Outline

STAT22000 Autumn 2013 Lecture 3

Yibi Huang

March 23, 2014
1.3 Density Curves and Normal Distributions

Lecture 3-1

Recall in a histogram

(area of a bin) \propto (number of obs. in that bin).
By rescaling the height of bars as

$$
\frac{\text { percentage of obs. in the bin }}{\text { bin width }}
$$

we can make the area of bars equal to the percentages of of observations in the bins.
E.g., histogram of the lengths of 800 calls to a customer service center

call countlength of calls	
0-1	12
1-2	52
2-3	99
3-4	116
4-5	108
5-6	83
6-7	89
7-8	68
8-9	39
9-10	37
10-11	32
11-12	18
12-13	14
13-14	12
14-15	6
15-16	4
16-17	5
17-18	3
18-19	1
19-20	0
20-21	1
21-22	0
22-23	0
23-24	1
total	800

A density curve is also a mathematical model of a distribution. By "a model" we mean that if the data can be generated in the same way as in the original data to a larger size (e.g., by taking a larger sample, or repeating an experimental procedure more times, etc), we believe the histogram of the data will approach the density curve.

Lecture 3-5

- Density curves
- area under a density curve
- mean and median for density curves
- Normal distributions
- The 68-95-99.7 rule
- Using the standard normal table
- Standardization
- Inverse normal calculations
- Normal quantile plots

Lecture 3-2

Density Curves

A density curve is a smoothed approximation of a histogram. E.g., here is the histogram of the lengths of 800 calls to a customer service center.

Density curves come in any imaginable shape.

Lecture 3-6

Properties of Density Curves

- A density curve is nonnegative,
i.e., always on or above the zero line.
- The total area under the density curve is always 1 , or 100%.

Lecture 3-7

Mean and Median of a Density Curve (2)

The median and mean are the same for a symmetric density curve.
The mean of a skewed curve is pulled in the direction of the long tail.

Lecture 3-9

Normal Distributions

Normal distributions (aka. Gaussian distributions) are a family of symmetric, bell- shaped density curves defined by

$$
\text { a mean } \mu \text {, and an } \mathrm{SD} \sigma
$$

denoted as $N(\mu, \sigma)$. The formula for the $N(\mu, \sigma)$ curve is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

A normal distribution with $\mu=0$, and $\sigma=1$ is called the standard normal distribution, denoted as $N(0,1)$.

Mean and Median of a Density Curve (1)
The median of a density curve is the equal-areas point: the point that divides the area under the curve in half

The mean of a density curve is the balance point, at which the curve would balance if it were made of solid material.

Lecture 3-8

Area Under A Density Curve

For a density, not only the centers (mean, median) are important, in many cases, the distribution itself is more important,
e.g., the percentage of $65+$ people in a country is directly related to the social security budget of the government.
For a distribution, the percentage of cases in a range is represented by the area under the density curve for a range of values.

area of the shaded region
$=$ proportion of cases
between a and b

Normal Family

68-95-99.7\% Rule for Normal Distributions

Lecture 3-13
table entry = shaded area Standard Normal Table (Table A at the end of the Textbook)

The standard normal table gives the areas under the $N(0,1)$ curve to the left of z.
E.g., for $z=-0.83$,
look at the row -0.8 and the column 0.03 .

