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7.2 Comparing Two Means
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Outline

◮ Two-sample z statistic

◮ Two-samples t procedures

◮ Two-sample t tests and confidence intervals (σ1 6= σ2)

◮ Pooled two-sample t tests and confidence intervals (σ1 = σ2)

◮ Robustness
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Two Sample Problems (1)

◮ E.g., is the air more polluted in Chicago than in LA?

◮ E.g., are the midterm scores of the students who prefer to sit

in the front of the class higher than the scores of those who

prefer to sit in the back?

◮ E.g., are smokers suffering less from depression than

non-smokers?

◮ E.g., are the response in the treatment group different from

that in the control group?
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Two Sample Problems (2)

◮ The goal is to compare the means (of some quantity) µ1 and

µ2 of the two populations.

Suppose the SDs of the two populations are respectively σ1
and σ2.

To compare µ1 and µ2, we will take a simple random sample

from each of the two populations.

SRS of size n1 from population 1 : X1,1,X1,2, . . .X1,n1

SRS of size n2 from population 2 : X2,1,X2,2, . . . . . . ,X2,n2

◮ The responses in each group are independent of those in the

other group

◮ Unlike the matched pairs design, there is no matching of the

observations in the two samples and the two samples may be

of different sizes
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Two Sample Problems (3)

◮ The first sample has the sample mean

X 1 =
1

n1
(X1,1 + X1,2 + · · ·+ X1,n1) which estimates µ1.

◮ The second sample has the sample mean

X 2 =
1

n2
(X2,1 + X2,2 + · · ·+ X2,n2) which estimates µ2.

◮ Therefore X 1 − X 2 estimates µ1 − µ2.

How close is X 1 − X 2 to µ1 − µ2?
What is the sampling distribution of X 1 − X 2?
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Two Sample Problems (3)
Recall that

E (X 1) = µ1, Var(X 1) = σ2
1/n1

E (X 2) = µ2, Var(X 2) = σ2
2/n2.

Observe X 1 − X 2 is an unbiased estimate of µ1 − µ2 because

E (X 1 − X 2) = E (X 1)− E (X 2) = µ1 − µ2.

Furthermore, since the two samples are independent, X 1 and X 2

are independent, we have

Var(X 1 − X 2) = Var(X 1) +Var(X 2) =
σ2
1

n1
+

σ2
2

n2

Thus the standard deviation of X 1 − X 2 is

SD(X 1 − X 2) =

√

σ2
1

n1
+

σ2
2

n2
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Two-Sample z-Statistic When σ1, σ2 Are Known

If the standard deviations σ1, σ2 are known, the two-sample
z-statistic for the difference µ1 − µ2 is

Z =
(X 1 − X 2)− (µ1 − µ2)

√

σ2
1

n1
+

σ2
2

n2

Then, Z is approximately N(0, 1) if

◮ both populations are normal, or

◮ both sample sizes n1 and n2 are large (CLT)
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Two Sample Problem with Known σs: CIs and Tests

The 100(1− α)% CI for µ1 − µ2 is given by

(X 1 − X 2)± z∗

√

σ2
1

n1
+

σ2
2

n2

where z∗ = zα/2 is the α/2 critical value of the standard normal
distribution.

To test the hypothesis H0 : µ1 = µ2 or equivalently
H0 : µ1 − µ2 = 0, we use

Z =
X 1 − X 2
√

σ2
1

n1
+

σ2
2

n2

∼ N(0, 1) under H0

The p-value is calculated as before.
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Two-Sample t-Statistic When σ1, σ2 Are Unknown

Of course, σ2
1 and σ2

2 are often unknown. Thus we substitute them
by the sample variances s21 and s22 .

t =
(X 1 − X 2)− (µ1 − µ2)

√

s21
n1

+
s22
n2

where
s21 =

∑n1
i=1(X1,i − X 1)

2

n1 − 1

s22 =

∑n2
i=1(X2,i − X 2)

2

n2 − 1

◮ Unfortunately, the two-sample t-statistic does NOT have a

t-distribution

◮ Fortunately, it can be approximated by a t-distribution with a

certain degrees of freedom.

See the next slide for the approximation
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Approximate Distribution of the Two-Sample t-Statistic

The two-sample t-statistic has an approximate tk distribution.

For the degrees of freedom k we have two formulas:

1. software formula:

k =
(w1 + w2)

2

w2
1 /(n1 − 1) + w2

2 /(n2 − 1)
,

w1 = s21/n1,

w2 = s22/n2.

