywise error rate (FWER), also called experimentwise error rate, is defined as the chance of making a familywise Type I error

FWER $=\mathrm{P}\left(\right.$ at least one of $H_{01}, \ldots, H_{0 k}$ is falsely rejected $)$

- FWER depends on the family.

The larger the family, the larger the FWER.
Chapter 5-5

Simultaneous Confidence Intervals

Similarly, a level 95% confidence level (L, U) for a parameter θ may fail to cover $\theta 5 \%$ of the time.

What if we construct multiple 95\% confidence intervals $\left\{\left(L_{1}, U_{1}\right),\left(L_{2}, U_{2}\right), \ldots,\left(L_{k}, U_{k}\right)\right\}$ for several different parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$, the chance that at least one of the intervals fails to cover the parameter is (a lot) more than $\mathbf{5 \%}$.

Simultaneous Confidence Intervals

Given a family of parameters $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right\}$, a $100(1-\alpha) \%$ simultaneous confidence intervals is a family of intervals

$$
\left\{\left(L_{1}, U_{1}\right),\left(L_{2}, U_{2}\right), \ldots,\left(L_{k}, U_{k}\right)\right\}
$$

that

$$
\mathrm{P}\left(L_{i} \leq \theta_{i} \leq U_{i} \text { for all } i\right)>1-\alpha .
$$

Note here that L_{i} 's and U_{i} 's are random variables that depends on the data.

Chapter 5-7

Multiple Comparisons

To account for the fact that we are actually doing multiple comparison, we will need to make our C.I. wider, and the critical value larger to ensure the chance of making any false rejection $<\alpha$.

We will introduce several multiple comparison methods. All of them produce simultaneous C.I.'s of the form

$$
\text { estimate } \pm(\text { critical value }) \times(\text { SE of the estimate })
$$

and reject H_{0} when

$$
\left|t_{0}\right|=\frac{\mid \text { estimate } \mid}{\text { SE of the estimate }}>\text { critical value. }
$$

Here the "estimates" and "SEs" are the same as in the usual t-tests and t-intervals. Only the critical values vary with methods, as summarized on Slide 19.

Chapter 5-8

5.2 Bonferroni's Method

Given that $H_{01}, \ldots, H_{0 k}$ being all true, by the Bonferroni's inequality we know

$$
\begin{aligned}
\text { FWER } & =\mathrm{P}\left(\text { at least one of } H_{01}, \ldots, H_{0 k} \text { is rejected }\right) \\
& \leq \sum_{i=1}^{k} \underbrace{\mathrm{P}\left(H_{0 i} \text { is rejected }\right)}_{\text {type } I \text { error rate for } H_{0 i}}
\end{aligned}
$$

If the Type I error rate for each of the k nulls can be controlled at α / k, then

$$
\text { FWER } \leq \sum_{i=1}^{k} \frac{\alpha}{k}=\alpha
$$

- Bonferroni's method rejects a null if the comparisonwise P-value is less than α / k
- Bonferroni's method works OK when k is small
- When $k>10$, Bonferroni starts to get too conservative than necessary.
The actual FWER can be much less than α.
Chapter 5-9

Example: Beet Lice Study

- Goal: efficacy of 4 chemical treatments for beet lice
- 100 beet plants in individual pots in total, 25 plants per treatment, randomly assigned
- Response: \# of lice on each plant at the end of the 2nd week
- The pots are spatially separated
- Data file: beetlice.txt is posted on Canvas with the slides

Chapter 5-10

Example - Beet Lice

The group means of the 4 treatments are
> beet $=$ read.table("beetlice.txt", header=TRUE)
> library (mosaic)
$>$ mean(licecount \sim ttt, data $=$ beet)

| A | B | C |
| :--- | :--- | :--- | :--- |

$12.00 \quad 14.96 \quad 18.36 \quad 24.00$
From the ANOVA table below, we get MSE $=47.8$.

```
> lm1 = lm(licecount ~ ttt, data = beet)
> anova(lm1)
    Df Sum Sq Mean Sq F value Pr (>F)
ttt 3 1989 663.1 13.86 1.39e-07 ***
Residuals 96 4593 47.8
```

