STAT22000 Autumn 2013 Lecture 21

Yibi Huang

November 15, 2013
6.3 Use and Abuse of Tests
6.4 Power and Inference as a Decision

Lecture 21-1

Another Way to Look at Hypothesis Testing

For a one-sided test,

$$
\begin{cases}H_{0} & : \mu=\mu_{0} \\ H_{a} & : \mu>\mu_{0}\end{cases}
$$

the H_{0} is rejected at level α if the test statistic $z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}>z_{\alpha}$, or equivalently if the sample mean

$$
\bar{X}>\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}} .
$$

For a two-sided test,

$$
\begin{cases}H_{0} & : \mu=\mu_{0} \\ H_{a} & : \mu \neq \mu_{0}\end{cases}
$$

the H_{0} is rejected at level α) if the absolute value of the z-statistic $|z|=\frac{\left|\bar{X}-\mu_{0}\right|}{\sigma / \sqrt{n}}>z_{\alpha / 2}$, or equivalently if

$$
\left|\bar{X}-\mu_{0}\right|>z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Lecture 21-3

Duality of Confidence Intervals and Two-Sided Tests

In a two-sided test,

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{a}: \mu \neq \mu_{0}
\end{aligned}
$$

the null hypothesis is rejected at level α exactly when the value of μ_{0} falls outside a $(1-\alpha) 100 \%$ confidence interval for μ.
Reason. The null hypothesis is NOT rejected at level α if and only if

$$
\begin{aligned}
\frac{\left|\bar{X}-\mu_{0}\right|}{\sigma / \sqrt{n}} \leq z_{\alpha / 2} & \Longleftrightarrow-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \bar{X}-\mu_{0} \leq z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \\
& \Longleftrightarrow \bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu_{0} \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

I.e. μ_{0} is in the interval,

$$
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

which is exactly the $(1-\alpha)$ confidence level for μ.
Lecture 21 - 5

Notation z_{α}

Let z_{α} be the value that the area to the right of z_{α} under the standard normal curve is α. I.e.,

$$
P\left(Z>z_{\alpha}\right)=\alpha \quad \text { or }
$$

For a one-sided test $\left\{\begin{array}{ll}H_{0}: & \mu=\mu_{0} \\ H_{a}: & \mu>\mu_{0}\end{array}\right.$, the P-value $<\alpha$ if and only if the z-statistic $z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}>z_{\alpha}$.
Similarly, for a two-sided test $\left\{\begin{array}{ll}H_{0}: & \mu=\mu_{0} \\ H_{a}: & \mu \neq \mu_{0}\end{array}\right.$, the P-value $<\alpha$ if and only if the z-statistic $z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}>z_{\alpha / 2}$.

Lecture 21-2

Confidence Interval Revisit

Recall in Lecture 18, we show the confidence interval for the population μ at confidence level $(1-\alpha)$ is

$$
\bar{x} \pm z^{*} \frac{\sigma}{\sqrt{n}}
$$

in which z^{*} is the critical value that a standard Normal density has area $(1-\alpha)$ between $-z^{*}$ and z^{*}.
With the z_{α} notation, the z^{*} above is simply $z_{\alpha / 2}$. So the confidence interval for the population μ at confidence level $(1-\alpha)$ is

$$
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Lecture 21-4

6.3 Use and Abuse of Tests

- Not rejecting $\mathbf{H}_{0} \neq$ Accept \mathbf{H}_{0} : just not enough evidence to conclude
- Significance \neq Importance

That is because statistical significance doesn't tell you about the magnitude of the effect, only that there is one.
An effect could be too small to be relevant. And with a large enough sample size n, significance can be reached even for the tiniest effect.
Example. A drug for lung cancer is found to increase the 5 -year survival rate from 30% to 31% (with P-value <0.001). Is this a great news for patients with lung cancer?

- Interpreting Effect Size: It’s All About Context

There is no consensus on how big an effect has to be in order to be considered meaningful. In some cases, effects that may appear to be trivial can be very important.

Lecture 21-6

Type I Error \& Type II Error

The hypothesis H_{0} can be either true or false.
We can reject or not reject H_{0}
The following outcomes are possible when conducting a test:

	Our Decision	
Reality	Not Reject H_{0}	Reject H_{0}
H_{0} is true	Correct decision	Type I Error
H_{0} is false	Type II Error	Correct decision

Example:

Criminal Trial	The suspect is actually . innocent guilty	
Verdict of not guilty (Not reject H_{0})	Correct Decision	The guilty goes free (Type I Error)
Verdict of guilty (Reject H_{0})	Convict the innocent (Type II Error)	Correct Decision

Lecture 21-7

Power of a Test

Consider the one-sided test $\mathrm{H}_{0}: \mu=\mu_{0}$ v.s. $\mathrm{H}_{\mathrm{a}}: \mu>\mu_{0}$.

H_{0} is rejected at level α if the test statistic $z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}>z_{\alpha}$, or equivalently if the sample mean $\bar{X}>\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}$.

Lecture 21-9

Power of a Test

Consider the one-sided test $\mathrm{H}_{0}: \mu=\mu_{0}$ v.s. $\mathrm{H}_{a}: \mu>\mu_{0}$.

