One-Way ANOVA
 Comparison of Several Means

Yibi Huang

Textbook 3.1-3.8

C03A-1

Case Study: Grass/Weed Competition

Textbook, Problem 6.1, p. 147

To study the competition of big bluestem (from the tall grass prairie) versus quack grass (a weed), we set up an experimental garden with 24 plots. These plots were randomly allocated to the 6 treatments:

Treatment	Nitrogen level	Irrigation
1 N	$200 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil	No
1 Y	$200 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil	$1 \mathrm{~cm} /$ week
2N	$400 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil	No
3N	$600 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil	No
4 N	$800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil	No
4 Y	$800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil	$1 \mathrm{~cm} /$ week

Case Study: Grass/Weed Competition - Data

Big bluestem was first seeded in these plots.
One year later, quack grass was seeded to each plot.
Response: Percentage of living material in each plot that is big bluestem one year after quack grass was seeded.

Treatment	1 N	1 Y	2 N	3 N	4 N	4 Y
	97	83	85	64	52	48
	96	87	84	72	56	58
	92	78	78	63	44	49
	95	81	79	74	50	53

Data file: grassweed.txt

```
> grass = read.table("grassweed.txt", h=T)
> grass
    percent trt Nlevel Irrigation
\begin{tabular}{lllll}
1 & 97 & 1 N & 200 & N \\
2 & 83 & 1 Y & 200 & Y \\
3 & 85 & 2 N & 400 & N \\
4 & 64 & 3 N & 600 & N
\end{tabular}
```


Case Study: Grass/Weed Competition - Plots


```
grass = read.table("grassweed.txt", h=T)
library(mosaic)
dotplot(percent ~ trt, data=grass,
    ylab = "Percent of Bluestem", xlab ="Treatment")
qplot(Nlevel, percent, color=Irrigation, data=grass,
    ylab="Percent of Bluestem", xlab="Nitrogen Level (mg N/kg soil)")
```


Models for a Completely Randomized Experiment

For an experiment, the N experimental units are randomized to received one of the g treatments, where n_{i} experimental units received for treatment $i, i=1,2, \ldots, g$.

$$
\begin{aligned}
\text { Treatment 1: } & y_{11}, y_{12}, \ldots, y_{1 n_{1}} \\
\text { Treatment 2: } & y_{21}, y_{22}, \ldots \ldots \ldots, y_{2 n_{2}}, \ldots,
\end{aligned}
$$

Treatment g: $y_{g 1}, y_{g 2}, \ldots \ldots ., y_{g n_{g}}$

j th unit for treatment		treatment effect		$\begin{gathered} \text { error } \\ \text { (or noise) } \end{gathered}$	
\downarrow		\downarrow		\downarrow	$i=1,2, \ldots, g$
$y_{i j}$	$=$	μ_{i}	+	$\varepsilon_{i j}$	$j=1,2, \ldots, n_{i}$

- $\mu_{i}=$ mean response for the i th treatment
- The error terms $\varepsilon_{i j}$ are assumed to be independent with mean 0 and constant variance σ^{2}.
Sometimes we further assume that errors are normal.
C03A-5

Questions of Interest

Unlike a two-sample problem that only compares the two means $\mu_{1}-\mu_{2}$, for a multi-sample problem, there are various comparisons of interest.
For example, the purpose of the Grass/Weed Competition experiment is to see if nitrogen and/or irrigation has any effect on the ability of quack grass to invade big bluestem. The comparisons of interests include

- Irrigation effect: $\mu_{1 N}-\mu_{1 Y}, \mu_{4 N}-\mu_{4 Y}$ or the combining the two

$$
\frac{\mu_{1 Y}+\mu_{4 Y}}{2}-\frac{\mu_{1 N}+\mu_{4 N}}{2}
$$

- Nitrogen effect: $\mu_{1 N}-\mu_{2 N}, \mu_{2 N}-\mu_{3 N}$, etc.
- Whether irrigation or nitrogen has any effect

$$
\mu_{1 N}=\mu_{1 Y}=\mu_{2 N}=\mu_{3 N}=\mu_{4 N}=\mu_{4 Y}
$$

C03A-6

Dot and Bar Notation

A dot (•) in subscript means summing over that index, for example

$$
y_{i \bullet}=\sum_{j} y_{i j}, \quad y_{\bullet j}=\sum_{i} y_{i j}, \quad y_{\bullet \bullet}=\sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{i j}
$$

