STAT22000 Autumn 2013 Lecture 11

Yibi Huang

October 23, 2013

- Conditional Probability
- General Multiplication Rule
- Independence of Events
- The Rule of Total Probability
- Bayes' Rule

Textbook Coverage: Section 4.2 and 4.5

Lecture 11-1

Conditional Probabilities

Given two events A and B. We denote the probability of event A happens given that event B is known to happen as

$$
P(A \mid B),
$$

read as the probability of " A given B."
For the example on the previous slide, let

$$
\begin{aligned}
& A=1 \text { st card is an ace } \\
& B=2 \text { nd card is an ace. }
\end{aligned}
$$

We have

$$
P(B \mid A)=\frac{3}{51} \neq P(B)=\frac{4}{52} .
$$

Current knowledge (outcome of the first draw) has changed (restricted) the sample space (possible outcomes) for future events.

> Lecture 11-3

General Multiplication Rule (2)

(The probability that two things will both happen)

$$
=(\text { the unconditional probability that the 1st will happen })
$$

\times (the conditional probability that the $2 n d$ will happen given that the 1st has happened).

In mathematical notation,

$$
P(A \text { and } B)=P(A) \times P(B \mid A)
$$

General multiplication Rule for several events:

$$
P(A B C D)=P(A) \times P(B \mid A) \times P(C \mid A B) \times P(D \mid A B C)
$$

Conditional Probabilities

Example: You are drawing cards from a "perfectly" shuffled deck.

- What is the probability that the first card drawn is an ace?

$$
P(1 \text { st card is an ace })=\frac{4}{52}=\frac{1}{13} .
$$

- What is the probability that the $2 n d$ card drawn is an ace when the first card drawn was unknown?

$$
P(2 \text { nd card is an ace })=\frac{1}{13}
$$

- What is the probability that the second card is an ace if the first card was known to be an ace? $\frac{3}{51}$

Lecture 11-2

General Multiplication Rule (1)

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that both cards are aces?

- Imagine maace many such deals.
- The 1 st card will be an ace about $4 / 52$ of the time.
- Among the deals where the 1st card is an ace, the 2nd card will be an ace about $3 / 51$ of the time.
- So both cards will be aces about $4 / 52$ of $3 / 51$ of the time.
- The probability that both cards are aces equals:
(The unconditional probability that the 1st card is an ace)
\times (the conditional probability that the 2 nd card is an ace given that the 1st card is an ace)

$$
=\frac{4}{52} \times \frac{3}{51}=\frac{1}{221}
$$

Lecture 11-4

An Example for the General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that neither card is an ace?
Solution. Let
$A=1$ st card is NOT an ace,
$B=2$ nd card is NOT an ace.

- $P(A)=P($ the 1 st card is not a ace $)=48 / 52$.
- Given that the 1st card is not a ace, the conditional probability that the 2nd card is not a ace $=$? $P(B \mid A)=\frac{47}{51}$.
- So the probability that both cards are not aces =?

$$
P(A \text { and } B)=P(A) \times P(B \mid A)=\frac{48}{52} \times \frac{47}{51}=\frac{188}{221} \approx 0.851 .
$$

An Alternative Way to Find Conditional Probability

In view of the general multiplication rule

$$
P(A \text { and } B)=P(A) \times P(B \mid A),
$$

we sometimes compute the conditional probability $P(B \mid A)$ via the formula

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

when $P(A$ and $B)$ and $P(A)$ are easier to find.
Remark: The formula above is sometimes adopted as the definition of conditional probability.

See the next page for an example.

Lecture 11-7

Example - Formula 1 Race (2)

Now let's condition on the event B. The track is either dry, which occurs with probability $P(B=$ Dry $)=0.9$, or wet, which occurs with probability $P(B=W e t)=0.1$.

