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Example — Resin Glue Failure Time — Background

I How to measure the lifetime of things like computer disk
drives, light bulbs, and glue bonds?
E.g., a computer drive is claimed to have a lifetime of 800,000
hours (> 90 years).
Clearly the manufacturer did not have disks on test for 90
years; how do they make such claims?

I Accelerated life test: Parts under stress (higher load, higher
temperature, etc.) will usually fail sooner than parts that are
unstressed. By modeling the lifetimes of parts under various
stresses, we can estimate (extrapolate to) the lifetime of parts
that are unstressed.

I Example: resin glue failure time
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Example — Resin Glue Failure Time1

I Goal: to estimate the life time (in hours) of an encapsulating
resin for gold-aluminum bonds in integrated circuits
(operating at 120◦C)

I Method: accelerated life test

I Design: Randomly assign 37 units to one of 5 different
temperature stresses (in Celsius)

175◦, 194◦, 213◦, 231◦, 250◦

I Treatments: temperature in Celsius

I Response: Y = log10(time to failure in hours) of the tested
material.

1Source: p. 448-449, Accelerated Testing (Nelson 2004). Original data is
provided by Dr. Muhib Khan of AMD.
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Example — Resin Glue Failure Time — Data

Y = log10(Failure time in hours)

Temperature (◦C)
175 194 213 231 250
2.04 1.66 1.53 1.15 1.26
1.91 1.71 1.54 1.22 0.83
2.00 1.42 1.38 1.17 1.08
1.92 1.76 1.31 1.16 1.02
1.85 1.66 1.35 1.21 1.09
1.96 1.61 1.27 1.28 1.06
1.88 1.55 1.26 1.17
1.90 1.66 1.38
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Data file: resin.txt
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Example — Resin Glue Failure Time — SStrt
Temperature (◦C) 175 194 213 231 250

Size ni 8 8 8 7 6
Mean y i• 1.9325 1.62875 1.3775 1.1943 1.0567

SD si 0.0634 0.1048 0.1071 0.0458 0.1384

y•• =

∑
niy i•
N

=
1

37
(8 · 1.9325 + 8 · 1.62875 + 8 · 1.3775 + 7 · 1.1943 + 6 · 1.0567)

≈ 1.4651

SSTrt =
∑g

i=1

∑ni

j=1
(y i• − y••)2 =

∑5

i=1
ni (y i• − y••)2

= 8(1.9325 − 1.4651)2 + 8(1.62875 − 1.4651)2 + 8(1.3775 − 1.4651)2

+ 7(1.1943 − 1.4651)2 + 6(1.0567 − 1.4651)2

≈ 3.543
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Example: Resin Glue Failure Time — SSE, F , and P-value
Temperature (◦C) 175 194 213 231 250

Size ni 8 8 8 7 6
Mean y i• 1.9325 1.62875 1.3775 1.1943 1.0567

SD si 0.0634 0.1048 0.1071 0.0458 0.1384

SSE =

g∑
i=1

ni∑
j=1

(yij − y i•)2 =

g∑
i=1

(ni − 1)s2i

= (8 − 1)(0.0634)2 + (8 − 1)(0.1048)2 + (8 − 1)(0.1071)2

+ (7 − 1)(0.0458)2 + (6 − 1)(0.1384)2

≈ 0.2937

F -statistic =
SSTrt/(g − 1)

SSE/(N − g)
=

3.543/(5 − 1)

0.2937/(37 − 5)
≈ 96.52

with g − 1 = 5 − 1 = 4 and N − g = 37 − 5 = 32 degrees of freedom.

The P-value is ≈ 2.189 × 10−17. The data exhibit strong evidence
against the H0 that all means are equal.

> pf(96.52, df1 = 4, df2 = 32, lower.tail=F)

[1] 2.188913e-17
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Always Check Degrees of Freedom

> resin = read.table("resin.txt", header=T)

> str(resin)

’data.frame’: 37 obs. of 2 variables:

$ tempC: int 175 175 175 175 175 175 175 175 194 194 ...

$ y : num 2.04 1.91 2 1.92 1.85 1.96 1.88 1.9 1.66 1.71 ...

> lm1 = lm(y ~ tempC, data=resin)

> anova(lm1)

Df Sum Sq Mean Sq F value Pr(>F)

tempC 1 3.4593 3.4593 325.41 < 2.2e-16 ***

Residuals 35 0.3721 0.0106

Something wrong? d.f. for tempC should be 5 − 1 = 4, not 1.
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Always Check Degrees of Freedom

As tempC is numerical, by default, R will fit the regression model

yij = β0 + β1tempCi + εij .

rather than the ANOVA means model yij = µi + εij .

We can let R treat tempC as categorical by as.factor()ing it.