A bar over a variable, along with a dot (•) in subscript means averaging over that index, for example

$$
\bar{y}_{i \bullet}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{i j}, \quad \bar{y}_{\bullet \bullet}=\frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{i j}
$$

Estimation of Means

Recall the least square (LS) estimates $\widehat{\mu}_{i}$'s are the $\widehat{\mu}_{i}$'s that minimize the sum of squares of the observations $y_{i j}$ to their hypothesized means μ_{i} based on the model,

$$
S=\sum_{j=1}^{n_{1}}\left(y_{1 j}-\widehat{\mu}_{1}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{2 j}-\widehat{\mu}_{2}\right)^{2}+\cdots+\sum_{j=1}^{n_{g}}\left(y_{g j}-\widehat{\mu}_{g}\right)^{2} .
$$

To minimize S, we could differentiate it with respect to each μ_{i} and set the derivative equal to zero.

$$
\frac{\partial S}{\partial \widehat{\mu}_{i}}=-2 \sum_{j=1}^{n_{i}}\left(y_{i j}-\widehat{\mu}_{i}\right)=-2 n_{i}\left(\bar{y}_{i \bullet}-\widehat{\mu}_{i}\right)=0
$$

The least square estimate for μ_{i} is thus the sample mean of observations in the corresponding treatment group,

$$
\widehat{\mu}_{i}=\bar{y}_{i \bullet}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{i j}
$$

Moreover the LS estimate $\bar{y}_{i \bullet}$ for μ_{i} is unbiased.
C03A-8

Fitted Values and Residuals

- fitted value for $y_{i j}$ is $\widehat{y}_{i j}=\widehat{\mu}_{i}=\bar{y}_{i \bullet}$
- residual for $y_{i j}$ is $e_{i j}=y_{i j}-\widehat{y}_{i j}=y_{i j}-\bar{y}_{i \bullet}$
C03A-9

Sum of Squares (1)

$$
y_{i j}-\bar{y}_{\bullet \bullet}=\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)+\left(y_{i j}-\bar{y}_{i \bullet}\right)
$$

Squaring up both sides, by the identity $(a+b)^{2}=a^{2}+b^{2}+2 a b$, we get

$$
\left(y_{i j}-\bar{y}_{\bullet \bullet}\right)^{2}=\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)^{2}+\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}+2\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)\left(y_{i j}-\bar{y}_{i \bullet}\right)
$$

Summing over the indexes i and j, we get

$$
\begin{array}{r}
\overbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{\bullet \bullet}\right)^{2}}^{S S T}= \\
\overbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)^{2}}^{S S_{T r t}}+\overbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}}^{S S E} \\
+2 \sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)\left(y_{i j}-\bar{y}_{i \bullet}\right)
\end{array}
$$

Sum of Squares (2)

Observe that

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}} \underbrace{\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)}_{\text {constant in } j}\left(y_{i j}-\bar{y}_{i \bullet}\right)=\sum_{i=1}^{g}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right) \underbrace{\sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)}_{\text {see below }}
$$

and

$$
\sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)=y_{i \bullet}-n_{i} \bar{y}_{i \bullet}=y_{i \bullet}-n_{i}\left(\frac{y_{i \bullet}}{n_{i}}\right)=0
$$

and hence

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)\left(y_{i j}-\bar{y}_{i \bullet}\right)=0 .
$$

$$
\underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{\bullet \bullet}\right)^{2}}_{S S T}=\underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)^{2}}_{=S S_{T r t}=S S B}+\underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}}_{=S S E=S S W}
$$

- SST = total sum of squares
- reflects total variability in the response for all the units
- $\mathrm{SS}_{\text {Trt }}=$ treatment sum of squares
- reflects variability between treatments
- also called between sum of squares, denoted as SSB
- SSE = error sum of squares
- Observe that SSE $=\sum_{i=1}^{g}\left(n_{i}-1\right) s_{i}^{2}$, in which

$$
s_{i}^{2}=\frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}
$$

is the sample variance within treatment group i. So SSE reflects the variability within treatment groups.