Team	Conditional		Unconditional
	$P(A \mid D r y)$	$P(A \mid$ Wet $)$	$P(A)$
Red Bull	$\frac{0.36}{0.9}=0.40$	$\frac{0.025}{0.1}=0.25$	0.385
McLaren	$\frac{0.27}{0.9}=0.30$	$\frac{0.025}{0.1}=0.25$	0.295
Ferrari	$\frac{0.27}{0.9}=0.30$	$\frac{0.005}{0.1}=0.50$	0.320
Total	1.00	1.00	

- Red Bull has higher probability to win on dry track; Ferrari has higher probability to win on wet track
- $\sum_{A} P(A \mid D r y)=1$ because conditioning implies normalizing: by definition $P(A \mid B)=P(A$ and $B) / P(B)$.

Lecture 11-9

Independence

Two events A and B are independent if the probability for B given A are the same, no matter where A are true or not. Otherwise, they are dependent.

In mathematical notation,
A and B are independent if $P(B \mid A)=P(B)$

Example: Someone is going to roll a die twice. Are the two rolls independent, or dependent?

- No matter how the 1st roll turns out, the 2 nd roll will give $1,2,3,4,5$, or 6 , with equal probabilities. So the two rolls are independent.

Example - Formula 1 Race (1)

Let A be the winning team in a Formula 1 race: Red Bull, McLaren or Ferrari. Let B be the track condition: either dry or wet.

Winning	Condition		
Team	Dry	Wet	$P(A)$
Red Bull	0.36	0.025	0.385
McLaren	0.27	0.025	0.295
Ferrari	0.27	0.050	0.320
$P(B)$	0.900	0.10	1.000

- Each cell gives the probability $P(A$ and $B)$ for a particular combination of a team and a condition.
- The probabilities of the 6 cells add up to 1 because we enumerate all possibilities (in this simplified Formula 1).

Lecture 11-8

Example - College Students (Ex. 4.44 on the Textbook)

age	full-time	part-time
15 to 19	0.21	0.03
20 to 24	0.32	0.07
25 to 34	0.10	0.10
$35+$	0.05	0.13

- Each cell gives the probability $P(A$ and $B)$ for a combination of full/part-time and age groups.
- What is the probability that a student is enrolled full-time? $P($ full time $)=0.21+0.32+0.10+0.13=0.76$.
- What is the probability that a full-time student is between 25 and 34 years of age?
$P($ age 25-34 \mid full time $)=\frac{P(\text { full time and } 25-34)}{P(\text { full time })}=\frac{0.1}{0.76} \approx 0.132$.
- What is the probability that a student who is between 25 and 34 years of age is enrolled full-time?
$P($ full time lage 25-34 $)=\frac{P(\text { full time and } 25-34)}{P(\text { age } 25-34)}=\frac{0.1}{0.1+0.1}=0.5$.
Lecture 11-10

An Example of Dependent Events

A deck of cards is shuffled and the two top cards are placed face down on a table.

- Event A : the 1st card is a ace.
- Event B : the 2nd card is a ace.

Q: Are these two events independent, or dependent?
A:

- Given that the 1st card is a ace, the probability that the 2nd card is a ace equals $P(B \mid A)=\frac{3}{51}$.
- If the 1st card is unknown, the probability that the 2 nd card is a ace equals $P(B)=4 / 52$.
The probabilities for the 2nd event change, depending on how the 1st event turns out. So the two events are dependent.

Multiplication Rule for Independent Events

By the general multiplication rule,

$$
P(A \text { and } B)=P(A) \times P(B \mid A)
$$

when A and B are independent, then $P(B \mid A)=P(B)$. Hence, we have

$$
P(A \text { and } B)=P(A) \times P(B)
$$

In general, if several events are independent,
the probability that all of them will happen equals the product of their unconditional probabilities.

Example of Multiplication Rules for Independent Events

Every day you buy a lottery ticket that offers 1 probability in 1000 of winning. What is the probability that you never win in 1000 plays?

The question asks for the probability of losing on each play.

- The plays are independent.
- Your probability of losing on any particular play $=0.999$.
- Your probability of losing on all 1000 plays $=(0.999)^{1000}$, or 0.368 .

The probability that you win at least once in 1000 plays equals
\qquad $1-0.368$ or 0.632 .