The SE for pairwise comparison is

$$
S E=\sqrt{\operatorname{MSE}\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}=\sqrt{47.8\left(\frac{1}{25}+\frac{1}{25}\right)}=1.956
$$

Chapter 5-11

Example - Beet Lice (Bonferoni's Method)

Chemical Comparison	Estimate	SE	t-value	p-value of t-test	
$\mu_{B}-\mu_{A}$	2.96	1.956	1.513	0.13356	
$\mu_{C}-\mu_{A}$	6.36	1.956	3.251	0.00159	<0.0083
$\mu_{D}-\mu_{A}$	12.00	1.956	6.134	1.91×10^{-8}	<0.0083
$\mu_{C}-\mu_{B}$	3.40	1.956	1.738	0.0854	
$\mu_{D}-\mu_{B}$	9.04	1.956	4.621	1.19×10^{-5}	<0.0083
$\mu_{D}-\mu_{C}$	5.64	1.956	2.883	0.00486	<0.0083

There are $k=6$ tests.
For $\alpha=0.05$, instead of rejecting a null when the P-value $<\alpha$, Bonferoni's method rejects when

$$
\text { the } P \text {-value }<\frac{\alpha}{k}=\frac{0.05}{6}=0.0083
$$

Only $A C, A D, B D, C D$ are significantly different.

Chapter 5-12

Example - Beet Lice (Bonferoni's Method)

Alternatively, to be significant at FWER $=\alpha$ based on Bonferoni's correction, the t-statistic for pairwise comparison must be at least

$$
t=\frac{\bar{y}_{i \bullet}-\bar{y}_{j \bullet}}{S E}>t_{N-g, \alpha / 2 / k}
$$

where $k=6$ since there are $\binom{g}{2}=\binom{4}{2}=6$ pairs to compare. $\mathrm{df}=N-g=100-4=96, t_{N-g, \alpha / 2 / k}=t_{96,0.05 / 2 / 6} \approx 2.694$.
> qt(0.05/2/6, df=96, lower.tail=F)
[1] 2.694028
So a pair of treatments i, j are significantly different at FWER $=0.05$ iff

$$
\left|\bar{y}_{i \bullet}-\bar{y}_{j \bullet}\right|>\mathrm{SE} \times t_{N-g, \alpha / 2 / k} \approx 1.956 \times 2.694 \approx 5.27=\mathrm{BSD} .
$$

This is called Bonferoni's Significant Difference (BSD).

A	B	C	D		
12.00	14.96	18.36	24.00		
	Chapter 5-13				

5.4 Tukey-Kramer Procedure for Pairwise Comparisons

- Family: ALL PAIRWISE COMPARISON $\mu_{i}-\mu_{k}$
- For a balanced design $\left(n_{1}=\ldots=n_{g}=n\right)$, observe that

$$
\left|t_{0}\right|=\frac{\left|\bar{y}_{i \bullet}-\bar{y}_{k \bullet}\right|}{\sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}} \leq \frac{\bar{y}_{\max }-\bar{y}_{\min }}{\sqrt{2 \mathrm{MSE} / n}}=\frac{q}{\sqrt{2}} .
$$

in which $q=\frac{\bar{y}_{\text {max }}-\bar{y}_{\text {min }}}{\sqrt{M S E / n}}$ has a studentized range distribution.