> lmmeans = lm(y ~ as.factor(tempC), data=resin)

> anova(lmmeans)

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(tempC) 4 3.5376 0.88441 96.363 < 2.2e-16 ***

Residuals 32 0.2937 0.00918
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Means Model Is a Multiple Linear Regression Model

For an experiment with g treatments, the Means model

yij = µi + εij

can be written as a multiple linear regression model by defining a
dummy variable for each treatment group. The dummy variable for
the ith treatment is defined as

Di =

{
1 if the experimental unit receives the ith treatment

0 otherwise

The means model can then be written as a regression model

Yk = µ1D1k + µ2D2k + · · · + µgDgk + εk

Note that this regression model has no intercept.
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In R, putting -1 in the model formula tells R to fit a regression
model with no intercept.

> resin = read.table("resin.txt", header=T)

> lmmeans = lm(y ~ -1 + as.factor(tempC), data = resin)

> lmmeans

Call:

lm(formula = y ~ -1 + as.factor(tempC), data = resin)

Coefficients:

as.factor(tempC)175 as.factor(tempC)194 as.factor(tempC)213

1.932 1.629 1.377

as.factor(tempC)231 as.factor(tempC)250

1.194 1.057

Recall for the resin glue data, the group means y i• are

Temperature (◦C) 175 194 213 231 250
y i• 1.933 1.629 1.378 1.194 1.057

Observed the coefficients 1.932, 1.629, . . ., etc, are simply the
group means y i•.
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The command as.factor(tempC) tells R to create dummy
variables for each levels the temperature. Without as.factor(),
R will fit the model

yij = βti + εij

where ti is the temperature in Celsius for treatment group i .

> lmmeans1 = lm(y ~ -1 + tempC, data = resin)

> lmmeans1

Call:

lm(formula = y ~ -1 + tempC, data = resin)

Coefficients:

tempC

0.006695
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If an Intercept Is Included in the Means Model...
The textbook formulate the means model in another form:

yij = µi + εij (means model)

= µ+ αi + εij (effects model)

I Observe the effects model has g + 1 parameters µ, α1, . . . , αg ,
while the means model only has g parameters µ1, . . . , µg

I The effects model is overparameterized, meaning that it
specifies more parameters than we actually need. The two
sets of parameters below

(µ, α1, . . . , αg ) and (µ− c, α1 + c , . . . , αg + c)

specifies identical means for the responses. Thus the
parameters for the effects model cannot be uniquely
determined.

I These two models are equivalent in the sense that fitted
values for responses will be identical.
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When One of the αi ’s is Dropped ...

Say α1 is dropped, the mean response for the g treatments are

E[yij ] =


µ for treatment 1

µ+ α2 for treatment 2
...

µ+ αg for treatment g

I The mean response under the first treatment (i = 1) is µ

I αi = the difference between the mean response of the ith
treatment and that of the 1st treatment. One can compare
the effect of the ith treatment and the 1st treatment by
testing αi = 0

I Useful for comparing treatments
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> lmeffects1 = lm(y ~ as.factor(tempC), data = resin)

> lmeffects1

Call:

lm(formula = y ~ as.factor(tempC), data = resin)

Coefficients:

(Intercept) as.factor(tempC)194 as.factor(tempC)213

1.9325 -0.3037 -0.5550

as.factor(tempC)231 as.factor(tempC)250

-0.7382 -0.8758

Note there is no as.factor(temp)175, α̂1, since R sets α1 = 0.

Temperature (◦C) 175 194 213 231 250
y i• 1.933 1.629 1.378 1.194 1.057

Observed µ̂ = y1• and α̂i = y i• − y1•.
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Limitation of ANOVA F -Tests
The ANOVA F -test merely tells us the glue has different failure
time at different temperature.
However, our goal is to predict the lifetime of the glue at a
temperature of 120◦.
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Dose-Response Modeling
In some experiments, the treatments are associated with numerical
levels xi such as drug dose, baking time, or temperature.

We will refer to such levels as doses.

I The means model yij = µi + εij specifies no relationship
between treatment levels xi and the response y , which cannot
be used to infer the response at some dose x other than those
used in the experiment

I With a quantitative treatment factor, experimenters are
usually more interested on how the response is affected by the
factor as a function of xi

yij = f (xi ; θ) + εij ,

e.g.,

f (xi ;β0, β1) = β0 + β1xi ;

f (xi ;β0, β1, β2) = β0 + β1xi + β2x
2
i ; or

f (xi ;β0, β1) = β0 + β1 log(xi ).
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yij = f (xi ; θ) + εij

Advantages of dose-response modeling

I less complex (fewer parameters)

I easier to interpret (sometimes)

I generalizable to doses not included in the experiment

Issues to consider:

I How to choose the function f ?

