Yibi Huang

November 8, 2013
6.1 Confidence Intervals

Lecture 18-1

Recall that CLT says, for large $n, \bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. For a normal curve, 95% of its area is within 1.96 SDs from the center. That means, for 95% of the time, \bar{X} will be within $1.96 \frac{\sigma}{\sqrt{n}}$ from μ.

Alternatively, we can also say, for 95% of the time, μ will be within $1.96 \frac{\sigma}{\sqrt{n}}$ from \bar{X}.
Hence, we call the interval

$$
\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}=\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

a 95\% confidence interval for μ.

Lecture 18-3

Example: Lifetime of Light Bulbs

A certain brand of light bulbs claims that mean lifetime of its bulbs is 1200 hours with a SD σ of 100 hours.

As a statistician you are skeptical about the mean lifetime (which can be overstated), but ready to believe the SD is correctly quoted.
To estimate the mean lifetime μ, you may conduct the following experiment:

- taking a simple random sample of 100 light bulbs and burn them out, and then
- finding the average lifetime in the sample (\bar{X})

Recall that CLT says, for large n,

$$
\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)=N\left(\mu, \frac{100}{\sqrt{100}}\right)=N(\mu, 10) .
$$

Often, in an experiment like the lifetime of light bulbs, the actual mean μ is unknown

Lecture 18-2

Procedures to find a 95\% Confidence Interval for μ (σ Known)

1. Take a simple random sample (or i.i.d. sample) of size n and find the sample mean \bar{X}.
2. If n is large, the 95% confidence interval for μ is given by

$$
\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}
$$

Interpretation of confidence intervals: If we repeat the following procedure above multiple times, 95% of the intervals thus constructed will cover the true (unknown) population mean.
The value " 95% " is called the confidence level of the interval.

Lecture 18-4

Notation z_{α}

Let z_{α} be the value that the area to the right of z_{α} under the standard normal curve is α. I.e.,

$$
P\left(Z>z_{\alpha}\right)=\alpha \text { or }
$$

Confidence Intervals at Other Confidence Levels

For a given confidence level $(1-\alpha)$, we want to find a z^{*} such that

$$
P\left(-z^{*}<Z<z^{*}\right)=1-\alpha \text { or }
$$

Clearly, such a z^{*} is simply $z_{\alpha / 2}$.
In general, a confidence intervals at confidence level $(1-\alpha)$ is

$$
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

- 90% C.I.: $\alpha=0.1, z_{\alpha / 2}=z_{0.05}=1.645 \Rightarrow \bar{X} \pm 1.645 \frac{\sigma}{\sqrt{n}}$
- 95% C.I.: $\alpha=0.05, z_{\alpha / 2}=z_{0.025}=1.96 \Rightarrow \bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$
- 99\% C.I.: $\alpha=0.01, z_{\alpha / 2}=z_{0.005}=2.58 \Rightarrow \bar{X} \pm 2.58 \frac{\sigma}{\sqrt{n}}$

Lecture 18-7

Back to the Light Bulb Example

Suppose the average lifetime of 100 randomly selected light bulbs is found to be $\bar{X}=1150$ hours. Recall the SD is $\sigma=100$ hours.
So a 95% confidence interval for the population mean lifetime μ is

$$
\begin{aligned}
\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}} & =1150 \times 1.96 \frac{100}{\sqrt{100}} \\
& =1150 \pm 19.6=(1130.4,1169.6) \text { hours. }
\end{aligned}
$$

True or false, and explain:

- The interval $(1130.4,1169.6)$ contains the sample mean with probability 0.95 .
False. The confidence interval $\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ definitely (100\%) contains the sample mean \bar{X}, not just with probability 95%.

Lecture 18-9

Example: Utility Company Survey

A utility company serves 50,000 households. As a part of a survey of customer attitudes, they take a SRS of 400 of these households. The average number of TV sets in the sample households turns out to be 1.86 , and the SD is known to be 0.90 . Find a 95%-confidence interval for the average number of TV sets in all 50,000 households.

Solution. 95\% confidence interval is

$$
\begin{aligned}
& \bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}} \\
= & 1.86 \pm 1.96 \frac{0.9}{\sqrt{400}} \approx 1.86 \pm 0.09=(1.77,1.95) .
\end{aligned}
$$

Lecture 18-8

Back to the Light Bulb Example (2)

- About 95\% of the light bulbs have lifetime between 1130.4 hours and 1169.6 hours.
False. The confidence interval is for covering the population mean μ, not for covering the entire population. If 95% of the light bulbs have lifetime in the short range 1130.4-1169.6 hours, the SD of the lifetimes won't be as large as 100 hours.
- This interval $(1130.4,1169.6)$ has probability of 0.95 of enclosing the true mean lifetime μ of all light bulbs. False. The population mean μ is a fixed number, not random. It is either in the interval 1130.4, 1169.6), or not in the interval. There is no uncertainty involved.
Remark: So what is the thing that is true for 95% of the time?
Ans. It is how the interval might have turned out. About 95\% of the intervals constructed in this way (taking a SRS and then calculating $\bar{X} \pm 1.96 \sigma / \sqrt{n}$) turn out to cover the population mean μ.

Lecture 18-10

Factors Affecting Length of Confidence Intervals

The half-width $m=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ of the confidence interval, is called the margin of error.
The length of the confidence interval decreases if we

1. decrease the confidence level $1-\alpha$
2. increase the sample size n
3. reduce the standard deviation σ

Sample Size Calculation

Before conducting a study, we may decide a confidence level $(1-\alpha)$ and an upper bound m for the margin of error. In that case we need a sample of size n at least:

$$
\left(\frac{z_{\alpha / 2} \sigma}{m}\right)^{2}
$$

