STAT22000 Autumn 2013 Lecture 14&15

Yibi Huang

November 5, 2013

- 4.4 Means and Variances of Random Variables
- 5.1 The Sampling Distribution for a Sample Mean
- 5.2 Sampling Distributions for Counts and Proportions

Lecture 14&15 - 1

The **mean**, or **expected value**, or **expectation** of a random variable X can be denoted as

- ► µx
- ▶ $\mu(X)$
- $\mathbb{E}(X)$ (Here " \mathbb{E} " means "expectation")

The **variance** of a random variable X can be denoted as

- $\triangleright \sigma_X^2$
- ▶ $\sigma^2(X)$
- ▶ Var(X)

Lecture 14&15 - 2

Variances of Random Variables

Recall that for random variables X and Y,

- $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$ (always valid)
- Var(X + Y) = Var(X) + Var(Y) when X and Y are independent

Question: What about Var(X - Y)?

In general, if X_1, X_2, \ldots, X_n are random variables, then

- ► E(X₁ + X₂ + · · · + X_n) = E(X₁) + E(X₂) + · · · + E(X_n)
 ► This is always valid no matter X_i's are independent or not
- ► $\operatorname{Var}(X_1 + X_2 + \dots + X_n) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n)$ when X_1, X_2, \dots, X_n are **independent**.

Lecture 14&15 - 3

Four Rolls of a Die (1)

The two properties on the previous slide are very useful since you can find the mean and variance for $X_1 + X_2 + \cdots + X_n$ without knowing the distribution of $X_1 + X_2 + \cdots + X_n$.

Example: What is the mean and variance for the sum of the number of spots one gets when rolling a die 4 times? *Approach 1*

- Let S_4 be the total number of spots in 4 rolls.
- ▶ Possible values of *S*: 4, 5, 6,..., 23, 24
- Distribution of S_R ?
 - e.g., $P(S_4 = 15) = ?$
 - How many ways are there to have a sum of 15 in 4 rolls? • $6^4 = 1296$ possible outcomes, too many to enumerate
 - \bullet 0 = 1290 possible outcomes, too many to enumera
- ► Is there an easier way?

Lecture 14&15 - 4

Four Rolls of a Die — Approach 2

- ▶ Let X₁, X₂, X₃, and X₄ be respectively the number of spots in the 1st, 2nd, 3rd, and 4th roll.
- Observe that $S_4 = X_1 + X_2 + X_3 + X_4$
- $X_1, X_2, X_3, \text{ and } X_4 \text{ have a common distribution:}$ value $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{vmatrix}$

value
 1
 2
 3
 4
 5
 6

 probability

$$\frac{1}{6}$$
 $\frac{1}{6}$
 $\frac{1}{6}$

• mean:
$$\mathbb{E}(X_1) = 1 \cdot \frac{1}{\epsilon} + 2 \cdot \frac{1}{\epsilon} + 3 \cdot \frac{1}{\epsilon} + 4 \cdot \frac{1}{\epsilon} + 5 \cdot \frac{1}{\epsilon} + 6 \cdot \frac{1}{\epsilon} = 3.5$$

- ► $\operatorname{Var}(X_1) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} \mathbb{E}(X_1)^2 = \frac{35}{12}$
- ► X₂, X₃, and X₄ have the same mean and variance as X₁ since they have a common distribution
- ► So $\mathbb{E}(S_4) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \mathbb{E}(X_3) + \mathbb{E}(X_4)$ = 3.5 + 3.5 + 3.5 + 3.5 = 14.
- ► Since X_1 , X_2 , X_3 , and X_4 are independent, we have $Var(S_4) = Var(X_1) + Var(X_2) + Var(X_3) + Var(X_4)$ $= \frac{35}{12} + \frac{35}{12} + \frac{35}{12} + \frac{35}{12} = \frac{35}{3}$. Lecture 14&15 - 5

Many Rolls of a Die

The second approach can be easily generalized to more rolls. Consider the total number of spots S_n got in n rolls of a die, and let X_i be the number of spots got in the *i*th roll, for i = 1, 2, ..., n. Then

$$S_n = X_1 + X_2 + \dots + X_n$$

and all the X_i 's have a common distribution with mean 3.5 and variance 35/6. The mean and variance of S_n are hence

$$\mathbb{E}(S_n) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_n) = 3.5 \times n$$
$$\operatorname{Var}(S_n) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n) = \frac{35}{12} \times n$$

since X_i 's are independent of each other.