- also called within sum of squares, denoted as SSW

Estimate of the Variance - MSE

Recall in a one sample problem, the population variance σ^{2} is estimated by the sample variance

$$
s^{2}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \quad \stackrel{\text { estimates }}{\longrightarrow} \sigma^{2}
$$

In a one way ANOVA problem $y_{i j}=\mu_{i}+\varepsilon_{i j}$, as all groups have identical variance $\operatorname{Var}\left(\varepsilon_{i j}\right)=\sigma^{2}$, the sample variance s_{j}^{2} of any group can estimate σ^{2}.

Group 1: $s_{1}^{2} \xrightarrow{\text { estimates }} \sigma^{2}$
Group 2: $s_{2}^{2} \xrightarrow{\text { estimates }} \sigma^{2}$

Group g: $s_{g}^{2} \xrightarrow{\text { estimates }} \sigma^{2}$

We can pool all of $s_{1}^{2}, s_{2}^{2}, \ldots, s_{g}^{2}$ to get a better estimate of σ^{2}.

$$
\begin{aligned}
\widehat{\sigma}^{2} & =\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{g}-1\right) s_{g}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)+\cdots+\left(n_{g}-1\right)} \\
& =\frac{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}}{N-g}=\frac{\text { SSE }}{N-g}=\mathrm{MSE}
\end{aligned}
$$

This estimate is called the mean square error (MSE).

Degrees of Freedom

Under the model $y_{i j}=\mu_{i}+\varepsilon_{i j}$, where $\varepsilon_{i j}$'s are i.i.d. $\sim N\left(0, \sigma^{2}\right)$, it can be shown that

$$
\frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi_{N-g}^{2} .
$$

As the mean of a χ_{k}^{2} distribution is k, we know that MSE is an unbiased estimator for σ^{2}.
Furthermore if $\mu_{1}=\cdots=\mu_{g}$, then

$$
\frac{\mathrm{SST}}{\sigma^{2}} \sim \chi_{N-1}^{2}, \quad \frac{\mathrm{SS}_{T_{r t}}}{\sigma^{2}} \sim \chi_{g-1}^{2}
$$

and $\mathrm{SS}_{T r t}$ is independent of SSE.
Note the degrees of freedom of the 3 SS

$$
d f T=N-1, \quad d f_{T r t}=g-1, \quad d f E=N-g
$$

break down just like $S S T=S S_{T r t}+S S E$,

$$
\begin{gathered}
d f T=d f_{T_{r t}}+d f E \\
\text { C03A }-14
\end{gathered}
$$

One-Way ANOVA Test \& ANOVA Table

A one-way ANOVA test is for testing whether the treatments have different effects

$$
\begin{array}{lr}
H_{0}: \mu_{1}=\cdots=\mu_{g} & \text { (no difference between treatments) } \\
H_{a}: \mu_{i} \text { 's not all equal } & \text { (some difference between treatments) }
\end{array}
$$

The test statistic is the F-statistic.

$$
F=\frac{M S_{T r t}}{M S E}=\frac{S S_{T r t} /(g-1)}{S S E /(N-g)}
$$

which has an F distribution with $g-1$ and $N-g$ degrees of freedom.

Source	Sum of Squares	d.f.	Mean Squares	F
Treatments	SS $_{T r t}$	$g-1$	$\mathrm{MS}_{T r t}=\frac{S S_{T r t}}{g-1}$	$\frac{M S_{T r t}}{\mathrm{MSE}}$
Errors	SSE	$N-g$	$\mathrm{MSE}=\frac{S S E}{N-g}$	
Total	SST	$N-1$		

Interpretation of the ANOVA F-Statistic

$H_{0}: \mu_{1}=\cdots=\mu_{g}$
$H_{a}: \mu_{i}$'s not all equal
(no difference between treatments)
(some difference between treatments)

$$
\begin{aligned}
F & =\frac{S S_{T r t} /(g-1)}{S S E /(N-g)}=\frac{S S B /(g-1)}{S S W /(N-g)} \\
& =\frac{\text { Variation Between Groups }}{\text { Variation Within Groups }}
\end{aligned}
$$

The larger the variation between groups relative to variation within each group, the stronger the evidence toward H_{a}

Case Study: Grass/Weed Competition $-\mathrm{SS}_{\text {Trt }}$

Treatment	1 N	1 Y	2 N	3 N	4 N	4 Y
	97	83	85	64	52	48
	96	87	84	72	56	58
	92	78	78	63	44	49
	95	81	79	74	50	53
Mean $\bar{y}_{\text {• }}$	95	82.25	81.5	68.25	50.5	52
$\mathrm{SD} s_{i}$	2.160	3.775	3.512	5.560	5.000	4.546

