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Why Worry About Multiple Comparisons?

Recall that, at level α = 0.05, a hypothesis test will make a Type I
error 5% of the time

I Type I error = H0 being falsely rejected when it is true

What if we conduct multiple hypothesis tests?

I When 100 H0’s are tested at 0.05 level, even if all H0’s are
true, it’s normal to have 5 being rejected.

I When multiple tests are done, it’s very likely that some
significant results may be NOT be TRUE FINDINGS. The
significance must be adjusted
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Why Worry About Multiple Comparisons?

I In an experiment, when the ANOVA F-test is rejected, we will
attempt to compare ALL pairs of treatments, as well as
contrasts to find treatments that are different from others.

For an experiment with g treatments, there are

I
(g
2

)
= g(g−1)

2 pairwise comparisons to make, and
I numerous contrasts.

I When many H0’s are tested, it’s very likely that some of them
are falsely rejected even if all of H0’s are true as we would
falsely reject every true H0 at 5% level about 5% of the time.
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Data Snooping
I If one looks at data first and decide which contrast to test

based on what they see, that is called data snooping, e.g.,
I when one decides to compare treatment A & E because A has

the highest mean and E the lowest
I or if one decides to test the contrast

C =
µA + µC

2
− µB + µD

2

because A and C have higher means than B and D

I Data snooping is problematic because when people choose the
pair of treatments with the greatest difference or contrast
with a big effect after looking at data, they have implicitly
tested many pairs and contrasts that are unlikely to be
significant. Effectively, they have conducted many tests. They
cannot pretend as if they just do one test.

I If a comparison or contrast is determined after looking at the
data (data snooping), one must adjust for multiple
comparison.
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5.1 Familywise Error Rate (FWER)
Given a single null hypothesis H0,

I recall a Type I error occurs when H0 is true but is rejected;

I the level (or size, or Type I error rate) of a test is is the
chance of making a Type I error.

Given a family of null hypotheses H01, H02, . . ., H0k ,

I a familywise Type I error occurs if H01, H02, . . ., H0k are all
true but at least one of them is rejected;

I The familywise error rate (FWER), also called
experimentwise error rate, is defined as the chance of making
a familywise Type I error

FWER = P(at least one of H01, . . . ,H0k is falsely rejected)

I FWER depends on the family.
The larger the family, the larger the FWER.
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Simultaneous Confidence Intervals

Similarly, a level 95% confidence level (L,U) for a parameter θ
may fail to cover θ 5% of the time.

What if we construct multiple 95% confidence intervals
{(L1,U1), (L2,U2), . . . , (Lk ,Uk)} for several different parameters
θ1, θ2, . . . , θk , the chance that at least one of the intervals fails to
cover the parameter is (a lot) more than 5%.
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Simultaneous Confidence Intervals

Given a family of parameters {θ1, θ2, . . . , θk}, a 100(1− α)%
simultaneous confidence intervals is a family of intervals

{(L1,U1), (L2,U2), . . . , (Lk ,Uk)}

that
P(Li ≤ θi ≤ Ui for all i) > 1− α.

Note here that Li ’s and Ui ’s are random variables that depends on
the data.
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Multiple Comparisons

To account for the fact that we are actually doing multiple
comparison, we will need to make our C.I. wider, and the critical
value larger to ensure the chance of making any false rejection < α.

We will introduce several multiple comparison methods.
All of them produce simultaneous C.I.’s of the form

estimate± (critical value)× (SE of the estimate)

and reject H0 when

|t0| =
|estimate|

SE of the estimate
> critical value.

Here the “estimates” and “SEs” are the same as in the usual
t-tests and t-intervals. Only the critical values vary with methods,
as summarized on Slide 19.
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5.2 Bonferroni’s Method
Given that H01, . . . ,H0k being all true, by the Bonferroni’s
inequality we know

FWER = P(at least one of H01, . . . ,H0k is rejected)

≤
∑k

i=1
P(H0i is rejected)︸ ︷︷ ︸
type I error rate for H0i

If the Type I error rate for each of the k nulls can be controlled at
α/k , then

FWER ≤
∑k

i=1

α

k
= α.