The mean and variance S_n can be found without first working out the distribution of S_n .

Sum and Mean of i.i.d. Random Variables

The rolling die example demonstrates a common scenario for many problems: suppose X_1, X_2, \ldots, X_n are **i.i.d.** random variables with mean μ and variance σ^2 .

► Here, "i.i.d." = "independent, and identically distributed", which means that X_1, X_2, \ldots, X_n are independent and have identical probability distributions.

The mean and variance of $S_n = X_1 + X_2 + \cdots + X_n$ are then

$$\mathbb{E}(S_n) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_n) = \mu \times n = n\mu$$
$$\operatorname{Var}(S_n) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n) = \sigma^2 \times n = n\sigma^2$$

• Observe $\operatorname{Var}(S_n) = n\sigma^2 \ge \operatorname{Var}(X_i) = \sigma^2$, the sum of X_i 's has greater variability than a single X_i does.

Lecture 14&15 - 7

What if Not Independent?

In general, if X and Y are NOT independent, then

$$\operatorname{Var}(X+Y) = \operatorname{Var}(Y) + \operatorname{Var}(X) + 2\rho\sigma(X)\sigma(Y).$$

Here, ρ is the correlation between X and Y, which is defined analogously to the (sample) correlation r.

sample correlation
$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

correlation $\rho = \mathbb{E} \left[\left(\frac{X - \mu_X}{\sigma_X} \right) \left(\frac{Y - \mu_Y}{\sigma_Y} \right) \right]$

• We'll NEVER compute ρ in STAT220. The formula is FYI only.

Correlation between two independent variables is zero.

Lecture 14&15 - 8

Properties of Correlation ρ

Let ρ be the correlation of random variables X and Y. ρ has very similar properties with the sample correlation r.

- ► $-1 \le \rho \le 1$
- If X and Y are independent, then $\rho = 0$ (But when $\rho = 0$, X and Y may not be independent.)
- If $\rho > 0$ then when X gets big, Y also tends to gets big, and vice versa. In this case,

 $\operatorname{Var}(X + Y) > \operatorname{Var}(Y) + \operatorname{Var}(X).$

• If $\rho < 0$ then when X increases, Y tends to decrease, and vice versa. In this case,

$$\operatorname{Var}(X + Y) < \operatorname{Var}(Y) + \operatorname{Var}(X)$$

• If $\rho = 1$ or -1, then there exists constants *a* and *b* such that Y always equals aX + b.

Lecture 14&15 - 9

Suppose the frequency table of x_1, \ldots, x_{50000} is

years of schooling	count	proportion	The table of years x v.s. proportion p_x is
x		p_{x}	exactly the probability distribution of a
0	500	0.01	single draw X.
1	500	0.01	
2	500	0.01	I nen mean of X is
3	500	0.01	1 – N – –
4	500	0.01	$\mu = \frac{1}{N} \sum_{i=1} x_i = E(X) = \sum_{x} x_{p_x}$
5	1000	0.02	
6	1000	0.02	$= 0 \times 0.01 + 1 \times 0.01 + \dots + 16 \times 0.19$
7	1000	0.02	pprox 11.8
8	3000	0.06	
9	2000	0.04	and the variance of X is
10	2000	0.04	
11	2000	0.04	$-2^{2} \frac{1}{N} \sum_{n=1}^{N} (y_{n}, y_{n})^{2} = V_{op}(X)$
12	17000	0.34	$\sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu) = \operatorname{var}(X)$
13	3000	0.06	$-\sum (y - y)^2 \mathbf{n}$
14	3000	0.06	$-\sum_{x}(x-\mu)p_{x}$
15	3000	0.06	$= (0-11.8)^2 \times 0.01 + \dots + (16-11.8)^2 \times 0.19$
16	9500	0.19	
Total	50000	1	≈ 12.96

A Statistical Model of Simple Random Sampling

Consider a population comprised of N individual, indexed by $1, 2, 3, \ldots, N$. Each individual has a numerical characteristic such that x_i is the numerical characteristic of the *i*th individual.