2. simple formula: k = min(n1 − 1, n2 − 1)

Comparison of the two formulas:

◮ The software approximation is more accurate. It gives larger

degrees of freedom and yields shorter CIs and smaller P-value

◮ The simple formula is more conservative. I.e., it yields wider

CIs and larger P-values than the actual P-value

◮ For this course, it is fine to just using the simple formula.
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Confidence Intervals for µ1 − µ2

A (1− α)100% CI for µ1 − µ2 is given by

(X 1 − X 2)± t∗

√

s21
n1

+
s22
n2

where t∗ = tk,α/2 is the α/2 critical value of the t distribution with
k degrees of freedom.

density curve of tk

−t* t*

α 2α 2
1 − α
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Example: Nitrogen Effect on Tree Growth

20 northern red oak seedlings
Half received no nitrogen
All grown in same type of soil in same greenhouse
After 140 days, stem weights (in milligrams) were:

Control Treatment
no nitrogen nitrogen

320 430 260 750
530 360 430 790
280 420 470 860
370 380 490 620
470 430 520 460

mean = 399 mean = 565
SD = 186.74 SD = 72.79
nC = 10 nT = 10

control treatment
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Example: CI for the Nitrogen Effect on Tree Growth

The two samples have 10 observations each. Thus the degrees of
freedom is the smaller one of 10− 1 and 10− 1, which is 9.

From Table D, we can find the critical value for 95% confidence
level is t∗ = t9,0.025 = 2.262.

So the 95% CI for µT − µC (treatment mean - control mean) is

XT − XC ± t∗

√

s2T
n1

+
s2C
n2

= 565−399± 2.262

√

(186.74)2

10
+

(72.79)2

10

≈ 166± 143.4 = (22.6, 309.4)

Since 0 (zero) is NOT inside the CI, it appears that there is a
difference in the population mean stem weights of the treatment
and control groups.

We conclude that Nitrogen has an effect on stem weight.
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Hypothesis Tests for µ1 − µ2

To test the null hypothesis H0: µ1 − µ2 = δ0, the two-sample
t-statistic is

t =
(X 1 − X 2)− δ0
√

s21/n1 + s22/n2

,

which has an approximate tk -distribution, where the degrees of
freedom is k = min(n1−1, n2−1), and the P-value is computed as
follows depending on the alternative hypothesis Ha.

Two-Sided Lower One-Sided Upper One-Sided

H1 µ1 − µ2 6= δ0 µ1 − µ2 < δ0 µ1 − µ2 > δ0
P-value P(|tk | > |t|) P(tk < t) P(tk > t)

|t|−|t| t t

The bell curves above is the t-curve with k degrees of freedom.
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Example: Test for the Nitrogen Effect on Tree Growth
For testing H0 : µT − µC = 0 v.s. Ha : µT − µC 6= 0, the
t-statistic is

t =
XT − XC

√

s2T/nT + s2C/nC

=
565− 399

√

(186.74)2

10
+

(72.79)2

10

=
166

63.38
≈ 2.619.

The degrees of freedom is 10− 1 = 9.
From Table D, we see that P(t9 > 2.619) is between 0.01 and
0.02. So the two-sided P-value is between 0.02 and 0.04.

Upper-tail probability p

df 0.25 0.20 0.15 0.10 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 .0005

...
...

...
...

...
...

...
...

...
...

...
...

...

9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781

The difference is significant at 5% level.
We conclude that Nitrogen has an effect on stem weight.
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What if σ1 = σ2?
So far we have assumed that σ1 6= σ2. What if we have reason to
believe σ1 = σ2 = σ albeit σ is unknown?

When σ2
1 = σ2

2 = σ2, both s21 and s22 are unbiased estimates of σ2.
We can combine s21 and s22 to get a better estimate for σ2, which
is the so-called pooled samples variances

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

Observe that s2p is a weighted average of s21 and s22 , and it gives
more weights to the sample with larger size.

Moreover, as s2 = 1
n−1

∑

i (Xi − X )2, we can see that

s2p =

∑

i (X1,i − X 1)
2 +

∑

i (X2,i − X 2)
2

n1 + n2 − 2

is simply an “average” of the combined sum of squares, though we
divide by n1 + n2 − 2 but not n1 + n2.
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The Pooled Two-Sample t-Statistic (When σ1 = σ2)

The two-sample t-statistic then becomes

T =
(X 1 − X 2)− (µ1 − µ2)

√

s2p
n1

+
s2p
n2

=
(X 1 − X 2)− (µ1 − µ2)

sp

√

1
n1

+ 1
n2

which is specifically called the pooled two-sample t-statistic.