I Bonferroni’s method rejects a null if the comparisonwise
P-value is less than α/k

I Bonferroni’s method works OK when k is small

I When k > 10, Bonferroni starts to get too conservative than
necessary.
The actual FWER can be much less than α.
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Example: Beet Lice Study

I Goal: efficacy of 4 chemical treatments for beet lice

I 100 beet plants in individual pots in total, 25 plants per
treatment, randomly assigned

I Response: # of lice on each plant at the end of the 2nd week

I The pots are spatially separated

I Data file: beetlice.txt is posted on Canvas with the slides
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Example — Beet Lice
The group means of the 4 treatments are

> beet = read.table("beetlice.txt", header=TRUE)

> library(mosaic)

> mean(licecount ~ ttt, data = beet)

A B C D

12.00 14.96 18.36 24.00

From the ANOVA table below, we get MSE = 47.8.

> lm1 = lm(licecount ~ ttt, data = beet)

> anova(lm1)

Df Sum Sq Mean Sq F value Pr(>F)

ttt 3 1989 663.1 13.86 1.39e-07 ***

Residuals 96 4593 47.8

The SE for pairwise comparison is

SE =

√
MSE

(
1

ni
+

1

nj

)
=

√
47.8

(
1

25
+

1

25

)
= 1.956

Chapter 5 - 11



Example — Beet Lice (Bonferoni’s Method)

Chemical p-value
Comparison Estimate SE t-value of t-test
µB − µA 2.96 1.956 1.513 0.13356
µC − µA 6.36 1.956 3.251 0.00159 < 0.0083
µD − µA 12.00 1.956 6.134 1.91× 10−8 < 0.0083
µC − µB 3.40 1.956 1.738 0.0854
µD − µB 9.04 1.956 4.621 1.19× 10−5 < 0.0083
µD − µC 5.64 1.956 2.883 0.00486 < 0.0083

There are k = 6 tests.
For α = 0.05, instead of rejecting a null when the P-value < α,
Bonferoni’s method rejects when

the P-value <
α

k
=

0.05

6
= 0.0083.

Only AC, AD, BD, CD are significantly different.

A B C D
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Example — Beet Lice (Bonferoni’s Method)
Alternatively, to be significant at FWER = α based on Bonferoni’s
correction, the t-statistic for pairwise comparison must be at least

t =
y i• − y j•

SE
> tN−g ,α/2/k

where k = 6 since there are
(g
2

)
=
(4
2

)
= 6 pairs to compare.

df = N−g =100−4=96, tN−g ,α/2/k = t96,0.05/2/6≈2.694.

> qt(0.05/2/6, df=96, lower.tail=F)

[1] 2.694028

So a pair of treatments i , j are significantly different at FWER
= 0.05 iff

|y i• − y j•| > SE× tN−g ,α/2/k ≈ 1.956× 2.694 ≈ 5.27 = BSD.

This is called Bonferoni’s Significant Difference (BSD).

A B C D
12.00 14.96 18.36 24.00
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5.4 Tukey-Kramer Procedure for Pairwise Comparisons

I Family: ALL PAIRWISE COMPARISON µi − µk
I For a balanced design (n1 = . . . = ng = n), observe that

|t0| =
|y i• − yk•|√
MSE

(
1
n + 1

n

) ≤ ymax − ymin√
2MSE/n

=
q√
2
.

in which q = ymax−ymin√
MSE/n

has a studentized range

distribution.