- The critical values $q_{\alpha}(g, N-g)$ for the studentized range distribution can be found on p.633-634, Table D. 8 in the textbook
- Controls the (strong) FWER exactly at α for balanced designs ($n_{1}=\ldots=n_{g}$); approximately at α for unbalanced designs

Chapter 5-14

Tukey-Kramer Procedure for All Pairwise Comparisons

For all $1 \leq i \neq k \leq g$, the $100(1-\alpha) \%$ Tukey-Kramer's simultaneous C.I. for $\mu_{i}-\mu_{k}$ is

$$
\bar{y}_{i \bullet}-\bar{y}_{k \bullet} \pm \frac{q_{\alpha}(g, N-g)}{\sqrt{2}} \operatorname{SE}\left(\bar{y}_{i \bullet}-\bar{y}_{k \bullet}\right)
$$

For $\mathrm{H}_{0}: \mu_{i}-\mu_{k}=0$ v.s. $\mathrm{H}_{a}: \mu_{i}-\mu_{k} \neq 0$, reject H_{0} if

$$
\left|t_{0}\right|=\frac{\left|\bar{y}_{i \bullet}-\bar{y}_{k \bullet}\right|}{\operatorname{SE}\left(\bar{y}_{i \bullet}-\bar{y}_{k \bullet}\right)}>\frac{q_{\alpha}(g, N-g)}{\sqrt{2}}
$$

In both the C.I. and the test,

$$
\operatorname{SE}\left(\bar{y}_{i \bullet}-\bar{y}_{k \bullet}\right)=\sqrt{\operatorname{MSE}\left(\frac{1}{n_{i}}+\frac{1}{n_{k}}\right)} .
$$

Chapter 5-15

Tukey's HSD

To be significant at FWER $=\alpha$ based Tukey's correction, the mean difference between a pair of treatments i and k must be at least

$$
\frac{q_{\alpha}(g, N-g)}{\sqrt{2}} \times \sqrt{\operatorname{MSE}\left(\frac{1}{n_{i}}+\frac{1}{n_{k}}\right)}
$$

This is called Tukey's Honest Significant Difference (Tukey's HSD).
R command to find $q_{\alpha}(a, f)$: qtukey (1 -alpha, a,f)
> qtukey(0.95, 4, 96)/sqrt(2)
[1] 2.614607
For the Beet Lice example, Tukey's HSD is $2.6146 \times 1.956 \approx 5.114$

Chemical	A	B	C	D					
$\bar{y}_{i \bullet}$	12.00	14.96	18.36	24.00	\quad	A	B	C	D
:---	:---	:---	:---	:---	:---				

Chapter 5-16

Tukey's HSD in R

The TukeyHSD function only works for aov() model, not lm() model.

```
> aov1 = aov(licecount ~ ttt, data = beet)
> TukeyHSD(aov1)
    Tukey multiple comparisons of means
        95% family-wise confidence level
```

Fit: aov(formula = licecount ${ }^{\sim}$ ttt, data $=$ beet)
\$ttt

	diff	lwr	upr	p adj
B-C	-3.40	-8.5150601	1.71506	0.3099554
A-C	-6.36	-11.4750601	-1.24494	0.0084911
D-C	5.64	0.5249399	10.75506	0.0246810
A-B	-2.96	-8.0750601	2.15506	0.4337634
D-B	9.04	3.9249399	14.15506	0.0000695
D-A	12.00	6.8849399	17.11506	0.0000001

Note that the widths of all Cls above are $2 x$ of the HSD.
E.g., the width of the Cl for $\mathrm{B}-\mathrm{C}$ is $1.71506-(-8.5150601)=10.23012$
is twice of HSD $=5.114 . \quad$ Chapter $5-17$

5.5.1 Dunnett's Procedure for Comparing with a Control

- Family: comparing ALL TREATMENTS with a CONTROL, $\mu_{i}-\mu_{\mathrm{ctrl}}$, where μ_{ctrl} is the mean of the control group
- Controls the (strong) FWER exactly at α for balanced designs ($n_{1}=\ldots=n_{g}$); approximately at α for unbalanced designs
- Less conservative and greater power than Tukey-Kramer's
- $100(1-\alpha) \%$ Dunnett's simultaneous C.I. for $\mu_{i}-\mu_{\mathrm{ctrl}}$ is

$$
\bar{y}_{i \bullet}-\bar{y}_{\text {control } \bullet} \pm d_{\alpha}(g-1, N-g) \sqrt{\mathrm{MSE} \times\left(\frac{1}{n_{i}}+\frac{1}{n_{\mathrm{ctrl}}}\right)}
$$

