STAT22000 Autumn 2013 Lecture 14\&15

Yibi Huang

November 5, 2013
4.4 Means and Variances of Random Variables
5.1 The Sampling Distribution for a Sample Mean
5.2 Sampling Distributions for Counts and Proportions

Lecture 14\&15-1

Variances of Random Variables

Recall that for random variables X and Y,

- $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$ (always valid)
- Var $(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ when X and Y are independent

Question: What about $\operatorname{Var}(X-Y)$?

In general, if $X_{1}, X_{2}, \ldots, X_{n}$ are random variables, then

- $\mathbb{E}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)+\cdots+\mathbb{E}\left(X_{n}\right)$
- This is always valid no matter X_{i} 's are independent or not
- $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$ when $X_{1}, X_{2}, \ldots, X_{n}$ are independent.

Lecture 14\&15-3

Four Rolls of a Die - Approach 2

- Let X_{1}, X_{2}, X_{3}, and X_{4} be respectively the number of spots in the 1st, $2 \mathrm{nd}, 3 \mathrm{rd}$, and 4 th roll.
- Observe that $S_{4}=X_{1}+X_{2}+X_{3}+X_{4}$
- X_{1}, X_{2}, X_{3}, and X_{4} have a common distribution:

value	1	2	3	4	5	6
probability	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- mean: $\mathbb{E}\left(X_{1}\right)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5$
- $\operatorname{Var}\left(X_{1}\right)=1^{2} \cdot \frac{1}{6}+2^{2} \cdot \frac{1}{6}+3^{2} \cdot \frac{1}{6}+4^{2} \cdot \frac{1}{6}+5^{2} \cdot \frac{1}{6}+6^{2} \cdot \frac{1}{6}-\mathbb{E}\left(X_{1}\right)^{2}=\frac{35}{12}$
- X_{2}, X_{3}, and X_{4} have the same mean and variance as X_{1} since they have a common distribution
- So $\mathbb{E}\left(S_{4}\right)=\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)+\mathbb{E}\left(X_{3}\right)+\mathbb{E}\left(X_{4}\right)$

$$
=3.5+3.5+3.5+3.5=14
$$

- Since X_{1}, X_{2}, X_{3}, and X_{4} are independent, we have

$$
\begin{gathered}
\operatorname{Var}\left(S_{4}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{3}\right)+\operatorname{Var}\left(X_{4}\right) \\
=\frac{35}{12}+\frac{35}{12}+\frac{35}{12}+\frac{35}{12}=\frac{35}{3} \\
\quad \text { Lecture } 14 \& 15-5
\end{gathered}
$$

The mean, or expected value, or expectation of a random variable X can be denoted as

- μ_{X}
- $\mu(X)$
- $\mathbb{E}(X)$ (Here " \mathbb{E} " means "expectation")

The variance of a random variable X can be denoted as

- σ_{X}^{2}
- $\sigma^{2}(X)$
- $\operatorname{Var}(X)$

Four Rolls of a Die (1)

The two properties on the previous slide are very useful since you can find the mean and variance for $X_{1}+X_{2}+\cdots+X_{n}$ without knowing the distribution of $X_{1}+X_{2}+\cdots+X_{n}$.

Example: What is the mean and variance for the sum of the number of spots one gets when rolling a die 4 times?

Approach 1

- Let S_{4} be the total number of spots in 4 rolls.
- Possible values of $S: 4,5,6, \ldots, 23,24$
- Distribution of S_{R} ?
- e.g., $P\left(S_{4}=15\right)=$?

How many ways are there to have a sum of 15 in 4 rolls?

- $6^{4}=1296$ possible outcomes, too many to enumerate
- Is there an easier way?

Lecture 14\&15-4

Many Rolls of a Die

The second approach can be easily generalized to more rolls.
Consider the total number of spots S_{n} got in n rolls of a die, and let X_{i} be the number of spots got in the i th roll, for $i=1,2, \ldots, n$. Then

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

and all the X_{i} 's have a common distribution with mean 3.5 and variance $35 / 6$. The mean and variance of S_{n} are hence

$$
\begin{aligned}
\mathbb{E}\left(S_{n}\right) & =\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=3.5 \times n \\
\operatorname{Var}\left(S_{n}\right) & =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=\frac{35}{12} \times n
\end{aligned}
$$

since X_{i} 's are independent of each other.
The mean and variance S_{n} can be found without first working out the distribution of S_{n}.