I The critical values qα(g ,N − g) for the studentized range
distribution can be found on p.633-634, Table D.8 in the
textbook

I Controls the (strong) FWER exactly at α for balanced designs
(n1 = . . . = ng ); approximately at α for unbalanced designs
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Tukey-Kramer Procedure for All Pairwise Comparisons

For all 1 ≤ i 6= k ≤ g , the 100(1− α)% Tukey-Kramer’s
simultaneous C.I. for µi − µk is

y i• − yk• ±
qα(g ,N − g)√

2
SE(y i• − yk•)

For H0 : µi − µk = 0 v.s. Ha : µi − µk 6= 0, reject H0 if

|t0| =
| y i• − yk•|

SE(y i• − yk•)
>

qα(g ,N − g)√
2

In both the C.I. and the test,

SE(y i• − yk•) =

√
MSE

(
1

ni
+

1

nk

)
.
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Tukey’s HSD

To be significant at FWER = α based Tukey’s correction, the mean
difference between a pair of treatments i and k must be at least

qα(g ,N − g)√
2

×
√

MSE

(
1

ni
+

1

nk

)
This is called Tukey’s Honest Significant Difference (Tukey’s HSD).

R command to find qα(a, f ): qtukey(1-alpha,a,f)

> qtukey(0.95, 4, 96)/sqrt(2)

[1] 2.614607

For the Beet Lice example, Tukey’s HSD is 2.6146× 1.956 ≈ 5.114

Chemical A B C D

y i• 12.00 14.96 18.36 24.00
A B C D
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Tukey’s HSD in R
The TukeyHSD function only works for aov() model, not lm()

model.

> aov1 = aov(licecount ~ ttt, data = beet)

> TukeyHSD(aov1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = licecount ~ ttt, data = beet)

$ttt

diff lwr upr p adj

B-C -3.40 -8.5150601 1.71506 0.3099554

A-C -6.36 -11.4750601 -1.24494 0.0084911

D-C 5.64 0.5249399 10.75506 0.0246810

A-B -2.96 -8.0750601 2.15506 0.4337634

D-B 9.04 3.9249399 14.15506 0.0000695

D-A 12.00 6.8849399 17.11506 0.0000001

Note that the widths of all CIs above are 2x of the HSD.

E.g., the width of the CI for B-C is 1.71506− (−8.5150601) = 10.23012

is twice of HSD = 5.114. Chapter 5 - 17



5.5.1 Dunnett’s Procedure for Comparing with a Control
I Family: comparing ALL TREATMENTS with a CONTROL,
µi − µctrl, where µctrl is the mean of the control group

I Controls the (strong) FWER exactly at α for balanced designs
(n1 = . . . = ng ); approximately at α for unbalanced designs

I Less conservative and greater power than Tukey-Kramer’s
I 100(1− α)% Dunnett’s simultaneous C.I. for µi − µctrl is

y i• − y control• ± dα(g − 1,N − g)

√
MSE×

(
1

ni
+

1

nctrl

)
I For H0 : µi − µctrl = 0 v.s. Ha : µi − µctrl 6= 0, reject H0 if

|t0| =
| y i• − ya•|√

MSE×
(

1
ni

+ 1
na

) > dα(g − 1,N − g)

I The critical values dα(g − 1,N − g) can be found in Table
D.9, p.635-638, of the textbook
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5.3 Scheffè’s Method for Comparing All Contrasts
Suppose there are g treatments in total. Consider a contrast
C =

∑g
i=1 ωiµi . Recall

Ĉ =

g∑
i=1

ωiy i•, SE(Ĉ ) =

√√√√MSE×
g∑

i=1

ω2
i

ni

I The 100(1− α)% Scheffè’s simultaneous C.I. for all contrasts
C is

Ĉ ±
√

(g − 1)Fα,g−1,N−gSE(Ĉ )

I For testing H0 : C = 0 v.s. Ha : C 6= 0, reject H0 when

|t0| =
|Ĉ |

SE(Ĉ )
>
√

(g − 1)Fα,g−1,N−g
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Scheffè’s Method for Comparing All Contrasts

I Most conservative (least powerful) of all tests.
Protects against data snooping!