I One commonly used family of functions f are polynomials:

f (xi ;β) = β0 + β1xi + β2x
2
i + · · · + βkx

k
i ,

But polynomials are NOT always the best choice
I For simplicity, we would choose the lowest possible order of

polynomial that adequately fit the data.

I How to assess how well f fits the data? . . . . . . Goodness of fit
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Polynomial Models

Let ti denote the temperature in Celsius in treatment group i .
Consider the following polynomial models for the resin glue data.

Null model : yij = µ+ εij

Linear model : yij = β0 + β1ti + εij

2nd order model : yij = β0 + β1ti + β2t
2
i + εij

3rd order model : yij = β0 + β1ti + β2t
2
i + β3t

3
i + εij

4th order model : yij = β0 + β1ti + β2t
2
i + β3t

3
i + β4t

4
i + εij

I Every model is nested in the model below it. (Why?)

I Never skip a term. If a higher order term is significant, e.g.,
t3i , than all lower order terms have to be kept (1, ti , t

2
i ), even

if they are not significant.

I Why not consider 5th order or higher order models?
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In general, for an experiment with g treatment groups, if the
treatment factor is numeric, one can fit a polynomial model up to
degree g − 1

yij = β0 + β1xi + · · · + βg−1x
g−1
i + εij .

Question: For the resin glue data, what will happen if a quintic
model (a polynomial of order 5) is fitted?

yij = β0 + β1ti + β2t
2
i + β3t

3
i + β4t

4
i + β5t

5
i + εij

Answer: There exist more than one polynomial of degree 5
passing through the 5 points (175, µ1), (194, µ2), (213, µ3),
(231, µ4), and (250, µ5). Thus the 6 coefficients β0, β1, . . . , β5
CANNOT be uniquely determined.

As a rule of thumb, for an experiment with g treatments, we can
fit a model with at most g parameters.
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Linear Model (1)

Let’s try fitting the linear model: yij = β0 + β1ti + εij .

> lm1 = lm(y ~ tempC, data = resin)

> summary(lm1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.9560075 0.1391174 28.44 <2e-16 ***

tempC -0.0118567 0.0006573 -18.04 <2e-16 ***

I Fitted equation: log10(failure time) = 3.956 − 0.01186T

I Predicted log10(failure time) at 120◦ is

3.956 − 0.01186 × 120 ≈ 2.5332,

and hence the failure time at 120◦ is predicted as

102.5332 ≈ 341 hours.
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Linear Model (2)

R commands for the predicted log10(failure time) along with a
95% prediction interval:

> predict(lm1, newdata=data.frame(tempC=120), interval="prediction")

fit lwr upr

1 2.533201 2.289392 2.777011
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By imposing the regression
line on the top of the
scatter plot, we can see y is
a slightly curved with
temperature. Using the
linear model, the failure
time at 120◦ will be
underestimated.
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2nd Order Model

> lm2 = lm(y ~ tempC+I(tempC^2), data=resin)

> summary(lm2)

(... part of the output is omitted ...)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.4179987 1.1564331 6.415 2.51e-07 ***

tempC -0.0450981 0.0110542 -4.080 0.000258 ***

I((tempC)^2) 0.0000786 0.0000261 3.011 0.004879 **

I Fitted model: log10(time) = 7.418 − 0.0451T + 0.0000786T 2

I Predicted log10(time) at 120◦ is

7.418 − 0.0451 × 120 + 0.0000786 × (120)2 ≈ 3.138

The predicted failure time at 120◦ is 103.138 ≈ 1374 hours.
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3rd and 4th Order Models

> lm3 = lm(y ~ tempC+I(tempC^2)+I(tempC^3), data = resin)

> summary(lm3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.827e+00 1.299e+01 0.526 0.603

tempC -3.659e-02 1.865e-01 -0.196 0.846

I(tempC^2) 3.815e-05 8.860e-04 0.043 0.966

I(tempC^3) 6.357e-08 1.392e-06 0.046 0.964

> lm4 = lm(y ~ tempC+I(tempC^2)+I(tempC^3)+I(tempC^4), data = resin)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.699e-01 1.957e+02 0.005 0.996

tempC 7.573e-02 3.750e+00 0.020 0.984

I(tempC^2) -7.649e-04 2.679e-02 -0.029 0.977

I(tempC^3) 2.600e-06 8.459e-05 0.031 0.976

I(tempC^4) -2.988e-09 9.962e-08 -0.030 0.976
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Arrhenius Law
The Arrhenius rate law in Thermodynamics says, the log of failure
time is linear in the inverse of absolute Kelvin temperature, which
equals the Centigrade temperature plus 273.16 degrees.