Example. The population is the 50,000 people age 25 and over in this town, indexed from $1, 2, 3, \ldots, N = 50,000$. Let x_i be the years of schooling of the *i*th individual in the population.

When a single individual is selected at random from the population (everyone has 1/N chance to be selected), how many years of schooling X did he/she get?

- ► X is a random variable
- ▶ What is the probability distribution of X?

$$p_x = P(X = x)$$

= $\frac{\# \text{ of people who have got } x \text{ years of schooling}}{N}$

Review of Simple Random Samples

Suppose X_1, X_2, \ldots, X_n are *n* draws at random without replacement from a population of size N. That is,

- 1. In the first draw, everyone has 1/N chance to be selected
- 2. In the second draw, each of the remaining N-1 has 1/(N-1) chance to be selected

3. ÷

4. In the *n*th draw, each of the remaining N - n + 1 has 1/(N - n + 1) chance to be selected

Then $\{X_1, X_2, \ldots, X_n\}$ is called a simple random sample (SRS) of size n.

Properties of Simple Random Samples

- Every X_i has the same probability distribution (the population distribution X)
- 2. The X_i's are (nearly) independent
 - Since we usually sample without replacement, draws are not independent.
 - As long as the sample size n is small (< 10% relative to the population size N, the dependencies among sampled values are small and are generally ignored.
 - When sampling from an infinite population ($N = \infty$), the X_i 's are independent.

Due to the reasons above, we often assume observations X_1 , X_2, \ldots, X_n in a simple random sample are **i.i.d.** from some (population) distribution.

Mean and Variance of Sample Means

In sampling and many other cases, the **population mean** μ is often *unknown*. The **sample mean** $\overline{X}_n = (X_1 + \cdots + X_n)/n$ is often used to estimate it.

How good is this estimation?

Observe that $\overline{X}_n = S_n/n$, in which S_n is the sum of X_1, X_2, \ldots , and X_n . Recall we have shown in the beginning that

 $\mathbb{E}(S_n) = n\mu$, and $\operatorname{Var}(S_n) = n\sigma^2$.

By the scaling properties of the expected values and the variances, $\mathbb{E}(cX) = c\mathbb{E}(X)$ and $\operatorname{Var}(cX) = c^2\operatorname{Var}(X)$, we have

$$\mathbb{E}(\overline{X}_n) = \mathbb{E}\left(\frac{1}{n}S_n\right) = \frac{1}{n}\mathbb{E}(S_n) = \frac{1}{n} \cdot n\mu = \mu,$$
$$\operatorname{Var}(\overline{X}_n) = \operatorname{Var}\left(\frac{1}{n}S_n\right) = \left(\frac{1}{n}\right)^2 \operatorname{Var}(S_n) = \frac{1}{n^2} \cdot n\sigma^2 = \frac{\sigma^2}{n}.$$
Lecture 14&15 - 14

Properties of the Sample Mean

So far we have shown that: the sample mean \overline{X}_n of i.i.d random variables with mean μ and variance σ^2 has the following properties:

- 1. $\mathbb{E}(\overline{X}_n) = \mu$ \overline{X}_n is an **unbiased** estimator for μ .
- 2. $\operatorname{Var}(\overline{X}_n) = \sigma^2/n$ The larger *n* is, the less variable \overline{X}_n is.
- 3. Weak Law of Large Numbers: As n gets large

$$\overline{X}_n \longrightarrow \mu.$$

Intuitively, this is clear from the mean and the variance of \overline{X}_n ; the "center" of the distribution \overline{X}_n is μ , and the "spread" around it becomes smaller and smaller as n grows.