I Controls (strong) FWER at α,
where the family is ALL POSSIBLE CONTRASTS

I Should be used if you have not planned contrasts in
advance.
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Proof of Scheffè’s Method (1)
Because

∑g
i=1 ωi = 0, observe that

Ĉ =
∑g

i=1
ωiy i• =

∑g

i=1
ωi (y i• − y••).

By the Cauchy-Schwartz Inequality |∑ aibi | ≤
√∑

a2i
∑

b2i and

let ai =
ωi√
ni

and bi =
√
ni (y i• − y••), we get

|Ĉ | =

∣∣∣∣∣
g∑

i=1

ωi (y i• − y••)

∣∣∣∣∣ ≤
√√√√ g∑

i=1

ω2
i

ni

g∑
i=1

ni (y i• − y••)2

Recall that SSTrt =
∑g

i=1 ni (y i• − y••)2, we get the inequality

|Ĉ | ≤

√√√√ g∑
i=1

ω2
i

ni
SSTrt .
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Proof of Scheffè’s Method (2)
Recall the t-statistic for testing H0: C = 0 is t0(C ) = Ĉ

SE(Ĉ)
, and

using the inequality |Ĉ | ≤
√∑g

i=1
ω2
i

ni
SSTrt proved in the previous

page, we have

|t0(C )| =
|Ĉ |

SE(Ĉ )
=

|Ĉ |√
MSE

∑g
i=1

ω2
i

ni

≤

√∑g
i=1

ω2
i

ni
SSTrt√

MSE
∑g

i=1
ω2
i

ni

=

√
SSTrt
MSE

Recall F = MSTrt
MSE is the ANOVA F -statistic, we have

|t0(C )| ≤
√

SSTrt
MSE

=

√
(g − 1)MSTrt

MSE
=
√

(g − 1)F .

We thus get a uniform upper bound for the t-statistic for any
contrast C

|t0(C )| ≤
√

(g − 1)F .
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Proof of Scheffè’s Method (3)

Recall that F has a F -distribution with g − 1 and N − g degrees of
freedom, so P(F > Fα,g−1,N−g ) = α.

Since |t0(C )| <
√

(g − 1)F , we can see that

FWER = P

(
|t0(C )| >

√
(g − 1)Fα,g−1,N−g for any contrastC

)
≤ P

(√
(g − 1)F >

√
(g − 1)Fα,g−1,N−g

)
= P(F > Fα,g−1,N−g ) = α.
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Example — Beet Lice

Chemical A B C D
y i• 12 14.96 18.36 24

MSE = 47.8

Consider a contrast comparing treatment A, B, C (all liquid) with

treatment D (powder): C =
µA + µB + µC

3
− µD .

which is estimated by

Ĉ =
yA• + yB• + yC•

3
− yD• =

12 + 14.96 + 18.36

3
− 24 = −8.893

with standard error

SE =

√√√√MSE

g∑
i=1

ω2
i

ni
=

√
47.8(

(1/3)2

25
+

(1/3)2

25
+

(1/3)2

25
+

(−1)2

25
)

=

√
47.8× 4

75
= 1.597.

t-statistic: t0 =
Ĉ

SE
=
−8.893

1.597
= −5.568, with df = 100−4 = 96.
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Example — Beet Lice
With Scheffè’s Method, the critical value controlling FWER at
0.05 is√

(g − 1)Fα,g−1,N−g =
√

(4− 1)F0.05,3,96 =
√

(4− 1)× 2.699 ≈ 2.846

> qf(0.05, df1=3, df2=96, lower.tail=F)

[1] 2.699393

> sqrt((4-1)*qf(0.05, df1=3, df2=96, lower.tail=F))

[1] 2.84573

The critical value 2.846 for Scheffè’s method means that: if all
treatments are equal, the contrast with the greatest t-statistic will
exceed 2.846 for only 5% of the time. The magnitude of the
t-statistic −5.568 for the contrast we considered is far above the
critical value 2.846.

