Yibi Huang

November 5, 2013
4.1 Randomness
4.2 Probability models

Lecture 10-1

Probability Models

Probability models describe, mathematically, the outcome of random processes. They consist of two parts:

1. $S=$ Sample Space: This is a set, or list, of all possible outcomes of a random process. An event is a subset of the sample space.
2. A probability for each possible event in the sample space S.

Examples

- Toss a coin and record the side facing up. $S=\{$ Heads, Tails $\}=\{H, T\}$. Probability of heads $=0.5$, Probability of tails $=0.5$
- Toss a coin three times. Record the side facing up each time. $S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$ Each outcome has probability $1 / 8$.
Lecture 10-3

Events

An event A is a set of outcomes in the sample space.
Example 1: Toss a coin 3 times.
$S=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$.

- Let A be the event that we get exactly 2 tails. Then $A=$? $\{H T T, T H T, T T H\}$
- Let B be the event that we get at least 1 head. Then $B=$? \{HHH, HHT, HTH, THH, HTT, THT, TTH \}
Example 2: Toss a coin repeatedly until a head occurs.
$S=\{1,2,3, \ldots\}$
- Let A be the event that no head occurs in the first 3 toss. Then $A=$? $\{4,5,6, \ldots\}$
Example 3: Measure the life of a battery. $S=[0, \infty)$
- Let B be the event that the battery is dead in 90 days. Then $B=?[0,90]$

Randomness and Probability

Randomn \neq Haphazard

- A phenomenon is random if individual outcomes are uncertain but there is nonetheless a regular distribution of outcomes in a large number of repetitions.
- A haphazard phenomenon may not have such long run distribution
- e.g., Coin tossing is random. The long run proportion of heads is 0.5 (if using a fair coin).
- e.g., Who will be the first 10 students show up in the classroom is haphazard.
- The probability of any outcome of a random phenomenon can be defined as the proportion of times the outcome would occur in a very long series of repetitions.

Lecture 10-2

More Examples of Probability Models

- Toss a coin 3 times and record the total number of heads.

$$
\begin{array}{cc|ccccc}
S=\{0,1, & 2,3\} \\
\text { number of heads } & 0 & 1 & 2 & 3 \\
\hline \text { probability } & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8}
\end{array}
$$

- Toss a coin repeatedly until a head occurs and record the total number of tosses. Then

$S=\{H, T H$, TTH, TTTH,$\ldots\}$ or $S=\{1,2,3,4, \ldots\}$ | number of tosses | 1 | 2 | 3 | \cdots | n | \cdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| probability | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | \cdots | $\frac{1}{2^{n}}$ | \cdots |

All the examples listed above have discrete outcomes that we can list all the possible values. The sample space can also be continuous

- The life of a battery has a continuous sample space $S=[0, \infty)$

Lecture 10-4

Set Notations

Suppose A and B are events in the sample space S.

- The empty set $\emptyset=\{ \}$ is a subset of all sets.
- $(A$ or $B) \equiv(A \cup B) \equiv($ the union of A and $B)$
A happens or B happens or both happen.
- $(A$ and $B) \equiv(A \cap B) \equiv($ the intersection of A and $B)$
A and B both happens
- $(A \cap B=\emptyset) \equiv A$ and B are disjoint
$\equiv A$ and B are mutually exclusive,
A and B cannot happen at the same time
- $A^{c} \equiv$ the complement of A
\equiv all elements that are not in A.
A does NOT happen
Lecture 10-6

Example

Toss a coin twice. The sample space S is $\{H H, H T, T H, T T\}$. Let
A be the event that we get two heads,
B be the event that we get exactly one tail, and
C be the event that we get at least one head.
So,

$$
A=\{H H\} \quad B=\{T H, H T\} \quad C=\{H H, H T, T H\}
$$

$\bullet A^{c}=$? $\quad \bullet A$ or $B=$? $\quad A$ and $B=$? $\{H T, T H, T T\}$ $\{H H, T H, H T\}$
$\}=\emptyset$

- $B^{c}=$?
- A and $C=$?
- B or $C=$? $\{H H, T T\}$ \{HH\} $\{H H, T H, H T\}$

Venn Diagram

Lecture 10-9

Probability Rules

The notation $P(A)$ means the probability of event A.

- Rule 1: All probabilities are between 0 and 1
- Rule 2: The probability of the whole sample space is 1 :

$$
P(S)=1
$$

- Rule 3 (Complement Rule): The probability that A cannot occur is 1 minus the probability that A occurs

$$
P\left(A^{c}\right)=1-P(A)
$$

- Rule 4 (Addition Rule): If two events A and B are disjoint then

$$
P(A \text { or } B)=P(A)+P(B)
$$

- Rule 5 (General Addition Rule): In general, for any two events A and B, the following rule always holds

$$
\begin{aligned}
P(A \text { or } B)= & P(A)+P(B)-P(A \text { and } B) \\
& \text { Lecture 10-8 }
\end{aligned}
$$

Example - Complementation Rule

Question: What is the probability that there is at least one head in 3 tosses of a fair coin?

- Sample space
$S=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$

$$
\text { Event } A=\{\text { at least one head }\}
$$

$$
=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H\}
$$

- $A^{c}=\{T T T\}$
- $P\left(A^{c}\right)=1 / 8$
- $P(A)=1-P\left(A^{c}\right)=1-1 / 8=7 / 8$

Lecture 10-10

Example - Addition Rule

Rolling a pair of dice, what is the probability to get a total of 7 or 11 spots?

- Event A : The total is 7 spots. $\mathbb{P}(A)=6 / 36$.
- Event B : The total is 11 spots. $\mathbb{P}(B)=2 / 36$.
- There are 8 ways to get a total of 7 or 11 spots.

眀

. 8.8
$\because 8$ $\because \because$

: :
:

- In this example, the two events A and B are disjoint that you cannot get a total of 7 spots at the same time as getting a total of 11 spots. So

$$
\begin{aligned}
& P(A \text { or } B)=P(A)+P(B) \\
& \quad \text { Lecture 10-12 }
\end{aligned}
$$