◮ It has an exact t-distribution with n1 + n2 − 2 degrees of

freedom when the two populations are normal.

◮ It is approximately t(n1+n2−2) as long as the sample size n1, n2
is not too small.

◮ The degrees of freedom, n1 + n2 − 2 is greater the degrees of

freedom given by the software formula or the simple formula

when σ1 6= σ2
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Two Sample Problems w/ Equal but Unknown σs

A (1− α)100% CI for µ1 − µ2 is

(X 1 − X 2)± t∗sp

√

1

n1
+

1

n2

where t∗ = tk,α/2 is the α/2 critical value of the t(n1+n2−2)

distribution

To test the hypothesis H0 : µ1 − µ2 = δ0, we use

t =
X 1 − X 2 − δ0

sp

√

1
n1

+ 1
n2

∼ t(n1+n2−2) under H0
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Tree Growth Example Revisit: Assuming σ1 = σ2

If assuming σ1 = σ2, the pooled SD is

sp =

√

(10− 1)(186.74)2 + (10− 1)(72.79)2

10 + 10− 2
≈ 141.72

The degrees of freedom is nT + nC − 2 = 10 + 10− 2 = 18.
From Table D, we can find the critical value for 95% confidence
level is t∗ = t18,0.025 = 2.101.

So the 95% CI for µT − µC (treatment mean - control mean) is

XT−XC ± t∗sp

√

1

nT
+

1

nC
= 565−399± 2.101× 141.72×

√

1

10
+

1

10

≈ 166± 133.2 = (32.8, 299.2)

Observe the CI become shorter. As the degrees of freedom k

increases, the critical value tk,0.025 decreases.
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Tree Growth Example Revisit: Assuming σ1 = σ2

For testing H0 : µT − µC = 0 v.s. Ha : µT − µC 6= 0, assuming
σ1 = σ2 the pooled t-statistic is

t =
XT − XC

sp
√

1/nT + 1/nC
=

565− 399

141.72
√

1/10 + 1/10

=
166

63.38
≈ 2.619.

The degrees of freedom is nT + nC − 2 = 10 + 10− 2 = 18.

From Table D, we see P(t18 > 2.619) is between 0.005 and 0.01.
So the two-sided P-value is between 0.01 and 0.02.

Upper-tail probability p

df 0.25 0.20 0.15 0.10 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 .0005

18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.610 3.922

The pooled t-test makes the P-value smaller and the result more
significant.
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Robustness of Two-Sample t-Procedures (1)

Strictly speaking, unless the two samples are both drawn from
normal distributions, neither

t =
(X 1 − X 2)− (µ1 − µ2)

√

s21
n1

+
s22
n2

nor

t =
(X 1 − X 2)− (µ1 − µ2)

sp

√

1
n1

+ 1
n2

has a t-distribution.

Nonetheless, the actual distributions of the two-sample t-statistics
are well approximated by t-distributions, even when the populations
are not normal, as long as the sample sizes are not too small.

This is the so-called robustness of the two-sample t-procedures.
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Robustness of Two-Sample t-Procedures (2)

◮ Given a fixed sum of the sample sizes n = n1 + n2 the
t-approximation works the best when the sample sizes are
equal n1 = n2

◮ In planning a two-sample study, choose equal sample

sizes if you can

◮ The t-approximation is generally good if n1 + n2 is not too
small (say, ≥ 15), the data are not strongly skewed, and there
are no outliers.

◮ Check the back-to-back stemplots or side-by-side

boxplots of the data

◮ With n1 + n2 sufficiently large (say n1 + n2 ≥ 40), the

approximation is good even when the data are clearly skewed.
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One-Sample or Two-Sample or Matched-Pairs? (1)

For each of the following scenario, determine whether it is a

one-sample, two-sample, or a matched-paired problem.

◮ Comparing vitamin content of bread immediately after baking
vs. 3 days later (the same loaves are used on day one and 3
days later).

◮ matched-pairs

◮ Comparing vitamin content of bread immediately after baking
vs. 3 days later (tests made on independent loaves).

◮ two-sample

◮ Is blood pressure altered by use of an oral contraceptive?
Comparing a group of women not using an oral contraceptive
with a group taking it.

◮ two-sample
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One-Sample or Two-Sample or Matched-Pairs? (2)

◮ Average fuel efficiency for 2005 vehicles is 21 miles per gallon.
Is average fuel efficiency higher in the new generation “green
vehicles”?

◮ one-sample

◮ Review insurance records for dollar amount paid after fire
damage in houses equipped with a fire extinguisher vs. houses
without one. Was there a difference in the average dollar
amount paid?

◮ two-sample
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