Conclusion: We can be certain that the contrast is really
significant, even if the contrast was suggested by data snooping.
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5.4.7 Fisher’s Least Significant Difference (LSD)

I The least significant difference (LSD) is the minimum
amount by which two means must differ in order to be
considered statistically different.

I LSD = the usual t-tests and t-intervals
NO adjustment is made for multiple comparisons

I least conservative (most likely to reject) among all procedures,
FWER can be large when family of tests is large

I too liberal, but greater power (more likely to reject)
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Summary of Multiple Comparison Adjustments

Critical Value to
Method Family of Tests Keep FWER < α

Fisher’s LSD a single pairwise tα/2,N−g
comparison

Dunnett all comparisons dα(g − 1,N − g)
with a control

Tukey-Kramer all pairwise qα(g ,N − g)/
√

2
comparisons

Bonferroni varies tα/(2k),N−g ,
where k = # of tests

Scheffè all contrasts
√

(g − 1)Fα,g−1,N−g
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Example — Beet Lice

Recall

treatment A B C D

ni 25 25 25 25
y i• 12.00 14.96 18.36 24.00

, MSE = 47.84.

SE(y i• − yk•) =
√

MSE
(
1
ni

+ 1
nk

)
=
√

47.84× 2
25 = 1.9563.

The critical values at α = 0.05 are

> alpha = 0.05

> g = 4

> r = g*(g-1)/2

> N = 100

> qt(1-alpha/2, df = N-g) # Fisher’s LSD

[1] 1.984984

> qt(1-alpha/2/r, df = N-g) # Bonferroni

[1] 2.694028

> qtukey(1-alpha, g, df = N-g)/sqrt(2) # Tukey’s HSD

[1] 2.614607

> sqrt((g-1)*qf(1-alpha, df1=g-1, df2=N-g)) # Scheffe

[1] 2.84573
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The half widths of the C.I. are “critical values”×SE, which are

Procedure LSD Tukey Bonferroni Scheffe

C.I. half width 3.883 5.115 5.270 5.567

diff LSD Tukey Bonferroni Scheffe
B-C -3.40 ( -7.28, 0.48) ( -8.51, 1.71) ( -8.67, 1.87) ( -8.97, 2.17)
A-C -6.36 (-10.24, -2.48) (-11.47, -1.25) (-11.63, -1.09) (-11.93, -0.79)
D-C 5.64 ( 1.76, 9.52) ( 0.53,10.75) ( 0.37,10.91) ( 0.07,11.21)
A-B -2.96 ( -6.84, 0.92) ( -8.07, 2.15) ( -8.23, 2.31) ( -8.53, 2.61)
D-B 9.04 ( 5.16,12.92) ( 3.93,14.15) ( 3.77,14.31) ( 3.47,14.61)
D-A 12.00 ( 8.12,15.88) ( 6.89,17.11) ( 6.73,17.27) ( 6.43,17.57)
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Which Procedures to Use?

I Use BONFERRONI when only interested in a small number of
planned contrasts (or pairwise comparisons)

I Use DUNNETT when only interested in comparing all
treatments with a control

I Use TUKEY when only interested in all (or most) pairwise
comparisons of means

I Use SCHEFFE when doing anything that could be considered
data snooping – i.e. for any unplanned contrasts
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Significance Level vs. Power
Most Least

Powerful LSD Conservativex Dunnett yTukey

Bonferroni
(for all pariwise comparisons)

Least Scheffe Most
Powerful Conservative

In the figure above, Bonferroni is the Bonferroni for all pairwise
comparisons.

For a smaller family of, say k tests, one can divide α by k rather
than by r = g(g−1)

2 . The resulting C.I. or tests may have stronger
power than Tukey or Dunnett, will keeping FWER < α.