Sum and Mean of i.i.d. Random Variables

The rolling die example demonstrates a common scenario for many problems: suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables with mean μ and variance σ^{2}.

- Here, "i.i.d." = "independent, and identically distributed", which means that $X_{1}, X_{2}, \ldots, X_{n}$ are independent and have identical probability distributions.

The mean and variance of $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ are then

$$
\begin{aligned}
\mathbb{E}\left(S_{n}\right) & =\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=\mu \times n=n \mu \\
\operatorname{Var}\left(S_{n}\right) & =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=\sigma^{2} \times n=n \sigma^{2}
\end{aligned}
$$

- Observe $\operatorname{Var}\left(S_{n}\right)=n \sigma^{2} \geq \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,
the sum of X_{i} 's has greater variability than a single X_{i} does.

Lecture 14\&15-7

Properties of Correlation ρ

Let ρ be the correlation of random variables X and $Y . \rho$ has very similar properties with the sample correlation r.

- $-1 \leq \rho \leq 1$
- If X and Y are independent, then $\rho=0$
(But when $\rho=0, X$ and Y may not be independent.)
- If $\rho>0$ then when X gets big, Y also tends to gets big, and vice versa. In this case,

$$
\operatorname{Var}(X+Y)>\operatorname{Var}(Y)+\operatorname{Var}(X)
$$

- If $\rho<0$ then when X increases, Y tends to decrease, and vice versa. In this case,

$$
\operatorname{Var}(X+Y)<\operatorname{Var}(Y)+\operatorname{Var}(X)
$$

- If $\rho=1$ or -1 , then there exists constants a and b such that Y always equals $a X+b$.

Lecture 14\&15-9

Suppose the frequency table of x_{1}, \ldots, x_{50000} is

years of schooling x	count	proportion p_{x}
0	500	0.01
1	500	0.01
2	500	0.01
3	500	0.01
4	500	0.01
5	1000	0.02
6	1000	0.02
7	1000	0.02
8	3000	0.06
9	2000	0.04
10	2000	0.04
11	2000	0.04
12	17000	0.34
13	3000	0.06
14	3000	0.06
15	3000	0.06
16	9500	0.19
Total	50000	1

What if Not Independent?

In general, if X and Y are NOT independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(Y)+\operatorname{Var}(X)+2 \rho \sigma(X) \sigma(Y)
$$

Here, ρ is the correlation between X and Y, which is defined analogously to the (sample) correlation r.

$$
\begin{aligned}
\text { sample correlation } r & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{X}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \\
\text { correlation } \rho & =\mathbb{E}\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)\left(\frac{Y-\mu_{Y}}{\sigma_{Y}}\right)\right]
\end{aligned}
$$

- We'll NEVER compute ρ in STAT220.

The formula is FYI only.

Correlation between two independent variables is zero.

Lecture 14\&15-8

A Statistical Model of Simple Random Sampling

 Consider a population comprised of N individual, indexed by $1,2,3, \ldots, N$. Each individual has a numerical characteristic such that x_{i} is the numerical characteristic of the i th individual.Example. The population is the 50,000 people age 25 and over in this town, indexed from $1,2,3, \ldots, N=50,000$. Let x_{i} be the years of schooling of the i th individual in the population.
When a single individual is selected at random from the population (everyone has $1 / N$ chance to be selected), how many years of schooling X did he/she get?

- X is a random variable
- What is the probability distribution of X ?

$$
\begin{aligned}
p_{x} & =P(X=x) \\
& =\frac{\# \text { of people who have got } x \text { years of schooling }}{N}
\end{aligned}
$$

Lecture 14\&15-10

Review of Simple Random Samples

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are n draws at random without replacement from a population of size N. That is,

1. In the first draw, everyone has $1 / N$ chance to be selected
2. In the second draw, each of the remaining $N-1$ has $1 /(N-1)$ chance to be selected
3.
4. In the nth draw, each of the remaining $N-n+1$ has $1 /(N-n+1)$ chance to be selected
Then $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is called a simple random sample (SRS) of size n.

Properties of Simple Random Samples

1. Every X_{i} has the same probability distribution
(the population distribution X)
2. The X_{i} 's are (nearly) independent

- Since we usually sample without replacement, draws are not independent.
- As long as the sample size n is small ($<10 \%$ relative to the population size N, the dependencies among sampled values are small and are generally ignored.
- When sampling from an infinite population $(N=\infty)$, the X_{i} 's are independent.
Due to the reasons above, we often assume observations X_{1}, X_{2}, \ldots, X_{n} in a simple random sample are i.i.d. from some (population) distribution.