$\bar{y}_{\boldsymbol{\bullet}}=\frac{1}{6}(95+82.25+81.5+68.25+50.5+52)=\frac{429.5}{6}=71.583$
The between group sum of squares

$$
\begin{aligned}
S S_{\text {Trt }}= & \sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\bar{y}_{\bullet \bullet}-\bar{y}_{\bullet \bullet}\right)^{2}=\sum_{i=1}^{g} n_{i}\left(\bar{y}_{\bullet \bullet}-\bar{y}_{\bullet \bullet}\right)^{2} \\
= & 4(95-71.583)^{2}+4(82.25-71.583)^{2}+4(81.5-71.583)^{2} \\
& +4(68.25-71.583)^{2}+4(50.5-71.583)^{2}+4(52-71.583)^{2} \\
\approx & 6398.333
\end{aligned}
$$

$$
\text { C03A - } 17
$$

Case Study: Grass/Weed Competition - SSE

$$
\begin{aligned}
& S S E=\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}=\sum_{i=1}^{g}\left(n_{i}-1\right) s_{i}^{2} \\
& =(4-1)\left(2.160^{2}+3.775^{2}+3.512^{2}+5.560^{2}+5.000^{2}+4.546^{2}\right) \\
& \approx 323.4903
\end{aligned}
$$

Case Study: Grass/Weed Competition - ANOVA Table

Source	df	Sum of Squares	Mean Squares	F
Treatment	$\begin{aligned} & g-1= \\ & 6-1=5 \end{aligned}$	$\mathrm{SS}_{t r t}=6398.3$	$\begin{gathered} \mathrm{MS}_{t r t}=\mathrm{SS}_{t r t} / d f_{t r t} \\ =6398.3 / 5 \approx 1279.67 \end{gathered}$	$\begin{aligned} & F=\mathrm{MS}_{\text {trt }} / \mathrm{MSE} \\ & =\frac{1279.67}{17.97} \approx 71.2 \end{aligned}$
Error	$\begin{gathered} N-g= \\ 24-6=18 \end{gathered}$	SSE=323.49	$\begin{gathered} \mathrm{MSE}=\mathrm{SSE} / d f_{E} \\ =323.49 / 18 \approx 17.97 \end{gathered}$	

The F Distributions

An F-distribution has two parameters df1 and df2. There is one F-density curve with each pair of values of df1 and df2.

P-value of the One-Way ANOVA Test

The one-way ANOVA F-statistic

$$
F=\frac{M S_{T r t}}{M S E}=\frac{S S_{T r t} /(g-1)}{S S E /(N-g)}
$$

which has an F distribution with $g-1$ and $N-g$ degrees of freedom.

Under H_{0} : all μ_{i} 's being equal, the P-value is the area of the upper-tail under the F-curve with $g-1$ and $N-g$ degrees of freedom beyond the F statistic.
F-curve with $g-1$ and $N-g$ degrees of freedom

C03A-21

Finding the P-value in R

For the Grass/Weed experiment, the P-value for the F-statistic 71.2 is

$$
P \text {-value }=P\left(F_{5,18} \geq 71.2\right)=3.197 \times 10^{-11}
$$

Conclusion: The data exhibit strong evidence against the H_{0} that all means are equal.

Finding the P-value using the F-table (p.627-628)

C03A-23

ANOVA F-Test in R

```
> lm1 = lm(percent ~ trt, data=grass)
> anova(lm1)
Analysis of Variance Table
Response: percent
    Df Sum Sq Mean Sq F value Pr(>F)
trt 5 6398.3 1279.67 71.203 3.197e-11 ***
Residuals 18 323.5 17.97
```


What Does "ANOVA" Stands For?

"ANOVA" is the shorthand for "ANalysis Of VAriance."
Specifically, it is a class of statistical methods that break up the variability of the response into different sources of variations, like

$$
\mathrm{SST}=\mathrm{SS}_{t r t}+\mathrm{SSE}
$$

Throughout STAT 22200, we will introduce several other ANOVA for different models (two-way ANOVA, three-way ANOVA, ANOVA for block designs, and so on.)