Remember to use Bonferroni the contrasts should be pre-planned.
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Multiple Comparisons in Balanced Block Designs
All the multiple comparison procedures apply to all balanced block
designs just change the degree of freedom from N − g to the d.f.
of MSE

Critical Value to
Method Family of Tests Keep FWER < α

Fisher’s LSD a single pairwise tα/2,df of MSE
comparison

Dunnett all comparisons dα(g − 1, df of MSE)
with a control

Tukey-Kramer all pairwise qα(g , df of MSE)/
√

2
comparisons

Bonferroni all pairwise tα/(2r),df of MSE,

comparisons where r = g(g−1)
2

Scheffè all contrasts
√

(g − 1)Fα,g−1,df of MSE
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Recall Example 13.1 (Mealybugs on Cycads)
I Treatment: water (control), fungal spores, and horticultural oil
I 5 infested cycads, 3 branches are randomly chosen on each

cycad, and 2 patches (3 cm × 3 cm) are marked on each
branch

I 3 branches on each cycad are randomly assigned to the 3
treatments

I Response: difference of the # of mealybugs in the patches
before and 3 days after treatments are applied

I As the patches are measurement units, we take the average of
the two patches on each branch as the response

13.2 The Randomized Complete Block Design 317

Table 13.1:Changes in mealybug counts on cycads after treatment.
Treatments are water,Beauveria bassianaspores, and horticultural oil.

Plant
1 2 3 4 5

Water -9 18 10 9 -6
-6 5 9 0 13

Spores -4 29 4 -2 11
7 10 -1 6 -1

Oil 4 29 14 14 7
11 36 16 18 15

branches on each cycad are randomly assigned to the three treatments. After
three days, the patches are counted again, and the response is the change in
the number of mealybugs (before− after). Data for this experiment are given
in Table 13.1 (data from Scott Smith).

How can we decode the experimental design from the description just
given?Follow the randomization!Looking at the randomization, we see that
the treatments were applied to the branches (or pairs of patches). Thus the
branches (or pairs) must be experimental units. Furthermore, the randomiza-
tion was done so that each treatment was applied once on each cycad. There
was no possibility of two branches from the same plant receiving the same
treatment. This is a restriction on the randomization, withcycads acting as
blocks. The patches are measurement units. When we analyze these data, we
can take the average or sum of the two patches on each branch asthe response
for the branch. To recap, there wereg = 3 treatments applied toN = 15
units arranged inr = 5 blocks of size3 according to an RCB design; there
were two measurement units per experimental unit.

Why did the experimenter block? Experience and intuition lead the ex-
perimenter to believe that branches on the same cycad will tend to be more
alike than branches on different cycads—genetically, environmentally, and
perhaps in other ways. Thus blocking by plant may be advantageous.

It is important to realize that tables like Table 13.1 hide the randomization
that has occurred. The table makes it appear as though the first unit in every
block received the water treatment, the second unit the spores, and so on.
This is not true. The table ignores the randomization for theconvenience of
a readable display. The water treatment may have been applied to any of the
three units in the block, chosen at random.

You cannot determine the design used in an experiment just bylooking at
a table of results, you have to know the randomization. Theremay be many
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Example 13.1 (Mealybugs on Cycads)

Treatment Water Spore Oil MSE = 17.725
y i• 4.3 5.9 16.4 df of MSE = 8

The SE for pairwise comparison is√
MSE

(
1

r
+

1

r

)
=

√
17.725

(
1

5
+

1

5

)
≈ 2.663.

Tukey’s critical value is 2.857.

> qtukey(0.95, 3, df = 8)/sqrt(2)

[1] 2.857444

Tukey’s HSD controlling FWER at 0.05 is 2.857× 2.663 ≈ 7.608.