Lecture 14\&15-13

Properties of the Sample Mean

So far we have shown that: the sample mean \bar{X}_{n} of i.i.d random variables with mean μ and variance σ^{2} has the following properties:

1. $\mathbb{E}\left(\bar{X}_{n}\right)=\mu \ldots \ldots \ldots \ldots \ldots \ldots . \bar{X}_{n}$ is an unbiased estimator for μ.
2. $\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n \ldots \ldots \ldots$. The larger n is, the less variable \bar{X}_{n} is.
3. Weak Law of Large Numbers: As n gets large

$$
\bar{X}_{n} \longrightarrow \mu .
$$

Intuitively, this is clear from the mean and the variance of \bar{X}_{n}; the "center" of the distribution \bar{X}_{n} is μ, and the "spread" around it becomes smaller and smaller as n grows.
4. The distribution of \bar{X}_{n}, called the sampling distribution of the sample mean, depends on the distribution of X_{i}.

- hard to find in general, except for a few cases
- When n is large, we have Central Limit Theorem!

If X_{i} 's are i.i.d., with the distribution

$$
\begin{array}{l|ccc}
\text { value } & 1 & 2 & 9 \\
\hline \text { probability } & 1 / 3 & 1 / 3 & 1 / 3
\end{array}
$$

Probability histogram for the distribution of X_{1} :

Probability histogram for the distribution of $S_{25}=X_{1}+\cdots+X_{25}$:

Mean and Variance of Sample Means

In sampling and many other cases, the population mean μ is often unknown. The sample mean $\bar{X}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$ is often used to estimate it.

- How good is this estimation?

Observe that $\bar{X}_{n}=S_{n} / n$, in which S_{n} is the sum of X_{1}, X_{2}, \ldots, and X_{n}. Recall we have shown in the beginning that

$$
\mathbb{E}\left(S_{n}\right)=n \mu, \quad \text { and } \quad \operatorname{Var}\left(S_{n}\right)=n \sigma^{2} .
$$

By the scaling properties of the expected values and the variances, $\mathbb{E}(c X)=c \mathbb{E}(X)$ and $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$, we have

$$
\begin{array}{r}
\mathbb{E}\left(\bar{X}_{n}\right)=\mathbb{E}\left(\frac{1}{n} S_{n}\right)=\frac{1}{n} \mathbb{E}\left(S_{n}\right)=\frac{1}{n} \cdot n \mu=\mu, \\
\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{1}{n} S_{n}\right)=\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(S_{n}\right)=\frac{1}{n^{2}} \cdot n \sigma^{2}=\frac{\sigma^{2}}{n} .
\end{array}
$$

Lecture 14\&15-14

Central Limit Theorem (CLT)

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables (discrete or continuous) with mean μ and variance σ^{2}. Then, when n is large,

- the distribution of the sample mean
$\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ is approximately

$$
N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) .
$$

- the distribution of the sum $X_{1}+X_{2}+\cdots+X_{n}$ is approximately

$$
N(n \mu, \sqrt{n} \sigma)
$$

Lecture 14\&15-16
X_{i} 's are i.i.d., with the distribution

$$
\begin{array}{l|ccc}
\text { value } & 1 & 2 & 9 \\
\hline \text { probability } & 1 / 3 & 1 / 3 & 1 / 3
\end{array}
$$

Probability histogram for the distribution of $S_{50}=X_{1}+\cdots+X_{50}$:

Probability histogram for the distribution of $S_{100}=X_{1}+\cdots+X_{100}$:

Example: For the years of schooling example, it is known that the population distribution has mean $\mu=11.8$ and variance is $\sigma^{2}=12.96$. For a sample of size 400 , by CLT, the sample mean \bar{X}_{n} is approximately

$$
N\left(11.8, \sqrt{\frac{12.96}{400}}\right)=N(11.8,0.18)
$$

- Find the probability that the sample mean <11.
- Find the probability that the sample mean is between 11.8 ± 0.36.

Example: Shipping Packages

Suppose a company ships packages that vary in weight:

- Packages have mean 15 lb and standard deviation 10 lb .
- Packages weights are independent from each other

Q: What is the probability that 100 packages will have a total weight exceeding 1700 lb ?