- 4. The distribution of \overline{X}_n , called the **sampling distribution** of the sample mean, depends on the distribution of X_i .
 - hard to find in general, except for a few cases
 - When n is large, we have Central Limit Theorem!

Lecture 14&15 - 15

Central Limit Theorem (CLT)

Let $X_1, X_2, ...$ be a sequence of **i.i.d.** random variables (discrete or continuous) with **mean** μ **and variance** σ^2 . Then, when *n* is large,

► the distribution of the sample mean $\overline{X}_n = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$ is approximately

$$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$

• the distribution of the sum $X_1 + X_2 + \cdots + X_n$ is approximately

$$N(n\mu, \sqrt{n\sigma})$$
.

 X_i 's are i.i.d., with the distribution

Probability histogram for the distribution of $S_{50} = X_1 + \cdots + X_{50}$:

Probability histogram for the distribution of $S_{100} = X_1 + \cdots + X_{100}$:

If X_i 's are i.i.d., with the distribution

Probability histogram for the distribution of X_1 :

Probability histogram for the distribution of $S_{25} = X_1 + \cdots + X_{25}$:

Example: For the years of schooling example, it is known that the population distribution has mean $\mu = 11.8$ and variance is $\sigma^2 = 12.96$. For a sample of size 400, by CLT, the sample mean \overline{X}_n is approximately

$$N(11.8, \sqrt{\frac{12.96}{400}}) = N(11.8, 0.18).$$

- ▶ Find the probability that the sample mean < 11.
- \blacktriangleright Find the probability that the sample mean is between 11.8 \pm 0.36.

Lecture 14&15 - 19

Summary: Means and Sums of i.i.d. Random Variables

Suppose X_1, X_2, \ldots, X_n are *i.i.d.* random variables with mean μ and variance σ^2 .

Let $S_n = X_1 + X_2 + \cdots + X_n$ and $\overline{X}_n = S_n/n$ be respectively the **sum** and the **sample mean** of X_1, X_2, \ldots, X_n .

So far we have shown that S_n and \overline{X}_n have the following properties

	sum S _n	sample mean \overline{X}_n
expected value	$\mathbb{E}(S_n) = n\mu$	$= \mathbb{E}(\overline{X}_n) = \mu.$
variance	$\operatorname{Var}(S_n) = n\sigma^2$	$\operatorname{Var}(\overline{X}_n) = \sigma^2/n$
sampling distribution for small <i>n</i>	no general form	no general form
approximate sampling distribution for large <i>n</i>	$N(n\mu,\sqrt{n}\sigma)$	$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Example: Shipping Packages

Suppose a company ships packages that vary in weight:

- ▶ Packages have mean 15 lb and standard deviation 10 lb.
- Packages weights are independent from each other

 $\mathbf{Q} \colon$ What is the probability that 100 packages will have a total weight exceeding 1700 lb?

Let W_i be the weight of the *i*th package and

....

$$T = \sum_{i=1}^{100} W_i, \qquad \mu_T = 100 \mu_W = 100(15) = 1500 \text{lb}$$
$$\sigma_W^2 = 100 \sigma_W^2 = 100(10^2), \qquad \sigma_W = \sqrt{100(10)^2} = 100 \text{ lb}$$

By CLT, T is approximately N(1500, 100), and 1700 is 2SD above the mean, so the probability is about 2.5%.

Lecture 14&15 - 20

Bernoulli Random Variables (1)

A random variable X is said to a **Bernoulli** random variable if it takes two values only: 0 and 1.