Water Spore Oil

We see that spores treatment cannot be distinguished from the
control (water) (their mean did not differ by more than 7.608), but
both can be distinguished from the oil treatment.
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Example 13.1 (Mealybugs on Cycads)

> aov1 = aov(avechange ~ trt + as.factor(plant), data=cycad)

> TukeyHSD(aov1)

Tukey multiple comparisons of means

95% family-wise confidence level

$trt

diff lwr upr p adj

Spore-Water 1.6 -6.008532 9.208532 0.8235730

Oil-Water 12.1 4.491468 19.708532 0.0047478

Oil-Spore 10.5 2.891468 18.108532 0.0105848

$‘as.factor(plant)‘

diff lwr upr p adj

2-1 20.666667 8.790833 32.5425005 0.0021283

3-1 8.166667 -3.709167 20.0425005 0.2154812

4-1 7.000000 -4.875834 18.8758339 0.3302742

5-1 6.000000 -5.875834 17.8758339 0.4607553

3-2 -12.500000 -24.375834 -0.6241661 0.0390953

4-2 -13.666667 -25.542501 -1.7908328 0.0248443

5-2 -14.666667 -26.542501 -2.7908328 0.0169882

4-3 -1.166667 -13.042501 10.7091672 0.9965298

5-3 -2.166667 -14.042501 9.7091672 0.9657205

5-4 -1.000000 -12.875834 10.8758339 0.9980873

I Tukey’s HSD at 5%
level for pairwise
comparisons of the 3
treatments agrees
with our computation

I Tukey’s HSD for
pairwise comparisons
of the 5 plants is
nonsense here.
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Tukey-Kramer for BIBD

Recall for BIBD, the estimate of αi1 − αi2 is

α̂i1 − α̂i2 =
k

λg
(Qi1 − Qi2)

where Qi = yi• − 1
k

∑
j Iijy•j and Iij = 1 if treatment i appears in

block j , or 0 otherwise.

I SE(α̂i1 − α̂i2) =

√
MSE

(
2k

λg

)
I t-statistic =

α̂i1 − α̂i2

SE
with df = df of MSE

I Tukey-Kramer: reject H0: αi1 = αi2 if

|t| > qα(g , df of MSE)/
√

2.
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Recall Problem 14.3 — Exam Grading
382 Incomplete Block Designs

Exam Grader Score Exam Grader Score

1 1 2 3 4 5 60 59 51 64 53 16 1 9 12 20 23 61 67 69 68 65
2 6 7 8 9 10 64 69 63 63 71 17 2 10 13 16 24 78 75 76 75 72
3 11 12 13 14 15 84 85 86 85 83 18 3 6 14 17 25 67 72 72 75 76
4 16 17 18 19 20 72 76 77 74 77 19 4 7 15 18 21 84 81 76 79 77
5 21 22 23 24 25 65 73 70 71 70 20 5 8 11 19 22 81 84 85 84 81
6 1 6 11 16 21 52 54 62 54 55 21 1 8 15 17 24 70 65 61 66 66
7 2 7 12 17 22 56 51 52 57 51 22 2 9 11 18 25 84 82 86 85 86
8 3 8 13 18 23 55 60 59 60 61 23 3 10 12 19 21 72 85 77 82 79
9 4 9 14 19 24 88 76 77 77 74 24 4 6 13 20 22 85 75 78 82 83

10 5 10 15 20 25 65 68 72 74 77 25 5 7 14 16 23 58 64 58 57 58
11 1 10 14 18 22 79 77 77 77 79 26 1 7 13 19 25 66 71 73 70 70
12 2 6 15 19 23 70 66 63 62 66 27 2 8 14 20 21 73 67 63 70 66
13 3 7 11 20 24 48 49 51 48 50 28 3 9 15 16 22 58 70 69 61 71
14 4 8 12 16 25 75 64 75 68 65 29 4 10 11 17 23 95 84 88 88 87
15 5 9 13 17 21 79 77 81 79 83 30 5 6 12 18 24 47 47 51 49 56

Analyze these data to determine if graders differ, and if so,how. Be sure to
describe the design.

