Outline

STAT22000 Autumn 2013 Lecture 22

Yibi Huang

November 18, 2013

7.1 Inference for the Mean of a Population

Lecture 22 - 1

- ► The *t* distributions
- ▶ The one-sample *t* confidence interval
- ► The one-sample *t* test
- Matched pairs t procedures
- Robustness
- Power of the *t*-test (p.419-420).....Skip
- ▶ Inference for non-normal distributions (p.420-425)...... Skip

Lecture 22 - 2

What if σ is Unknown?

We have X_1, X_2, \ldots, X_n i.i.d. (or SRS) from a population with **unknown mean** μ and standard deviation σ .

Based on the CLT, we can construct confidence intervals for μ

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

and use the z-statistic for hypothesis testing

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

In all the above, we assume that the population SD σ is KNOWN. But in reality, σ is usually UNKNOWN. We usually estimated it with the sample standard deviation

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}.$$

Lecture 22 - 3

The density curves of a *t*-distribution

- are symmetric about 0,
- are bell-shaped
- more spread out than normal heavier tails
- Exact shape of the curves depend on the degrees of freedom
- As the number of degrees of freedom increases, the *t*-curve approaches the standard normal curve.

The *t*-Distributions

Suppose that i.i.d. sample of size *n*: X_1, X_2, \ldots, X_n , is drawn from an $N(\mu, \sigma)$ population.

• When σ is known, then

$$z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

When σ unknown and is estimated from the sample standard deviation s, then the z-statistic becomes the t-statistic defined as follows

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}}$$
, in which $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})^2}$.

The *t*-statistic has a *t*-distribution with degrees of freedom n - 1, denoted as

 $t \sim t_{n-1}$

What is a *t*-distribution with degrees of freedom n - 1? Lecture 22 - 4

t-T Te	Fable (xt), v	(Table vith d	D in	the of	Area of the right-tail								
						/ \ P(T > t*) is shown along							
tre	eaom	snow	/n aid	ong	/	/	\backslash	/ the	e top o	f the tab	ole		
the	e left o	of the 1	table.		\nearrow								
	t* is shown in the body of the tal												
					Up	oper-tail	probabili	ty p					
df	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	.0005	
1	1.000	1.376	1.963	3.078	6.314	12.71	15.90	31.82	63.66	127.3	318.3	636.6	
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60	
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.22	12.92	
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610	
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869	
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959	
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408	
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041	
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781	
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587	
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437	
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318	
	1												
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646	
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551	
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496	
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460	
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416	
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390	
1000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300	
z*	0.674	0.842	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.090	3.291	
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%	
						Confider	ice level	С					

Lecture 22 - 6

	t-table													
		Upper-tail probability p												
df	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	.0005		
1	1.000	1.376	1.963	3.078	6.314	12.71	15.90	31.82	63.66	127.3	318.3	636.6		
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60		
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.22	12.92		
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610		
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869		

Let T_d be a random variable with *t*-distribution with *d* degrees of freedom. Find

- (a) $P(T_3 > 1.25) = 0.15$
- (b) $P(T_5 > 2.015) = 0.05$
- (c) $P(|T_5| > 2.015) = 2 \times P(T_5 > 2.015) = 2 \times 0.05 = 0.1$
- (d) $P(T_5 > 5) =$ between 0.0025 and 0.001
- (e) $P(|T_5| > 5) = 2 \times P(T_5 > 5) = between 0.005 and 0.002$

Lecture 22 - 7

	lipper-tail probability a													
	opper-tail probability p													
df	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	.0005		
19	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883		
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850		
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819		
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792		
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768		
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745		
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725		

Example 1. The one-sample *t* statistic for testing

 $H_0: \mu = 10$ v.s. $H_a: \mu > 10$

from a sample of n = 21 observations has the value t = 2.10. Between what two values does the *P*-value of the test fall?

• The *P*-value = $P(T_{20} > 2.1)$ is between <u>.025</u> and <u>0.02</u>.

Example 2. The one-sample *t* statistic for testing

 $H_0: \mu = 60$ v.s. $H_a: \mu \neq 60$

from a sample of n = 24 observations has the value t = 2.6. Between what two values does the *P*-value of the test fall?