Let W_{i} be the weight of the i th package and

$$
\begin{gathered}
T=\sum_{i=1}^{100} W_{i}, \quad \mu_{T}=100 \mu_{W}=100(15)=1500 \mathrm{lb} \\
\sigma_{W}^{2}=100 \sigma_{W}^{2}=100\left(10^{2}\right), \quad \sigma_{W}=\sqrt{100(10)^{2}}=100 \mathrm{lb}
\end{gathered}
$$

By CLT, T is approximately $N(1500,100)$, and 1700 is 2 SD above the mean, so the probability is about 2.5%.

Lecture 14\&15-20

Bernoulli Random Variables (1)

A random variable X is said to a Bernoulli random variable if it takes two values only: 0 and 1 .

- $p=P(X=1)$ is called the probability of success
- Then $P(X=0)$ must be $1-p$ since X is either 0 or 1 .
- So the distribution of a Bernoulli random variable with probability p of success must be

$$
\begin{array}{l|cc}
\hline \text { value of } X & 0 & 1 \\
\hline \text { probability } & 1-p & p \\
\hline
\end{array}
$$

- Mean and variance:

$$
\begin{aligned}
\mathbb{E}(X) & =0 \cdot(1-p)+1 \cdot p=p \\
\operatorname{Var}(X) & =0^{2} \cdot P(X=0)+1^{2} \cdot P(X=1)-\mathbb{E}(X)^{2} \\
& =0 \cdot(1-p)+1 \cdot p-p^{2}=p(1-p)
\end{aligned}
$$

Lecture 14\&15-22

Binomial Distribution (1)

A random variable Y is said to have a Binomial distribution $B(n, p)$, denoted as $Y \sim B(n, p)$, if it is a sum of n i.i.d. Bernoulli random variables, $X_{1}, X_{2}, \ldots, X_{n}$, with probability p of success.
Binomial distribution arises when we count the number of "successes" in a series of n independent "trials", e.g.,

- number of heads when tossing a coin n times ("success" = heads)
- \# of defected items in a batch of size 1000
("success" = defected)
- \# of iPhone users in a SRS from a huge population ("success" $=$ iPhone user)

Mean and Variance of Binomial

Recall a Binomial random variable $Y \sim B(n, p)$ are sums of i.i.d. Bernoulli random variables $X_{1}, X_{2}, \ldots, X_{n}$, with probability p of success. The mean and variance of Y are thus

$$
\begin{aligned}
\mathbb{E}(Y) & =\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)+\cdots+\mathbb{E}\left(X_{n}\right) \\
& =p+p+\cdots+p=n p \\
\operatorname{Var}(Y) & =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right) \\
& =p(1-p)+p(1-p)+\cdots+p(1-p)=n p(1-p)
\end{aligned}
$$

since X_{i} 's are i.i.d. with mean p and variance $p(1-p)$.
What about the distribution of Y ? E.g., What is $P(Y=3)$?

Lecture 14\&15-25

Binomial Formula

The distribution of a Binomial distribution $B(n, p)$ is given by the binomial formula. If Y has the binomial distribution $B(n, p)$ with n trials and probability p of success per trial, the probability to have k successes in n trials, $P(Y=k)$, is given as

$$
P(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } k=0,1,2, \ldots, n .
$$

Why the binomial formula is true?
See the next slide for an example.

Lecture 14\&15-27

Why is the Binomial Formula True? (Optional)

In general, for $Y \sim B(n, p)$
$P(Y=k)=$ (Number of ways to have exactly k success)
$\times P$ (success in all the first k trials
and none of the last $n-k$ trials)
$=($ Number of ways to choose k out of $n) \times p^{k}(1-p)^{n-k}$
$=\binom{n}{k} p^{k}(1-p)^{n-k}$

Factorials and Binomial Coefficients

The notation $n!$, read \mathbf{n} factorial, is defined as

$$
\begin{gathered}
n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n \\
\text { e.g., } \quad 3!=1 \times 2 \times 3=6, \\
1!=1, \quad 4!=1 \times 2 \times 3 \times 4=24 .
\end{gathered}
$$

By convention, $0!=1$.
The binomial coefficient: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

- which is the number of ways to choose k items, regardless of order, from a total of n distinct items
- $\binom{n}{k}$ is read as " n choose k ".
e.g.,
$\binom{4}{2}=\frac{4!}{2!\times 2!}=\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}=6, \quad\binom{4}{4}=\frac{4!}{4!\times 0!}=\frac{4!}{4!\times 1}=1$
Lecture 14\&15-26

Why is the Binomial Formula True? (Optional)
Let Y be the number of success in 4 independent trials, each with probability p of success. So $Y \sim B(4, p)$.