Thirty consumers are asked to rate the softness of clothes washed by tenProblem 14.4
different detergents, but each consumer rates only four different detergents.
The design and responses are given below:

Trts Softness Trts Softness

1 A B C D 37 23 37 41 16 A B C D 52 41 45 48
2 A B E F 35 32 39 37 17 A B E F 46 42 45 42
3 A C G H 39 45 39 41 18 A C G H 44 43 41 36
4 A D I J 44 42 46 44 19 A D I J 32 42 36 29
5 A E G I 44 44 45 50 20 A E G I 43 42 44 44
6 A F H J 55 45 53 49 21 A F H J 46 41 43 45
7 B C F I 47 50 48 52 22 B C F I 43 51 40 42
8 B D G J 37 42 40 37 23 B D G J 38 37 36 34
9 B E H J 32 34 39 29 24 B E H J 40 49 43 44

10 B G H I 36 41 39 43 25 B G H I 23 20 27 29
11 C E I J 45 44 40 36 26 C E I J 46 49 48 43
12 C F G J 42 38 39 39 27 C F G J 48 43 48 41
13 C D E H 47 48 46 47 28 C D E H 35 35 31 26
14 D E F G 43 47 48 41 29 D E F G 45 47 47 42
15 D F H I 39 32 32 31 30 D F H I 43 39 38 39

Analyze these data for treatment effects and report your findings.

I g = 25 graders (treatments)
I b = 30 exams (blocks)
I Each exam was graded by 5 graders (size of block k = 5)
I Each grader graded 6 exams (number of replicates per

treatment r = 6)
I Every pair of graders graded 1 exam in common (λ = 1)
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Problem 14.3 — Exam Grading – Tukey’s HSD
How to identify inconsistent graders?

Recall the SE for pairwise comparisons for the grader effects
αi1 − αi2 is

SE =

√
MSE

(
2k

λg

)
=

√
7.17

(
2× 5

1× 25

)
≈ 1.6935

with df = (df of MSE) = 96.

By Tukey-Kramer: we reject H0: αi1 = αi2 if

|t| > qα(g , df of MSE)/
√

2.

> qtukey(0.95, 25, df = 96)/sqrt(2)

[1] 3.767619

Tukey’s HSD =
q0.05(25, 96)√

2
SE = 3.768× 1.6935 ≈ 6.38.
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Problem 14.3 — Exam Grading
We have obtained α̂1, α̂2, . . . , α̂24 in R on p. 21 of Ch14 Slides.

> sort(alphahat)

GRADER3 GRADER5 GRADER16 GRADER6 GRADER15 GRADER14 GRADER8 GRADER21

-6.36 -3.48 -2.60 -2.36 -1.60 -1.60 -1.56 -1.24

GRADER9 GRADER1 GRADER19 GRADER23 GRADER24 GRADER18 GRADER10 GRADER13

-1.12 -0.84 -0.40 -0.12 0.16 0.20 0.48 0.76

GRADER17 GRADER25 GRADER12 GRADER22 GRADER7 GRADER20 GRADER11 GRADER2

1.24 1.32 1.32 1.52 1.60 1.80 2.16 3.24

GRADER4

7.48

Underline Diagram for pairwise comparison between graders:
(at FWER = 5%, Tukey’s HSD = 6.38)

3 5 16 6 15 14 8 21 9 1 19 23 24 18 10 13 17 25 12 22 7 20 11 2 4

After Tukey’s adjustment, only Grader #3 and # 4 are significantly
inconsistent with most other graders.

Grader #2 and #5 were consistent with all the rest except #3 and #4.
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Problem 14.3 — Exam Grading

Please note that the R function TukeyHSD() doesn’t perform
Tukey’s adjustment correctly for BIBD.

Do NOT use TukeyHSD() on BIBD.
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