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4.4 Means and Variances of Random Variables
5.1 The Sampling Distribution for a Sample Mean
5.2 Sampling Distributions for Counts and Proportions
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A Remark on the Notation for Means and Variances

The mean, or expected value, or expectation of a random

variable X can be denoted as

◮ µX

◮ µ(X )

◮ E(X ) (Here “E” means “expectation”)

The variance of a random variable X can be denoted as

◮ σ2

X

◮ σ2(X )

◮ Var(X )
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Variances of Random Variables
Recall that for random variables X and Y ,

◮ E(X + Y ) = E(X ) + E(Y ) (always valid)

◮ Var(X + Y ) = Var(X ) +Var(Y ) when X and Y are

independent

Question: What about Var(X − Y )?

In general, if X1,X2, . . . ,Xn are random variables, then
◮ E(X1 + X2 + · · ·+ Xn) = E(X1) + E(X2) + · · ·+ E(Xn)

◮ This is always valid no matter Xi ’s are independent or not

◮ Var(X1+X2+ · · ·+Xn) = Var(X1)+Var(X2)+ · · ·+Var(Xn)

when X1,X2, . . . ,Xn are independent.
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Four Rolls of a Die (1)

The two properties on the previous slide are very useful since you
can find the mean and variance for X1 + X2 + · · ·+ Xn without
knowing the distribution of X1 + X2 + · · ·+ Xn.

Example: What is the mean and variance for the sum of the
number of spots one gets when rolling a die 4 times?

Approach 1

◮ Let S4 be the total number of spots in 4 rolls.

◮ Possible values of S : 4, 5, 6,. . . , 23, 24

◮ Distribution of SR?

◮ e.g., P(S4 = 15) =?

How many ways are there to have a sum of 15 in 4 rolls?
◮ 64 = 1296 possible outcomes, too many to enumerate

◮ Is there an easier way?
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Four Rolls of a Die — Approach 2

◮ Let X1, X2, X3, and X4 be respectively the number of spots in

the 1st, 2nd, 3rd, and 4th roll.

◮ Observe that S4 = X1 + X2 + X3 + X4

◮ X1, X2, X3, and X4 have a common distribution:
value 1 2 3 4 5 6

probability 1

6

1

6

1

6

1

6

1

6

1

6

◮ mean: E(X1) = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

◮ Var(X1) = 12· 1
6
+22· 1

6
+32· 1

6
+42· 1

6
+52· 1

6
+62· 1

6
−E(X1)

2 = 35

12

◮ X2, X3, and X4 have the same mean and variance as X1 since

they have a common distribution

◮ So E(S4) = E(X1) + E(X2) + E(X3) + E(X4)

= 3.5 + 3.5 + 3.5 + 3.5 = 14.

◮ Since X1, X2, X3, and X4 are independent, we have

Var(S4) = Var(X1) +Var(X2) +Var(X3) +Var(X4)

= 35

12
+ 35

12
+ 35

12
+ 35

12
= 35

3
.
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Many Rolls of a Die

The second approach can be easily generalized to more rolls.
Consider the total number of spots Sn got in n rolls of a die, and
let Xi be the number of spots got in the ith roll, for
i = 1, 2, . . . , n. Then

Sn = X1 + X2 + · · ·+ Xn

and all the Xi ’s have a common distribution with mean 3.5 and
variance 35/6. The mean and variance of Sn are hence

E(Sn) = E(X1) + E(X2) + · · ·+ E(Xn) = 3.5× n

Var(Sn) = Var(X1) +Var(X2) + · · ·+Var(Xn) =
35

12
× n

since Xi ’s are independent of each other.
The mean and variance Sn can be found without first working out
the distribution of Sn.
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Sum and Mean of i.i.d. Random Variables

The rolling die example demonstrates a common scenario for many

problems: suppose X1,X2, . . . ,Xn are i.i.d. random variables with

mean µ and variance σ2.

◮ Here, “i.i.d.” = “independent, and identically distributed”,

which means that X1, X2, . . . ,Xn are independent and have

identical probability distributions.