Ans: $P(T_{23} > 2.6)$ is between <u>0.01</u> and <u>0.005</u>. The *P*-value = $2P(T_{23} > 2.6)$ is between <u>0.02</u> and <u>0.01</u>.

Lecture 22 - 9

Example: Growth of Tumor (1)

- Let X (in millimeter, or mm) be the growth in 15 days of a tumor induced in a mouse. It is known from a previous experiment that the average tumor growth is 4mm.
- A sample of 20 genetically variant mice used in the tumor growth study yielded x̄ = 3.8mm, s = 0.3mm.
- We want to test µ = 4 or not (assuming growths are normally distributed).

One-Sample t-test

Suppose a simple random sample (or i.i.d. sample) of size *n*, X_1, \ldots, X_n , is drawn from a $N(\mu, \sigma)$ population with both μ and σ unknown. The *t*-statistic,

$$t = rac{\overline{X} - \mu}{s/\sqrt{n}}, \quad ext{in which} s = \sqrt{rac{1}{n-1}} \sum_{i=1}^n (X_i - \overline{X})^2$$

has the *t* distribution with n - 1 d.f. To test $H_0 : \mu = \mu_0$, first calculate the *t*-statistic above and then find *p*-value as follows.

The bell curve above is the *t*-curve with n-1 degrees of freedom, not normal curve

Lecture 22 - 8

		Upper-tail probability p										
df	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	.0005
	:		:			:			:	:	:	
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300

Example 3. The one-sample t statistic for testing

$$H_0: \mu = 20$$
 v.s. $H_a: \mu < 20$

from a sample of n = 115 observations has the value t = -1.55. Between what two values does the *P*-value of the test fall?

• Ans: The df 115 - 1 = 114 is not on the table. Look at the available dfs above and below 114, which are 1000 and 100. $P(T_{100} < -1.55) = P(T_{100} > 1.55)$ is between 0.1 and 0.05. $P(T_{1000} < -1.55)$ is also between 0.1 and 0.05. So the *P*-value $P(T_{114} < -1.55)$ is also between 0.1 and 0.05.

So the P-value $P(T_{114} < -1.55)$ is also between 0.1 and 0.05. Lecture 22 - 10

Example: Growth of Tumor (2)

1. State the hypotheses

$$H_0: \mu = 4$$
 $H_a: \mu \neq 4$

2. Calculate the t-statistic

$$t = \frac{3.8 - 4.0}{0.3/\sqrt{20}} = -2.98$$

3. Determine the P-value

From the *t*-table we know $P(T_{19} > 2.98)$ is between 0.005 and 0.0025. So the *P*-value = $2P(T_{19} > 2.98)$ is between 0.01 and 0.005.

Since p is less than 0.01, we reject H_0 at significance level $\alpha = 0.01$. There is evidence that the population mean growth is not 4mm.

Confidence Intervals with Unknown σ

Suppose that i.i.d. sample of size $n: X_1, X_2, \ldots, X_n$, is drawn from an $N(\mu, \sigma)$ population.

Recall when σ is known, the $(1 - \alpha)$ confidence interval for μ is

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

When σ is unknown, and is estimated using the sample standard deviation $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})^2}$, the $(1 - \alpha)$ confidence interval for μ becomes

$$\overline{X} \pm t^* \frac{s}{\sqrt{n}}$$

The critical value $t^* = t_{n-1,\alpha/2}$ is chosen such that $(1 - \alpha)$ of the area under the $t_{(n-1)}$ density lies between $-t^*$ and t^* .

		Upper-tail probability p											
d	f 0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	.0005	
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819	
22	2 0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792	
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768	
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745	
	: : :			:		:		1	:	:	1	:	
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390	
1000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300	
z	0.674	0.842	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.090	3.291	
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%	
					C	onfider	nce lev	el C					

Find the critical value t^* from Table D for calculating a confidence interval in each of the following situations.

- (a) A 95% confidence interval based on n = 22 observations. df = 22 - 1 = 21. $t^* = t_{21,0,025} = 2.080$
- (b) A 95% confidence interval from an SRS of 25 observations. df = 25 - 1 = 24. $t^* = t_{24,0.025} = 2.064$
- (c) A 90% confidence interval from a sample of size 115. df = 115 - 1 = 114 is not in the Table. Use the largest df available below 114, which is 100. $t^* = t_{100,0.05} = 1.660$ Lecture 22 - 14

Example: Sitcom

Is your favorite TV program often interrupted by advertising? CNBC presented statistics on the average number of programming minutes in a half-hour sitcom¹. The following data (in minutes) are representative of their findings.