- For $\mathrm{H}_{0}: \mu_{i}-\mu_{\text {ctrl }}=0$ v.s. $\mathrm{H}_{a}: \mu_{i}-\mu_{\text {ctrl }} \neq 0$, reject H_{0} if

$$
\left|t_{0}\right|=\frac{\left|\bar{y}_{i \bullet}-\bar{y}_{a \bullet}\right|}{\sqrt{\operatorname{MSE} \times\left(\frac{1}{n_{i}}+\frac{1}{n_{\mathrm{a}}}\right)}}>d_{\alpha}(g-1, N-g)
$$

- The critical values $d_{\alpha}(g-1, N-g)$ can be found in Table D.9, p.635-638, of the textbook

Chapter 5-18

5.3 Scheffè's Method for Comparing All Contrasts

 Suppose there are g treatments in total. Consider a contrast $C=\sum_{i=1}^{g} \omega_{i} \mu_{i}$. Recall$$
\widehat{C}=\sum_{i=1}^{g} \omega_{i} \bar{y}_{i \bullet}, \quad \mathrm{SE}(\widehat{C})=\sqrt{\mathrm{MSE} \times \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}
$$

- The $100(1-\alpha) \%$ Scheffè's simultaneous C.I. for all contrasts C is

$$
\widehat{C} \pm \sqrt{(g-1) F_{\alpha, g-1, N-g}} \operatorname{SE}(\widehat{C})
$$

- For testing $\mathrm{H}_{0}: C=0$ v.s. $\mathrm{H}_{a}: C \neq 0$, reject H_{0} when

$$
\left|t_{0}\right|=\frac{|\widehat{C}|}{\operatorname{SE}(\widehat{C})}>\sqrt{(g-1) F_{\alpha, g-1, N-g}}
$$

Chapter 5-19

Scheffè's Method for Comparing All Contrasts

- Most conservative (least powerful) of all tests. Protects against data snooping!
- Controls (strong) FWER at α, where the family is ALL POSSIBLE CONTRASTS
- Should be used if you have not planned contrasts in advance.

Proof of Scheffè's Method (1)

Because $\sum_{i=1}^{g} \omega_{i}=0$, observe that

$$
\widehat{C}=\sum_{i=1}^{g} \omega_{i} \bar{y}_{i \bullet}=\sum_{i=1}^{g} \omega_{i}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)
$$

By the Cauchy-Schwartz Inequality $\left|\sum a_{i} b_{i}\right| \leq \sqrt{\sum a_{i}^{2} \sum b_{i}^{2}}$ and let $a_{i}=\frac{\omega_{i}}{\sqrt{n_{i}}}$ and $b_{i}=\sqrt{n_{i}}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)$, we get

$$
|\widehat{C}|=\left|\sum_{i=1}^{g} \omega_{i}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)\right| \leq \sqrt{\sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}} \sum_{i=1}^{g} n_{i}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)^{2}}
$$

Recall that $\mathrm{SS}_{\text {Trt }}=\sum_{i=1}^{g} n_{i}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)^{2}$, we get the inequality

$$
|\widehat{C}| \leq \sqrt{\sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}} S S_{T r t}}
$$

Chapter 5-21

Proof of Scheffè's Method (2)

Recall the t-statistic for testing $\mathrm{H}_{0}: C=0$ is $t_{0}(C)=\frac{\widehat{C}}{\mathrm{SE}(\widehat{C})}$, and using the inequality $|\widehat{C}| \leq \sqrt{\sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}} S S_{\text {Trt }}}$ proved in the previous page, we have

$$
\left|t_{0}(C)\right|=\frac{|\widehat{C}|}{\operatorname{SE}(\widehat{C})}=\frac{|\widehat{C}|}{\sqrt{\operatorname{MSE} \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}} \leq \frac{\sqrt{\sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}} S S_{T_{r t}}}{\sqrt{\operatorname{MSE} \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}}=\sqrt{\frac{S S_{T r t}}{M S E}}
$$