- To get 2 successes $(Y=2)$, there are 6 possible ways:

SSFF SFSF SFFS FSSF FSFS FFSS
in which "SSFF" means success in the first two trials, but not in the last two, and so on.

- As trials are independent, by the multiplication rule,

$$
\begin{aligned}
P(\mathrm{SSFF}) & =P(\mathrm{~S}) P(\mathrm{~S}) P(\mathrm{~F}) P(\mathrm{~F}) \\
& =p \cdot p \cdot(1-p) \cdot(1-p)=p^{2}(1-p)^{2} \\
P(\mathrm{SFSF}) & =P(\mathrm{~S}) P(\mathrm{~F}) P(\mathrm{~S}) P(\mathrm{~F}) \\
& =p \cdot(1-p) \cdot p \cdot(1-p)=p^{2}(1-p)^{2}
\end{aligned}
$$

- Observe all 6 ways occur with probability $p^{2}\left(1-p^{2}\right)$, because all have 2 successes and 2 failures
So $P(Y=2)=(\#$ of ways $) \times($ prob. of each way $)=6 \cdot p^{2}(1-p)^{2}$ Lecture 14\&15-28

Example

Four fair dice are rolled simultaneously, what is the chance to get (a) exactly 2 aces? (b) exactly 3 aces? (c) 2 or 3 aces?

- A trial is one roll of a die. A success is to get an ace.
- Probability of success $p=1 / 6$
- number of trials $n=4$ is fixed in advance
- Are the trials independent? Yes!
- So $Y=\#$ of aces got has a $B(4,1 / 6)$ distribution
(a) $P(Y=2)=\frac{4!}{2!2!}\left(\frac{1}{6}\right)^{2}\left(1-\frac{1}{6}\right)^{2}=\frac{25}{216}$
(b) $P(Y=3)=\frac{4!}{3!1!}\left(\frac{1}{6}\right)^{3}\left(1-\frac{1}{6}\right)^{1}=\frac{5}{324}$
(c) $P(Y=2$ or $Y=3)=P(Y=2)+P(Y=3)$
$=\frac{25}{216}+\frac{5}{324}=0.131$
Lecture 14\&15-30

Requirements to be Binomial (1)

To be a Binomial random variable, check the following

1. the number of trials n must be fixed in advance,
2. p must be identical for all trials
3. trials must be independent

Q1: A SRS of 50 from all UC undergrads are asked whether or not he/she is usually irritable in the morning. X is the number who reply yes. Is X binomial?

- a trial: a randomly selected student reply yes or not
- prob. of success $p=$ proportion of UC undergrads saying yes
- number of trials $=50$
- Strictly speaking, NOT binomial, because trials are not independent
- Since the sample size 50 is only 1% of the population size (≈ 5000), trials are nearly independent
- So X is approximately binomial, $B(n=50, p)$

Lecture 14\&15-31

CLT for Counts and Proportion

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. Bernoulli random variables with probability p of success. So X_{i} has mean $\mu=p$ and variance $\sigma^{2}=p(1-p)$. Then

- The sum $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ now is the count of X_{i} 's that take value " 1 ", and has a binomial distribution $B(n, p)$. As n gets large, the distribution of S_{n} is approximately

$$
N(n \mu, \sqrt{n} \sigma)=N(n p, \sqrt{n p(1-p)})
$$

- The sample mean $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ is just the proportion of X_{i} 's that take value " 1 ." As n gets large, the distribution of \bar{X}_{n} is approximately

$$
N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)=N\left(p, \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)
$$

Requirements to be Binomial (2)

Q2 John tosses a fair coin until a head appears. X is the count of the number of tosses that John makes. Is X binomial?

- one trial = one toss of the coin
- number of trials is not fixed
- NOT binomial

Q3 Most calls made at random by sample surveys don't succeed in talking with a live person. Of calls to New York City, only $1 / 12$ succeed. A survey calls 500 randomly selected numbers in New York City. X is the number that reach a live person. Is X binomial?

- one trial $=$ a call that reach a live person
- number of trials $n=500$
- probability of success $p=1 / 12$
- Independent trials? Huge population, so (nearly) independent
- $X \sim B(500,1 / 12)$

Lecture 14\&15-32

Example: Twitter Users

Suppose 20% of the internet users use Twitters. If a SRS of 2500 internet users are surveyed, what is the probability that the percentage of Twitter users in the sample is over 21% ?