- p = P(X = 1) is called the **probability of success**
- Then P(X = 0) must be 1 p since X is either 0 or 1.
- So the distribution of a Bernoulli random variable with probability p of success must be

value of X	0	1
probability	1-p	р

Mean and variance:

$$\mathbb{E}(X) = 0 \cdot (1 - p) + 1 \cdot p = p,$$

Var(X) = $0^2 \cdot P(X = 0) + 1^2 \cdot P(X = 1) - \mathbb{E}(X)^2$
= $0 \cdot (1 - p) + 1 \cdot p - p^2 = p(1 - p)$

Lecture 14&15 - 22

Bernoulli Random Variables (2)

Bernoulli distribution arises when a random phenomenon has only two possible outcomes, e.g.,

- ▶ heads or tails in one coin tossing: X = 1 if heads, X = 0 if tails
- success or failure in a trial: X = 1 if success, X = 0 if failure
- whether a product is defected: X = 1 if defected, X = 0 if not
- whether a person uses iPhone: X = 1 if yes, X = 0 if no

Binomial Distribution (1)

A random variable Y is said to have a **Binomial** distribution B(n, p), denoted as $Y \sim B(n, p)$, if it is a **sum of** *n* **i.i.d. Bernoulli** random variables, X_1, X_2, \ldots, X_n , with probability *p* of success.

Binomial distribution arises when we count the number of "successes" in a series of *n* independent "trials", e.g.,

- number of heads when tossing a coin n times ("success" = heads)
- ▶ # of defected items in a batch of size 1000 ("success" = defected)
- # of iPhone users in a SRS from a huge population ("success" = iPhone user)

Mean and Variance of Binomial

Recall a Binomial random variable $Y \sim B(n, p)$ are sums of i.i.d. Bernoulli random variables X_1, X_2, \ldots, X_n , with probability p of success. The mean and variance of Y are thus

$$\mathbb{E}(Y) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_n)$$

= $p + p + \dots + p = np$
$$\operatorname{Var}(Y) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n)$$

= $p(1-p) + p(1-p) + \dots + p(1-p) = np(1-p)$

since X_i 's are i.i.d. with mean p and variance p(1 - p). What about the distribution of Y? E.g., What is P(Y = 3)?

Binomial Formula

The distribution of a Binomial distribution B(n, p) is given by the **binomial formula**. If Y has the binomial distribution B(n, p) with n trials and probability p of success per trial, the probability to have k successes in n trials, P(Y = k), is given as

$$P(Y = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 for $k = 0, 1, 2, ..., n$.

Why the binomial formula is true? See the next slide for an example.

Why is the Binomial Formula True? (Optional)

In general, for $Y \sim B(n, p)$

$$P(Y = k) = ($$
Number of ways to have exactly k success)
 $\times P($ success in all the first k trials
 and none of the last $n - k$ trials $)$

$$= (\mathsf{Number} ext{ of ways to choose } k ext{ out of } n) imes p^k (1-p)^{n-k}$$

$$=\binom{n}{k}p^k(1-p)^{n-k}$$

Factorials and Binomial Coefficients

The notation n!, read **n** factorial, is defined as

e.g.,

$$n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$$

 $1! = 1, \qquad 3! = 1 \times 2 \times 3 = 6,$
 $2! = 1 \times 2 = 2, \qquad 4! = 1 \times 2 \times 3 \times 4 = 24.$

By convention, 0! = 1.

The binomial coefficient: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

which is the number of ways to choose k items, regardless of order, from a total of n distinct items

▶ $\binom{n}{k}$ is read as "*n* choose *k*".

e.g.,

$$\binom{4}{2} = \frac{4!}{2! \times 2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1} = 6, \quad \binom{4}{4} = \frac{4!}{4! \times 0!} = \frac{4!}{4! \times 1} = 1$$

Lecture 14&15 - 26

Why is the Binomial Formula True? (Optional)

Let Y be the number of success in 4 independent trials, each with probability p of success. So $Y \sim B(4, p)$.