Recall $F=\frac{M S_{T t}}{M S E}$ is the ANOVA F-statistic, we have

$$
\left|t_{0}(C)\right| \leq \sqrt{\frac{S S_{T r t}}{M S E}}=\sqrt{\frac{(g-1) M S_{T r t}}{M S E}}=\sqrt{(g-1) F} .
$$

We thus get a uniform upper bound for the t-statistic for any contrast C

$$
\left|t_{0}(C)\right| \leq \sqrt{(g-1) F} .
$$

Chapter 5-22

Proof of Scheffè's Method (3)

Recall that F has a F-distribution with $g-1$ and $N-g$ degrees of freedom, so $\mathrm{P}\left(F>F_{\alpha, g-1, N-g}\right)=\alpha$.

Since $\left|t_{0}(C)\right|<\sqrt{(g-1) F}$, we can see that

$$
\begin{aligned}
F W E R & =\mathrm{P}\left(\left|t_{0}(C)\right|>\sqrt{(g-1) F_{\alpha, g-1, N-g}} \text { for any contrast } C\right) \\
& \leq \mathrm{P}\left(\sqrt{(g-1) F}>\sqrt{(g-1) F_{\alpha, g-1, N-g}}\right) \\
& =\mathrm{P}\left(F>F_{\alpha, g-1, N-g}\right)=\alpha .
\end{aligned}
$$

Example - Beet Lice

$$
\begin{array}{c|cccc}
\text { Chemical } & \text { A } & \text { B } & \text { C } & \text { D }
\end{array} \quad \text { MSE }=47.8
$$

Consider a contrast comparing treatment A, B, C (all liquid) with treatment D (powder): $C=\frac{\mu_{A}+\mu_{B}+\mu_{C}}{3}-\mu_{D}$. which is estimated by

$$
\widehat{C}=\frac{\bar{y}_{A \bullet}+\bar{y}_{B \bullet}+\bar{y}_{C_{\bullet}}}{3}-\bar{y}_{D \bullet}=\frac{12+14.96+18.36}{3}-24=-8.893
$$

with standard error

$$
\begin{aligned}
S E=\sqrt{\operatorname{MSE} \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}} & =\sqrt{47.8\left(\frac{(1 / 3)^{2}}{25}+\frac{(1 / 3)^{2}}{25}+\frac{(1 / 3)^{2}}{25}+\frac{(-1)^{2}}{25}\right)} \\
& =\sqrt{47.8 \times \frac{4}{75}}=1.597 .
\end{aligned}
$$

t-statistic: $t_{0}=\frac{\widehat{C}}{\mathrm{SE}}=\frac{-8.893}{1.597}=-5.568$, with $\mathrm{df}=100-4=96$. Chapter 5-24

Example - Beet Lice

With Scheffè's Method, the critical value controlling FWER at 0.05 is

$$
\sqrt{(g-1) F_{\alpha, g-1, N-g}}=\sqrt{(4-1) F_{0.05,3,96}}=\sqrt{(4-1) \times 2.699} \approx 2.846
$$

> $\mathrm{qf}(0.05, \mathrm{df} 1=3, \mathrm{df} 2=96$, lower.tail=F)
[1] 2.699393
> sqrt((4-1) *qf(0.05, df1=3, df2=96, lower.tail=F))
[1] 2.84573
The critical value 2.846 for Scheffè's method means that: if all treatments are equal, the contrast with the greatest t-statistic will exceed 2.846 for only 5% of the time. The magnitude of the t-statistic -5.568 for the contrast we considered is far above the critical value 2.846 .

Conclusion: We can be certain that the contrast is really significant, even if the contrast was suggested by data snooping.