> 21.06, 22.24, 20.62, 21.66, 21.23, 23.86, 23.82, 20.30, 21.52, 21.52, 21.91, 23.14, 20.02, 22.20, 21.20, 22.37, 22.19, 22.34, 23.36, 23.44

Assume the population is approximately normal.

 $\overline{X} = 22.00, \quad s \approx 1.12, \quad n = 20, \quad t_{19.0.025} = 2.093$

A 95% confidence interval for the population mean (the mean number of programming minutes during a half-hour TV sitcom) is:

 $22.00 \pm 2.093 \times 1.12/\sqrt{20} \approx 22.00 \pm 0.52 = (21.48, 22.52)$ ¹CNBC, February 23, 2006 Lecture 22 - 15

Example – Matched Pairs *t*-test

For each individual in the sample, we have calculated a difference in depression score (placebo minus caffeine).

There were 11 "differences" observations, thus df = 11 - 1 = 10(not 22 - 1). We calculate that $\overline{X} = 7.36$; s = 6.92. To test whether lack of caffeine increase depression, let

 $H_0: \mu = 0$ $H_a: \mu > 0$

where μ is the mean difference (placebo minus caffeine).

The *t*-statistic is
$$t = \frac{\overline{X} - 0}{s/\sqrt{n}} = \frac{7.36 - 0}{6.92/\sqrt{11}} = 3.53.$$

For *df* = 10,

 $t_{10,0,005} = 3.169 < t = 3.53 < t_{10,0,0025} = 3.581,$

thus the *P*-value = $P(t_{10} \ge 3.53)$ is between 0.005 and 0.0025.

Conclusion: Caffeine deprivation causes a significant increase in depression.

Does Lack of Caffeine Increase Depression?

- a Matched-Pair Study

		depressi	on with	diff-
Individuals diagnosed as	subject	caffeine	placebo	erence
individuals diagnosed as	1	5	16	11
caffeine-dependent are deprived	2	5	23	18
of caffeine-rich foods and	3	4	5	1
assigned to receive daily pills	4	3	7	4
assigned to receive daily plits.	5	8	14	6
Sometimes, the pills contain	6	5	24	19
caffeine and other times they	7	0	6	6
contain a placebo Depression	8	0	3	3
contain a placebo. Depression	9	2	15	13
was assessed.	10	11	12	1
	11	1	0	_1

- ▶ In matched pairs designs, there are 2 measurements taken on the same subject or on 2 similar subjects.
- ▶ To conduct statistical inference on such a sample, we analyze the difference using the one-sample procedures.

Lecture 22 - 16

Robustness

The *t* procedures are exactly correct when the population is distributed exactly normally. However, most real data are not exactly normal.

The *t* procedures are robust to small deviations from normality the results will not be affected too much. Factors that strongly matter are:

- ▶ The sample must be an **SRS** or **i.i.d.** from the population.
- Outliers and skewness. They strongly influence the mean and therefore the t procedures. However, their impact diminishes as the sample size gets larger because of the Central Limit Theorem.

Robustness (2)

Comparison of the z-Procedures and t-Procedures

Specifically, to use the t procedures

- ▶ When *n* < 15, the data must be close to normal and without outliers.
- ▶ When 15 > n > 40, mild skewness is acceptable but not outliers.
- ▶ When n > 40, the t-statistic will be valid even with strong skewness. (Outlier is still a problem.)

For the same data set and at the same confidence level, if we pretend that the population SD σ is identical to the sample SD s, then

- ▶ a *t*-interval is wider than a *z*-interval, since $t_{n-1,\frac{\alpha}{2}} > z_{\frac{\alpha}{2}}$.
 - That is the price for the extra uncertainty in the estimation of σ .
- ▶ the *P*-value of a one-sample *z*-test calculated using the normal curve is smaller than that of a one-sample *t*-test calculated using a *t*-curve.
 - ► A z-test will be more significant and more likely to reject H₀ than a t-test

Lecture 22 - 20

Lecture 22 - 19