- To get 2 successes (Y = 2), there are 6 possible ways: SSFF SFSF SFFS FSSF FSSF FSSS in which "SSFF" means success in the first two trials, but not in the last two, and so on.
- > As trials are independent, by the multiplication rule,

$$P(SSFF) = P(S)P(S)P(F)P(F) = p \cdot p \cdot (1-p) \cdot (1-p) = p^{2}(1-p)^{2} P(SFSF) = P(S)P(F)P(S)P(F) = p \cdot (1-p) \cdot p \cdot (1-p) = p^{2}(1-p)^{2}$$

► Observe all 6 ways occur with probability p²(1 − p²), because all have 2 successes and 2 failures

So
$$P(Y = 2) = (\# \text{ of ways}) \times (\text{prob. of each way}) = 6 \cdot p^2 (1-p)^2$$

Lecture 14&15 - 28

Four fair dice are rolled simultaneously, what is the chance to get (a) exactly 2 aces? (b) exactly 3 aces? (c) 2 or 3 aces?

- ► A trial is one roll of a die. A success is to get an ace.
- Probability of success p = 1/6
- number of trials n = 4 is fixed in advance
- ► Are the trials independent? Yes!
- So Y = # of aces got has a B(4, 1/6) distribution

(a)
$$P(Y = 2) = \frac{4!}{2!\,2!} \left(\frac{1}{6}\right)^2 \left(1 - \frac{1}{6}\right)^2 = \frac{25}{216}$$

(b) $P(Y = 3) = \frac{4!}{3!\,1!} \left(\frac{1}{6}\right)^3 \left(1 - \frac{1}{6}\right)^1 = \frac{5}{324}$
(c) $P(Y = 2 \text{ or } Y = 3) = P(Y = 2) + P(Y = 3)$
 $= \frac{25}{216} + \frac{5}{324} = 0.131$
Lecture 14&15 - 30

Requirements to be Binomial (1)

- To be a Binomial random variable, check the following
- 1. the number of trials n must be fixed in advance,
- 2. p must be identical for all trials
- 3. trials must be independent

Q1: A SRS of 50 from all UC undergrads are asked whether or not he/she is usually irritable in the morning. X is the number who reply yes. Is X binomial?

- a trial: a randomly selected student reply yes or not
- prob. of success p = proportion of UC undergrads saying yes
- number of trials = 50
- Strictly speaking, NOT binomial, because trials are not independent
- Since the sample size 50 is only 1% of the population size (≈ 5000), trials are nearly independent
- So X is approximately binomial, B(n = 50, p) Lecture 14&15 - 31

Requirements to be Binomial (2)

Q2 John tosses a fair coin until a head appears. X is the count of the number of tosses that John makes. Is X binomial?

- \blacktriangleright one trial = one toss of the coin
- number of trials is not fixed
- NOT binomial

Q3 Most calls made at random by sample surveys don't succeed in talking with a live person. Of calls to New York City, only 1/12 succeed. A survey calls 500 randomly selected numbers in New York City. *X* is the number that reach a live person. Is *X* binomial?

- one trial = a call that reach a live person
- number of trials n = 500
- probability of success p = 1/12
- ▶ Independent trials? Huge population, so (nearly) independent

Lecture 14&15 - 32

► X ~ B(500, 1/12)

CLT for Counts and Proportion

Let $X_1, X_2, ...$ be a sequence of **i.i.d.** Bernoulli random variables with **probability** p of success. So X_i has mean $\mu = p$ and variance $\sigma^2 = p(1 - p)$. Then

► The sum S_n = X₁ + X₂ + · · · + X_n now is the count of X_i's that take value "1", and has a binomial distribution B(n, p). As n gets large, the distribution of S_n is approximately

$$N(n\mu, \sqrt{n\sigma}) = N(np, \sqrt{np(1-p)}).$$

► The sample mean X̄_n = 1/n(X₁ + X₂ + ··· + X_n) is just the proportion of X_i's that take value "1." As n gets large, the distribution of X̄_n is approximately

$$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) = N\left(p, \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right).$$

Lecture 14&15 - 33

Example: Twitter Users

Suppose 20% of the internet users use Twitters. If a SRS of 2500 internet users are surveyed, what is the probability that the percentage of Twitter users in the sample is over 21%?

Lecture 14&15 - 34