The mean and variance of Sn = X1 + X2 + · · ·+ Xn are then

E(Sn) = E(X1) + E(X2) + · · ·+ E(Xn) = µ× n = nµ

Var(Sn) = Var(X1) +Var(X2) + · · ·+Var(Xn) = σ2 × n = nσ2

◮ Observe Var(Sn) = nσ2 ≥ Var(Xi ) = σ2,

the sum of Xi ’s has greater variability than a single Xi does.
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What if Not Independent?

In general, if X and Y are NOT independent, then

Var(X + Y ) = Var(Y ) +Var(X ) + 2ρσ(X )σ(Y ).

Here, ρ is the correlation between X and Y , which is defined
analogously to the (sample) correlation r .

sample correlation r =
1

n − 1

n
∑

i=1

(

xi − x̄

sx

)(

yi − ȳ

sy

)

correlation ρ = E

[(

X − µX

σX

)(

Y − µY

σY

)]

◮ We’ll NEVER compute ρ in STAT220.

The formula is FYI only.

Correlation between two independent variables is zero.
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Properties of Correlation ρ

Let ρ be the correlation of random variables X and Y . ρ has very

similar properties with the sample correlation r .

◮ −1 ≤ ρ ≤ 1

◮ If X and Y are independent, then ρ = 0

(But when ρ = 0, X and Y may not be independent.)

◮ If ρ > 0 then when X gets big, Y also tends to gets big, and

vice versa. In this case,

Var(X + Y ) > Var(Y ) +Var(X ).

◮ If ρ < 0 then when X increases, Y tends to decrease, and vice

versa. In this case,

Var(X + Y ) < Var(Y ) +Var(X ).

◮ If ρ = 1 or −1, then there exists constants a and b such that

Y always equals aX + b.
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A Statistical Model of Simple Random Sampling
Consider a population comprised of N individual, indexed by
1, 2, 3, . . . ,N. Each individual has a numerical characteristic such
that xi is the numerical characteristic of the ith individual.

Example. The population is the 50,000 people age 25 and over in
this town, indexed from 1, 2, 3, . . . ,N = 50,000. Let xi be the years
of schooling of the ith individual in the population.

When a single individual is selected at random from the population

(everyone has 1/N chance to be selected), how many years of

schooling X did he/she get?

◮ X is a random variable

◮ What is the probability distribution of X?

px = P(X = x)

=
# of people who have got x years of schooling

N
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Suppose the frequency table of x1, . . . , x50000 is

years of
schooling count proportion

x px

0 500 0.01
1 500 0.01
2 500 0.01
3 500 0.01
4 500 0.01
5 1000 0.02
6 1000 0.02
7 1000 0.02
8 3000 0.06
9 2000 0.04
10 2000 0.04
11 2000 0.04
12 17000 0.34
13 3000 0.06
14 3000 0.06
15 3000 0.06
16 9500 0.19

Total 50000 1

The table of years x v.s. proportion px is

exactly the probability distribution of a

single draw X .

Then mean of X is

µ =
1

N

∑N

i=1
xi = E (X ) =

∑

x
xpx

= 0× 0.01 + 1× 0.01 + · · ·+ 16× 0.19

≈ 11.8

and the variance of X is

σ2 =
1

N

∑N

i=1
(xi − µ)2 = Var(X )

=
∑

x
(x − µ)2px

= (0−11.8)2×0.01+· · ·+(16−11.8)2×0.19

≈ 12.96
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Review of Simple Random Samples

Suppose X1, X2, . . . ,Xn are n draws at random without

replacement from a population of size N. That is,

1. In the first draw, everyone has 1/N chance to be selected

2. In the second draw, each of the remaining N − 1 has

1/(N − 1) chance to be selected

3.
...

4. In the nth draw, each of the remaining N − n + 1 has

1/(N − n + 1) chance to be selected

Then {X1, X2, . . . ,Xn} is called a simple random sample (SRS)
of size n.
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Properties of Simple Random Samples

1. Every Xi has the same probability distribution

(the population distribution X )

2. The Xi ’s are (nearly) independent

◮ Since we usually sample without replacement, draws are

not independent.
◮ As long as the sample size n is small (< 10% relative to

the population size N, the dependencies among sampled

values are small and are generally ignored.
◮ When sampling from an infinite population (N = ∞), the

Xi ’s are independent.