Chapter 5-25

5.4.7 Fisher's Least Significant Difference (LSD)

- The least significant difference (LSD) is the minimum amount by which two means must differ in order to be considered statistically different.
- LSD $=$ the usual t-tests and t-intervals NO adjustment is made for multiple comparisons
- least conservative (most likely to reject) among all procedures, FWER can be large when family of tests is large
- too liberal, but greater power (more likely to reject)

Summary of Multiple Comparison Adjustments

Method	Family of Tests	Critical Value to Keep FWER $<\alpha$
Fisher's LSD	a single pairwise comparison	$t_{\alpha / 2, N-g}$
Dunnett	all comparisons with a control	$d_{\alpha}(g-1, N-g)$
Tukey-Kramer	all pairwise comparisons	$q_{\alpha}(g, N-g) / \sqrt{2}$
Bonferroni	varies	$t_{\alpha /(2 k), N-g,}$ where $k=\#$ of tests
Scheffè	all contrasts	$\sqrt{(g-1) F_{\alpha, g-1, N-g}}$

Chapter 5-27

Example - Beet Lice

The critical values at $\alpha=0.05$ are
$>$ alpha $=0.05$
$>\mathrm{g}=4$
$>r=g *(g-1) / 2$
$>\mathrm{N}=100$
$>$ qt (1-alpha/2, df $=N-g$) \# Fisher's LSD
[1] 1.984984
> qt(1-alpha/2/r, df $=\mathrm{N}-\mathrm{g}$) \# Bonferroni
[1] 2.694028
> qtukey(1-alpha, g, $d f=N-g$)/sqrt(2) \# Tukey's HSD
[1] 2.614607
$>\operatorname{sqrt}((g-1) * q f(1-a l p h a, d f 1=g-1, d f 2=N-g))$ \# Scheffe
[1] 2.84573
Chapter 5-28

The half widths of the C.I. are "critical values" \times SE, which are

	Procedure		LSD	Tukey	Bonferroni Scheffe	
		half width	3.883	3.115	5.2705.	567
	diff	LSD		Tukey	Bonferroni	Scheffe
B-C	-3.40	(-7.28, 0.48	8) (-8	-8.51, 1.71)) ($-8.67,1.87$)	(-8.97, 2.17)
A-C	-6.36	(-10.24, -2.48)	8) (-11	11.47,-1.25)) $(-11.63,-1.09)$	$(-11.93,-0.79)$
D-C	5.64	(1.76, 9.52)	2) (0	0.53,10.75)) $(0.37,10.91)$	0.07,11.21)
A-B	-2.96	($-6.84,0.92$	2) (-8.07	-8.07, 2.15)) $(-8.23,2.31)$	($-8.53,2.61$)
D-B	9.04	5.16,12.92	2) (3	3.93,14.15)) $(3.77,14.31)$	3.47,14.61)
D-A	12.00	8.12,15.88)) (6	6.89,17.11)) $(6.73,17.27)$	6.43,17.57)

Chapter 5-29

Which Procedures to Use?

- Use BONFERRONI when only interested in a small number of planned contrasts (or pairwise comparisons)
- Use DUNNETT when only interested in comparing all treatments with a control
- Use TUKEY when only interested in all (or most) pairwise comparisons of means
- Use SCHEFFE when doing anything that could be considered data snooping - i.e. for any unplanned contrasts

Significance Level vs. Power

Most Powerful	LSD	Least Conservative
Least Powerful	Tukey (for all pariwise comparisons)	\downarrow

In the figure above, Bonferroni is the Bonferroni for all pairwise comparisons.

For a smaller family of, say k tests, one can divide α by k rather than by $r=\frac{g(g-1)}{2}$. The resulting C.I. or tests may have stronger power than Tukey or Dunnett, will keeping FWER $<\alpha$.

Remember to use Bonferroni the contrasts should be pre-planned.
Chapter 5-31

Multiple Comparisons in Balanced Block Designs

All the multiple comparison procedures apply to all balanced block designs just change the degree of freedom from $N-g$ to the d.f. of MSE