Area of the blue shaded region $=P\left(\right.$ fail to reject $H_{0} \mid H_{a}$ is true $)$

$$
=P(\text { Type II error })
$$

Power $=$ Ability to Detect the Alternative Hypothesis

The power is the probability of the test to reject the null H_{0} when the alternative H_{a} is true.

$$
\begin{aligned}
\text { Power } & =P\left(\text { reject } H_{0} \mid H_{a} \text { is true }\right) \\
& =1-P(\text { type II error }) \\
& =\text { Ability of a test to distinguish } \mathrm{H}_{a} \text { from } \mathrm{H}_{0}
\end{aligned}
$$

Power calculation requires knowledge of distribution of test statistics under H_{a}. Simply knowing $\mu \neq \mu_{0}$ is not enough. So we hypothesize a value for $\mu=\mu_{a}$ under H_{a}.

Lecture 21-8

Power of a Test

Consider the one-sided test $\mathrm{H}_{0}: \mu=\mu_{0}$ v.s. $\mathrm{H}_{a}: \mu>\mu_{0}$.

H_{0} is rejected at level α if the test statistic $z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}>z_{\alpha}$, or equivalently if the sample mean $\bar{X}>\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}$.

Lecture 21-9

Power of a Test

Consider the one-sided test $\mathrm{H}_{0}: \mu=\mu_{0}$ v.s. $\mathrm{H}_{a}: \mu>\mu_{0}$.

Area of the green shaded region $=P\left(H_{0}\right.$ is rejected $\mid H_{a}$ is true $)$

$$
\begin{aligned}
& =\text { power of the test } \\
& =1-P(\text { Type II error })
\end{aligned}
$$

Lecture 21-9

Trade-off Between Type I and Type II Errors

We wish to minimize both the chances to make type I error and type II error. Unfortunately, there is a trade-off.

Whenever we reduce P (Type I error) (area of the red filled region), P (Type II error) (area of the blue shaded region) is increased, and vice versa.

Lecture 21-10

Trade-off Between Type I and Type II Errors

We wish to minimize both the chances to make type I error and type II error. Unfortunately, there is a trade-off.

Whenever we reduce P (Type I error) (area of the red filled region), P (Type II error) (area of the blue shaded region) is increased, and vice versa.

Lecture 21-10

The Larger the Sample Size, the More the Power
Smaller sample size n :

Larger sample size n :

The larger the sample size n, the more concentrate the distribution of the sample mean \bar{X}, and the larger the power.

Trade-off Between Type I and Type II Errors

We wish to minimize both the chances to make type I error and type II error. Unfortunately, there is a trade-off.

Whenever we reduce P (Type I error) (area of the red filled region), P (Type II error) (area of the blue shaded region) is increased, and vice versa.

Lecture 21-10

The Smaller the Difference $\mu_{a}-\mu_{0}$, The Less the Power

If μ_{a} is closer to μ_{0}, the two densities overlap more. The significance level (red region) can be maintained at α, at the cost of increased Type II error (blue region) and less power (red + green region).

Lecture 21-11

Ways to Increase the Power

- Increase α. A 5\% test of significance will have a greater chance of rejecting H_{0} than a 1% test because the strength of evidence required for rejection is less.
- Consider a particular μ_{a} that is farther away from μ_{0}. Values of μ that are in H_{a} but lie close to the hypothesized value μ_{0} are harder to detect than values of μ that are far from μ_{0}.
- Increase the sample size n. More data will provide more information about μ so we have a better chance of distinguishing values of μ.
- Decrease σ. Improving the precision of measurements and restricting attention to a subpopulation are two common ways to decrease σ.

Example: Does Exercise Make Strong Bones?

Can a 6-month exercise program increase the total body bone mineral content (TBBMC) of young women? A team of researchers is planning a study to examine this question.

- Based on the results of a previous study, they are willing to assume that $\sigma=2$ for the percent change in TBBMC over the 6 -month period.
- A 1% change in TBBMC would be considered important
- What is the chance of detecting a change of 1% or larger with a sample size of 25? Use $\alpha=0.05$.

Example - Power Computation (1)

Let μ denote the mean percent change. Under $\mathrm{H}_{0}: \mu=\mu_{0}=0$, we have

$$
\bar{X} \sim N\left(\mu_{0}, \frac{\sigma}{\sqrt{n}}\right)=N\left(0, \frac{2}{\sqrt{25}}\right)=N(0,0.4)
$$

For a one-sided test, we will reject H_{0} at level $\alpha=0.05$ if

$$
\bar{X}>\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}=0+1.645 \frac{2}{\sqrt{25}}=0.658 .
$$

Lecture 21-15

Example - Power Computation (2)

- As a 1% change in TBBMC would be considered important, we consider the power of the test at $\mathrm{H}_{a}: \mu_{a}=1$.
- Under $\mathrm{H}_{a}: \bar{X} \sim N\left(\mu_{a}, \sigma / \sqrt{n}\right)=N(1,2 / \sqrt{25})=N(1,0.4)$, so the power is the area of the shaded region below.

- The cutoff 0.658 has a z-score of $\frac{0.658-1}{0.4}=-0.855$. From the normal table we see the area corresponds to $z=-0.855$ is about 0.1963 . So the power is $1-0.1963=0.8037$.