Due to the reasons above, we often assume observations X1,
X2, . . . ,Xn in a simple random sample are i.i.d. from some
(population) distribution.
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Mean and Variance of Sample Means
In sampling and many other cases, the population mean µ is
often unknown. The sample mean X n = (X1 + · · ·+ Xn)/n is
often used to estimate it.

◮ How good is this estimation?

Observe that X n = Sn/n, in which Sn is the sum of X1,X2, . . .,
and Xn. Recall we have shown in the beginning that

E(Sn) = nµ, and Var(Sn) = nσ2.

By the scaling properties of the expected values and the variances,
E(cX ) = cE(X ) and Var(cX ) = c2Var(X ), we have

E(X n) = E

(

1

n
Sn

)

=
1

n
E(Sn) =

1

n
· nµ = µ,

Var(X n) = Var

(

1

n
Sn

)

=

(

1

n

)2

Var(Sn) =
1

n2
· nσ2 =

σ2

n
.
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Properties of the Sample Mean
So far we have shown that: the sample mean X n of i.i.d random
variables with mean µ and variance σ2 has the following properties:

1. E(X n) = µ. . . . . . . . . . . . . . . . . . X n is an unbiased estimator for µ.

2. Var(X n) = σ2/n . . . . . . . . . The larger n is, the less variable X n is.

3. Weak Law of Large Numbers: As n gets large

X n −→ µ.

Intuitively, this is clear from the mean and the variance of X n;

the “center” of the distribution X n is µ, and the “spread”

around it becomes smaller and smaller as n grows.

4. The distribution of X n, called the sampling distribution of
the sample mean, depends on the distribution of Xi .

◮ hard to find in general, except for a few cases
◮ When n is large, we have Central Limit Theorem!
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Central Limit Theorem (CLT)

Let X1,X2, . . . be a sequence of i.i.d. random variables (discrete or

continuous) with mean µ and variance σ2. Then, when n is

large,

◮ the distribution of the sample mean

X n = 1

n
(X1 + X2 + · · ·+ Xn) is approximately

N

(

µ,
σ√
n

)

.

◮ the distribution of the sum X1+X2+ · · ·+Xn is approximately

N(nµ,
√
nσ).
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If Xi ’s are i.i.d., with the distribution

value 1 2 9

probability 1/3 1/3 1/3

Probability histogram for the distribution of X1:

0
2
0

6
0

1
0
0

1 2 3 4 5 6 7 8 9

VALUE OF THE SUME OF THE DRAWS

1 DRAWS

Probability histogram for the distribution of S25 = X1 + · · ·+ X25:

0
1
0

3
0

5
0

46 54 62 70 78 86 94 103 113 123 133 143 153

VALUE OF THE SUME OF THE DRAWS

25 DRAWS
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Xi ’s are i.i.d., with the distribution

value 1 2 9

probability 1/3 1/3 1/3

Probability histogram for the distribution of S50 = X1 + · · ·+ X50:

0
1
0

2
0

3
0

4
0

124 138 152 166 180 194 208 222 236 250 264

VALUE OF THE SUME OF THE DRAWS

50 DRAWS

Probability histogram for the distribution of S100 = X1+ · · ·+X100:

0
1
0

2
0

3
0

4
0

293 312 331 350 369 388 407 426 445 464 483 502

VALUE OF THE SUME OF THE DRAWS

100 DRAWS
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Example: For the years of schooling example, it is known that the
population distribution has mean µ = 11.8 and variance is
σ2 = 12.96. For a sample of size 400, by CLT, the sample mean
X n is approximately

N
(

11.8,

√

12.96

400

)

= N(11.8, 0.18).

◮ Find the probability that the sample mean < 11.

◮ Find the probability that the sample mean is between

11.8± 0.36.
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Example: Shipping Packages

Suppose a company ships packages that vary in weight:

◮ Packages have mean 15 lb and standard deviation 10 lb.

◮ Packages weights are independent from each other

Q: What is the probability that 100 packages will have a total
weight exceeding 1700 lb?

Let Wi be the weight of the ith package and

T =
∑100

i=1
Wi , µT = 100µW = 100(15) = 1500lb

σ2

W = 100σ2

W = 100(102), σW =
√

100(10)2 = 100 lb.

By CLT, T is approximately N(1500, 100), and 1700 is 2SD above
the mean, so the probability is about 2.5%.
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Summary: Means and Sums of i.i.d. Random Variables
Suppose X1, X2,. . . , Xn are i.i.d. random variables with mean µ
and variance σ2.