Method	Family of Tests	Critical Value to Keep FWER $<\alpha$
Fisher's LSD	a single pairwise comparison	$t_{\alpha / 2, \text { df of MSE }}$
Dunnett	all comparisons with a control	$d_{\alpha}(g-1$, df of MSE)
Tukey-Kramer	all pairwise comparisons	$q_{\alpha}(g$, df of MSE $) / \sqrt{2}$
Bonferroni	all pairwise comparisons	$t_{\alpha /(2 r), \text { df of MSE, }}$ where $r=\frac{g(g-1)}{2}$
Scheffè	all contrasts	$\sqrt{(g-1) F_{\alpha, g-1, \mathrm{df} \text { of MSE }}}$

Chapter 5-32

Recall Example 13.1 (Mealybugs on Cycads)

- Treatment: water (control), fungal spores, and horticultural oil
- 5 infested cycads, 3 branches are randomly chosen on each cycad, and 2 patches ($3 \mathrm{~cm} \times 3 \mathrm{~cm}$) are marked on each branch
- 3 branches on each cycad are randomly assigned to the 3 treatments
- Response: difference of the \# of mealybugs in the patches before and 3 days after treatments are applied
- As the patches are measurement units, we take the average of the two patches on each branch as the response

Plant					
	1	2	3	4	5
Water	-9	18	10	9	-6
	-6	5	9	0	13
Spores	-4	29	4	-2	11
	7	10	-1	6	-1
Oil	4	29	14	14	7
	11	36	16	18	15

Example 13.1 (Mealybugs on Cycads)

Treatment	Water	Spore	Oil
$\bar{y}_{i \bullet}$	4.3	5.9	16.4

$$
\begin{aligned}
& \mathrm{MSE}=17.725 \\
& \mathrm{df} \text { of } \mathrm{MSE}=8
\end{aligned}
$$

The SE for pairwise comparison is

$$
\sqrt{\operatorname{MSE}\left(\frac{1}{r}+\frac{1}{r}\right)}=\sqrt{17.725\left(\frac{1}{5}+\frac{1}{5}\right)} \approx 2.663
$$

Tukey's critical value is 2.857 .
> qtukey(0.95, 3, df = 8)/sqrt(2)
[1] 2.857444
Tukey's HSD controlling FWER at 0.05 is $2.857 \times 2.663 \approx 7.608$.
Water Spore Oil

We see that spores treatment cannot be distinguished from the control (water) (their mean did not differ by more than 7.608), but both can be distinguished from the oil treatment.

Chapter 5-34

Example 13.1 (Mealybugs on Cycads)

```
> aov1 = aov(avechange ~ trt + as.factor(plant), data=cycad)
> TukeyHSD(aov1)
```

Tukey multiple comparisons of means
95% family-wise confidence level

\$trt

	diff	lwr	upr	p adj
Spore-Water	1.6	-6.008532	9.208532	0.8235730
Oil-Water	12.1	4.491468	19.708532	0.0047478
Oil-Spore	10.5	2.891468	18.108532	0.0105848

\$'as.factor (plant)'								
diff						lwr	upr	p adj
$2-1$	20.666667	8.790833	32.5425005	0.0021283				
$3-1$	8.166667	-3.709167	20.0425005	0.2154812				
$4-1$	7.000000	-4.875834	18.8758339	0.3302742				
$5-1$	6.000000	-5.875834	17.8758339	0.4607553				
$3-2$	-12.500000	-24.375834	-0.6241661	0.0390953				
$4-2$	-13.666667	-25.542501	-1.7908328	0.0248443				
$5-2$	-14.666667	-26.542501	-2.7908328	0.0169882				
$4-3$	-1.166667	-13.042501	10.7091672	0.9965298				
$5-3$	-2.166667	-14.042501	9.7091672	0.9657205				
$5-4$	-1.000000	-12.875834	10.8758339	0.9980873				

Chapter 5-35

- Tukey's HSD at 5\% level for pairwise comparisons of the 3 treatments agrees with our computation
- Tukey's HSD for pairwise comparisons of the 5 plants is nonsense here.