Arrhenius Model: yij = β0 +
β1

T + 273.15
.
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> lmarr = lm(y ~ I(1/(tempC+273.15)), data=resin)

> summary(lmarr)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.3120 0.3007 -14.34 3.2e-16 ***

I(1/(tempC + 273.15)) 2783.7764 144.6808 19.24 < 2e-16 ***
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Predicted log10(failure time) at 120◦ is −4.312+ 2783.78
120+273.15 ≈2.77.

The predicted failure time is e2.77 ≈ 588 hours.
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Data Can Distinguish Models Only at Design Points
In addition to polynomial models and the Arrhenius model, many
other models can be considered

yij = β0 + β1 log(ti ) + εij ,

yij = β0 + β1 exp(ti ) + εij ,

yij = β0 + β1 sin(ti ) + εij ,

yij = β0 + f (ti ) + εij .

As we only have observations at five temperatures:

175, 194, 213, 231, 250,

the data cannot distinguish between two models:

yij = f (ti ) + εij and yij = g(ti ) + εij ,

if f (t) and g(t) coincide at t = 175, 194, 213, 231, 250, even if f
and g behave differently in other places.
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The Model that Fit the Data the Best
If no restriction is placed on f , how well the model yij = f (ti ) + εij
can possibly fit the data?
The least square method will choose the f that minimize∑

i

∑
j

(yij − f (ti ))2

Recall that given a list of numbers x1, x2, . . . , xn the c that
minimize

∑n
i=1(xi − c)2 is the mean x = 1

n

∑n
i=1 xi .

Thus the least square method will choose the f that

f (ti ) = y i•.

Thus the smallest SSE a model yij = f (ti ) + εij can possibly
achieve is ∑

i

∑
j

(yij − y i•)2

which is the SSE for the means model yij = µi + εij .

Conclusion: no other models can beat the means model in
minimizing the SSE.
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Goodness of Fit

As the means model is the model that fit the data the best, we can
access the goodness of a model yij = f (ti ) + εij by comparing it
with the means model.

Full Model : yij = µi + εij

Reduced Model : yij = f (ti ) + εij

This comparison is legitimate because any model yij = f (ti ) + εij is
nested in the means model yij = µi + εij (letting µi = f (ti ) ).

We can use the F -statistic below to compare a reduced model with
a full model

F =
(SSEreduced − SSEfull)/(dfreduced − dffull)

SSEfull/dffull
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Goodness of Fit of the Linear Model

Since the linear model (reduced model) is nested in the means
model (full), use the F -statistic for model comparison we get

> lm1 = lm(y ~ tempC, data = resin) # linear model

> lmmeans = lm(y ~ as.factor(tempC), data = resin) # means model

> anova(lm1,lmmeans)

Analysis of Variance Table

Model 1: y ~ tempC

Model 2: y ~ as.factor(tempC)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 35 0.37206

2 32 0.29369 3 0.07837 2.8463 0.05303 .

The P-value 0.05303 is moderate evidence showing the linear
doesn’t fit the data so well.
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Goodness of Fit of the 2nd-Order Model

Since the 2nd-order model (reduced model) is also nested in the
means model (full model), again using the F -statistic for model
comparison we get

> lm2 = lm(y ~ tempC+I((tempC)^2), data=resin) # 2nd-order model

> lmmeans = lm(y ~ as.factor(tempC), data = resin) # means model

> anova(lm2,lmmeans)

Analysis of Variance Table

Model 1: y ~ tempC + I((tempC)^2)

Model 2: y ~ as.factor(tempC)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 34 0.29372

2 32 0.29369 2 2.6829e-05 0.0015 0.9985

The large p-value 0.9985 shows the 2nd-order model fits the data
nearly as good as the best model. Does this indicate the 2nd-order
model is an adequate model?
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Shall We Consider a 3rd- or 4th-Order Model?

No. Because

2nd-order ⊂ 3rd-order ⊂ 4th-order ⊂ Means Model

the 3rd- or 4th-order model won’t fit the data better than the
means model does. As the 2nd-order model fits the data nearly as
well as the means model, the 4 models just fit as well as each
other. In this case we simply choose the model of lowest
complexity.
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Be Cautious About Extrapolation
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Though the 2nd-, 3rd-, 4th-order model fit the 5 points nearly as
well, their predicted values at 120◦C are quite different,

2nd-order > 3rd-order > 4th-order > linear
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Since the Arrhenius model is nested in the means model, we can
check its goodness of fit.

> anova(lmarr,lmmeans)

Analysis of Variance Table

Model 1: y ~ I(1/(tempC + 273.15))

Model 2: y ~ as.factor(tempC)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 35 0.33093

2 32 0.29369 3 0.037239 1.3525 0.2749

The moderately large P-value 0.2749 told us the Arrhenius Model
is acceptable relative to the best model.
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