- The complement rule is useful here.

Example for the Rule of Total Probability

Suppose an applicant for a job has been invited for an interview.
The probability that

- he is nervous is $P(N)=0.7$,
- the interview is successful when he is nervous is $P(S \mid N)=0.2$,
- the interview is successful when he is not nervous is $P\left(S \mid N^{c}\right)=0.9$.

What is the probability that the interview is successful?

$$
\begin{aligned}
P(S) & =P(S \text { and } N)+P\left(S \text { and } N^{c}\right) \\
& =P(S \mid N) P(N)+P\left(S \mid N^{c}\right) P\left(N^{c}\right) \\
& =0.2 \times 0.7+0.9 \times 0.3=0.41
\end{aligned}
$$

Two events A and B are independent if any of the following ones is true

- $P(B \mid A)=P(B)$
- $P(B \mid A)=P\left(B \mid A^{c}\right)$
- $P(A B)=P(A) P(B)$

Lecture 11-14

The Rule of Total Probability

Suppose the events A_{1}, \ldots, A_{k} form a partition of the sample space S in which A_{i} 's form a partition means they are

- mutually exclusive, i.e., $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$;
- exhaustive, i.e. $A_{1} \cup \cdots \cup A_{k}=S$ and

$$
P\left(A_{1}\right)+\cdots+P\left(A_{k}\right)=1
$$

Then

$$
\begin{aligned}
P(B) & =P\left(B \text { and } A_{1}\right)+\ldots+P\left(B \text { and } A_{k}\right) \\
& =P\left(B \mid A_{1}\right) P\left(A_{1}\right)+\ldots+P\left(B \mid A_{k}\right) P\left(A_{k}\right)
\end{aligned}
$$

Tree Diagram for the Rule of Total Probability
Another look at the interview example:

Lecture 11-18

Interview Example Continued

Conversely, given the interview is successful, what is the probability that the job applicant is nervous during the interview?

$$
\begin{aligned}
P(\text { Nervous } \mid \text { Successful }) & =\frac{P(\text { Nervous and Successful })}{P(\text { Successful })} \\
& =\frac{P(\text { Nervous and Successful })}{0.41} \\
& =\frac{P(\text { Successful } \mid \text { Nervous }) P(\text { Nervous })}{0.41} \\
& =\frac{0.2 \times 0.7}{0.41}=\frac{14}{41} \approx 0.34 .
\end{aligned}
$$

in which $P($ Successful $)=0.41$ was found in the previous slide.

Bayes' Rule

The problem in the previous slide is an example of the Bayses' Rule, which combines the reversal of conditioning

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}
$$

and the total probability rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

If the events A_{1}, \ldots, A_{k} form a partition of the sample space,

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P\left(B \mid A_{1}\right) P\left(A_{1}\right)+\ldots+P\left(B \mid A_{k}\right) P\left(A_{k}\right)}
$$

This is a more general form of Bayes' rule.

Lecture 11-20

Enzyme Immunoassay Test for HIV

- $P(\mathrm{~T}+\mid \mathrm{I}+)=0.98$ (sensitivity - positive for infected)
- $P(\mathrm{~T}-\mid \mathrm{I}-)=0.995$ (specificity - negative for non-infected)
- $P(I+)=1 / 300$ (prevalence in the US: estimated 1 million HIV infected)

What is the probability that the tested person is infected if the test was positive?

$$
\begin{aligned}
P(\mathrm{I}+\mid \mathrm{T}+) & =\frac{P(\mathrm{~T}+\mid \mathrm{I}+) P(\mathrm{I}+)}{P(\mathrm{~T}+\mid \mathrm{I}+) P(\mathrm{I}+)+P(\mathrm{~T}+\mid \mathrm{I}-) P(\mathrm{I}-)} \\
& =\frac{0.98 \times 0.0033}{0.98 \times 0.0033+0.005 \times 0.9967} \\
& =39.4 \%
\end{aligned}
$$

This test is not confirmatory. Need to be confirmed by a second type of test