Tukey-Kramer for BIBD

Recall for BIBD, the estimate of $\alpha_{i_{1}}-\alpha_{i_{2}}$ is

$$
\widehat{\alpha}_{i_{1}}-\widehat{\alpha}_{i_{2}}=\frac{k}{\lambda g}\left(Q_{i_{1}}-Q_{i_{2}}\right)
$$

where $Q_{i}=y_{i \bullet}-\frac{1}{k} \sum_{j} \iota_{i j} y_{\bullet j}$ and $I_{i j}=1$ if treatment i appears in block j, or 0 otherwise.

- $\operatorname{SE}\left(\widehat{\alpha}_{i_{1}}-\widehat{\alpha}_{i_{2}}\right)=\sqrt{\operatorname{MSE}\left(\frac{2 k}{\lambda g}\right)}$
- t-statistic $=\frac{\widehat{\alpha}_{i_{1}}-\widehat{\alpha}_{i_{2}}}{S E}$ with df $=$ df of MSE
- Tukey-Kramer: reject $\mathrm{H}_{0}: \alpha_{i_{1}}=\alpha_{i_{2}}$ if

$$
|t|>q_{\alpha}(g, \text { df of MSE }) / \sqrt{2}
$$

Recall Problem 14.3 - Exam Grading

- $g=25$ graders (treatments)
- $b=30$ exams (blocks)
- Each exam was graded by 5 graders (size of block $k=5$)
- Each grader graded 6 exams (number of replicates per treatment $r=6$)
- Every pair of graders graded 1 exam in common $(\lambda=1)$

Chapter 5-37

Problem 14.3 - Exam Grading - Tukey's HSD

How to identify inconsistent graders?
Recall the SE for pairwise comparisons for the grader effects $\alpha_{i_{1}}-\alpha_{i_{2}}$ is

$$
S E=\sqrt{\operatorname{MSE}\left(\frac{2 k}{\lambda g}\right)}=\sqrt{7.17\left(\frac{2 \times 5}{1 \times 25}\right)} \approx 1.6935
$$

with $\mathrm{df}=(\mathrm{df}$ of MSE $)=96$.
By Tukey-Kramer: we reject $\mathrm{H}_{0}: \alpha_{i_{1}}=\alpha_{i_{2}}$ if

$$
|t|>q_{\alpha}(g, \text { df of MSE }) / \sqrt{2}
$$

> qtukey(0.95, 25, df = 96)/sqrt(2)
[1] 3.767619
Tukey's HSD $=\frac{q_{0.05}(25,96)}{\sqrt{2}} S E=3.768 \times 1.6935 \approx 6.38$.
Chapter 5-38

Problem 14.3 - Exam Grading

We have obtained $\widehat{\alpha}_{1}, \widehat{\alpha}_{2}, \ldots, \widehat{\alpha}_{24}$ in R on p. 21 of Ch14 Slides.

| > sort (alphahat) | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| GRADER3 | GRADER5 | GRADER16 | GRADER6 | GRADER15 | GRADER14 | GRADER8 | |
| -6.36 | -3.48 | -2.60 | -2.36 | -1.60 | -1.60 | -1.56 | -1.24 |
| GRADER9 | GRADER1 | GRADER19 | GRADER23 | GRADER24 | GRADER18 | GRADER10 | GRADER13 |
| -1.12 | -0.84 | -0.40 | -0.12 | 0.16 | 0.20 | 0.48 | 0.76 |
| GRADER17 | GRADER25 | GRADER12 | GRADER22 | GRADER7 | GRADER20 | GRADER11 | GRADER2 |
| 1.24 | 1.32 | 1.32 | 1.52 | 1.60 | 1.80 | 2.16 | 3.24 |
| GRADER4 | | | | | | | |
| 7.48 | | | | | | | |

Underline Diagram for pairwise comparison between graders: (at FWER $=5 \%$, Tukey's HSD $=6.38$)

After Tukey's adjustment, only Grader \#3 and \# 4 are significantly inconsistent with most other graders.
Grader \#2 and \#5 were consistent with all the rest except \#3 and \#4.
Chapter 5-39

Problem 14.3 - Exam Grading

Please note that the R function TukeyHSD() doesn't perform Tukey's adjustment correctly for BIBD.

Do NOT use TukeyHSD() on BIBD.