Let Sn = X1 + X2 + · · ·+ Xn and X n = Sn/n be respectively the
sum and the sample mean of X1, X2,. . . , Xn.

So far we have shown that Sn and X n have the following properties

sum Sn sample mean X n

expected value E(Sn) = nµ E(X n) = µ.

variance Var(Sn) = nσ2
Var(X n) = σ2/n

sampling distribution no general form no general form
for small n

approximate
sampling distribution N(nµ,

√
nσ) N

(

µ,
σ√
n

)

for large n
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Bernoulli Random Variables (1)

A random variable X is said to a Bernoulli random variable if it

takes two values only: 0 and 1.

◮ p = P(X = 1) is called the probability of success

◮ Then P(X = 0) must be 1− p since X is either 0 or 1.

◮ So the distribution of a Bernoulli random variable with

probability p of success must be

value of X 0 1

probability 1− p p

◮ Mean and variance:

E(X ) = 0 · (1− p) + 1 · p = p,

Var(X ) = 02 · P(X = 0) + 12 · P(X = 1)− E(X )2

= 0 · (1− p) + 1 · p − p2 = p(1− p)
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Bernoulli Random Variables (2)

Bernoulli distribution arises when a random phenomenon has only

two possible outcomes, e.g.,

◮ heads or tails in one coin tossing: X = 1 if heads, X = 0 if

tails

◮ success or failure in a trial: X = 1 if success, X = 0 if failure

◮ whether a product is defected: X = 1 if defected, X = 0 if not

◮ whether a person uses iPhone: X = 1 if yes, X = 0 if no
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Binomial Distribution (1)

A random variable Y is said to have a Binomial distribution
B(n, p), denoted as Y ∼ B(n, p), if it is a sum of n i.i.d.
Bernoulli random variables, X1,X2, . . . ,Xn, with probability p of
success.

Binomial distribution arises when we count the number of

“successes” in a series of n independent “trials”, e.g.,

◮ number of heads when tossing a coin n times

(“success” = heads)

◮ # of defected items in a batch of size 1000

(“success” = defected)

◮ # of iPhone users in a SRS from a huge population

(“success” = iPhone user)
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Mean and Variance of Binomial

Recall a Binomial random variable Y ∼ B(n, p) are sums of i.i.d.
Bernoulli random variables X1,X2, . . . ,Xn, with probability p of
success. The mean and variance of Y are thus

E(Y ) = E(X1) + E(X2) + · · ·+ E(Xn)

= p + p + · · ·+ p = np

Var(Y ) = Var(X1) +Var(X2) + · · ·+Var(Xn)

= p(1− p) + p(1− p) + · · ·+ p(1− p) = np(1− p)

since Xi ’s are i.i.d. with mean p and variance p(1− p).

What about the distribution of Y ? E.g., What is P(Y = 3)?
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Factorials and Binomial Coefficients
The notation n!, read n factorial, is defined as

n! = 1× 2× 3× . . .× (n − 1)× n
e.g.,

1 ! = 1, 3 ! = 1× 2× 3 = 6,
2 ! = 1× 2 = 2, 4 ! = 1× 2× 3× 4 = 24.

By convention, 0 ! = 1.

The binomial coefficient:

(

n

k

)

=
n!

k!(n − k)!
◮ which is the number of ways to choose k items, regardless of

order, from a total of n distinct items

◮

(

n
k

)

is read as “n choose k”.

e.g.,
(

4

2

)

=
4 !

2 !× 2 !
=

4× 3× 2× 1

2× 1× 2× 1
= 6,

(

4

4

)

=
4 !

4 !× 0 !
=

4 !

4 !× 1
= 1
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Binomial Formula

The distribution of a Binomial distribution B(n, p) is given by the
binomial formula. If Y has the binomial distribution B(n, p) with
n trials and probability p of success per trial, the probability to
have k successes in n trials, P(Y = k), is given as

P(Y = k) =

(

n

k

)

pk(1− p)n−k for k = 0, 1, 2, . . . , n.

Why the binomial formula is true?
See the next slide for an example.
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Why is the Binomial Formula True? (Optional)
Let Y be the number of success in 4 independent trials, each with

probability p of success. So Y ∼ B(4, p).

◮ To get 2 successes (Y = 2), there are 6 possible ways:

SSFF SFSF SFFS FSSF FSFS FFSS

in which “SSFF” means success in the first two trials, but not

in the last two, and so on.

◮ As trials are independent, by the multiplication rule,

P(SSFF) = P(S)P(S)P(F)P(F)
= p · p · (1− p) · (1− p) = p2(1− p)2

P(SFSF) = P(S)P(F)P(S)P(F)

= p · (1− p) · p · (1− p) = p2(1− p)2

◮ Observe all 6 ways occur with probability p2(1− p2), because

all have 2 successes and 2 failures

So P(Y = 2) = (# of ways)× (prob. of each way) = 6 · p2(1− p)2
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Why is the Binomial Formula True? (Optional)

In general, for Y ∼ B(n, p)

P(Y = k) = (Number of ways to have exactly k success)

× P(success in all the first k trials

and none of the last n − k trials)

= (Number of ways to choose k out of n)× pk(1− p)n−k

=

(

n

k

)

pk(1− p)n−k
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Example
Four fair dice are rolled simultaneously, what is the chance to get
(a) exactly 2 aces? (b) exactly 3 aces? (c) 2 or 3 aces?

◮ A trial is one roll of a die. A success is to get an ace.

◮ Probability of success p = 1/6

◮ number of trials n = 4 is fixed in advance

◮ Are the trials independent? Yes!

◮ So Y = # of aces got has a B(4, 1/6) distribution

(a) P(Y = 2) =
4!

2! 2!

(

1

6

)2 (

1− 1

6

)2

=
25

216

(b) P(Y = 3) =
4!

3! 1!

(

1

6

)3 (

1− 1

6

)1

=
5

324

(c) P(Y = 2 or Y = 3) = P(Y = 2) + P(Y = 3)

=
25

216
+

5

324
= 0.131
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Requirements to be Binomial (1)
To be a Binomial random variable, check the following

1. the number of trials n must be fixed in advance,

2. p must be identical for all trials

3. trials must be independent

Q1: A SRS of 50 from all UC undergrads are asked whether or not

he/she is usually irritable in the morning. X is the number who

reply yes. Is X binomial?

◮ a trial: a randomly selected student reply yes or not

◮ prob. of success p = proportion of UC undergrads saying yes

◮ number of trials = 50

◮ Strictly speaking, NOT binomial, because trials are not

independent

◮ Since the sample size 50 is only 1% of the population size

(≈ 5000), trials are nearly independent

◮ So X is approximately binomial, B(n = 50, p)
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Requirements to be Binomial (2)
Q2 John tosses a fair coin until a head appears. X is the count of

the number of tosses that John makes. Is X binomial?

◮ one trial = one toss of the coin

◮ number of trials is not fixed

◮ NOT binomial

Q3 Most calls made at random by sample surveys don’t succeed in

talking with a live person. Of calls to New York City, only 1/12

succeed. A survey calls 500 randomly selected numbers in New

York City. X is the number that reach a live person. Is X

binomial?

◮ one trial = a call that reach a live person

◮ number of trials n = 500

◮ probability of success p = 1/12

◮ Independent trials? Huge population, so (nearly) independent

◮ X ∼ B(500, 1/12)
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CLT for Counts and Proportion
Let X1,X2, . . . be a sequence of i.i.d. Bernoulli random variables
with probability p of success. So Xi has mean µ = p and
variance σ2 = p(1− p). Then

◮ The sum Sn = X1 + X2 + · · ·+ Xn now is the count of Xi ’s

that take value “1”, and has a binomial distribution B(n, p).

As n gets large, the distribution of Sn is approximately

N(nµ,
√
nσ) = N(np,

√

np(1− p)).

◮ The sample mean X n = 1

n
(X1 + X2 + · · ·+ Xn) is just the

proportion of Xi ’s that take value “1.” As n gets large, the

distribution of X n is approximately

N

(

µ,
σ√
n

)

= N

(

p,

√

p(1− p)√
n

)

.
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Example: Twitter Users

Suppose 20% of the internet users use Twitters. If a SRS of 2500
internet users are surveyed, what is the probability that the
percentage of Twitter users in the sample is over 21%?

Lecture 14&15 - 34