shaded area $=\underline{0.2033}$

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	.003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	.0005	. 0005	. 0005	. 0004	. 0004	. 00004	.0004	. 0000	. 0004	.0003
-3.2	.0007	. 0007	.0006	.0006	.0006	. 0006	.0006	.0005	. 0005	${ }^{.0005}$
-3.1	.0010	. 0009	. 0009	. 0009	.0008	. 0008	.0008	. 0008	. 0007	.0007
$\frac{-3.0}{-2.9}$. 013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 00010
-2.8	.0026	. 0025	. 0024	. 0023	. 0023	. 0022	.0021	. 0021	. 0022	.0019
-2.7	. 0035	. 0334	. 0333	. 0332	. 0331	. 0330	. 0229	. 0028	. 0227	. 0026
	. 0047	. 00	0	. 00	.0041	. 0040	. 0039	. 0338		36
-2.4	.0082	. 0080	. 0078	. 0075	.0073	. 0077	.0069	. 00688	.0066	064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0994	. 0091	. 0889	. 0887	. 0084
-2.2	. 0139	. 0136		. 0129	. 0125	. 0122	. 0119		. 0113	. 0110
退	. 0179	. 0174	. 0170	. 0161	. 0122	. 015	. 0154	. 0150	0188	43
$\begin{array}{r}-2.0 \\ \hline-1.9\end{array}$. 02288	. 02221	. 0274	. 0228	. 02262	. 02256	. 0250	. 01244	. 0238	. 020233
1.8	. 0359	. 03	03	. 033	. 032	. 032	. 0314			
-1.7	. 049	. 043	. 042	. 04	. 04	. 04	. 03			57
1.6	. 066	.063	.052	. 06	. 06	.0495	. 05948	75	1	5
		. 09	. 0934	. 0918	. 0901		. 08	53	. 0838	23
${ }_{-1.1}^{-1.2}$. 1155	. 1133	. 1112	${ }_{1292}$. 11271	. 1251	.1238	${ }_{1210}^{1020}$.1003	. 11.985
-1.0	158	1562	. 1539	. 1515	1492	. 11469	. 1446	. 1423	. 1401	1379
0.9	${ }_{211}^{184}$. 1818	. 2061	${ }_{20}{ }^{17}$	${ }^{1} 17005$.17	${ }_{19}^{116}$. 189	${ }_{1}^{1867}$
-0.7	. 2420	2389	. 2358	2327	. 219	. 227	.	. 22	.	.2148
-0.6	${ }_{.308}^{2743}$. 2705	. 2676	. 298	. 29	. 2512	${ }_{2876}^{2846}$	${ }_{2843}^{2514}$	${ }_{2810}^{2483}$	
-0.4	34	. 340	. 3372	. 333	. 3300	. 3264	. 3228		. 3156	21
		. 3783								
1										7
				4880	4840	4801	4761	4721	4681	

All the following curves are the standard normal. Use the standard normal table to find the area of the shaded regions.

Alternatively, one can use the R command pnorm () to find areas under the standard normal $N(0,1)$ curve.
> pnorm (-1)
[1] 0.1586553
> pnorm(1.67)
[1] 0.9525403
> pnorm (-1.625)
[1] 0.05208128

Normal Calculation

In statistics, a calculation that we will do from time to time is to find areas under a normal curve $N(\mu, \sigma)$, which represent proportions of observations from that Normal distribution.

Unfortunate there is no simple formula for areas under a Normal curve. We need to use either softwares or the standard normal table in the next 2 slides.

Lecture 3-14
table entry = shaded area

when $z=1.57$ shaded area $=\underline{0.9418}$

if shaded area $=0.75$ then $z=0.675$

Standard Normal Table (continued)

Z	00	. 01	02	03	04	05	06	07	08	09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	59
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 567	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 636	. 6406	. 64	. 648	. 65
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 680	. 6844	. 6879
0.5	. 6915	. 6950	985	. 7019	. 7054	. 708	. 7123	.715	. 7190	7224
0.6	. 7257	. 7291	. 7324	. 7357	. 738	. 7422	. 7454	. 748	. 7517	7549
0.7	. 7580	. 7611	. 7642	. 7673	. 770	. 773	. 7764	. 779	. 782	. 785
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 807	. 81	8133
0.9	. 8159	. 8186	. 8212	. 8238	. 826	. 828	. 8315	. 834	. 836	8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 857	. 8599	21
1.1	. 8643	. 8665	. 8686	. 8708	. 872	. 874	. 8770	. 879	. 88	8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 898	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 914	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
	. 9332	. 9345	. 9357	. 9370	. 9382	. 939	. 940	. 941	. 942	9441
6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 952	. 953	9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 959	. 9608	. 961	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 969	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	9738	. 974	. 9750	. 97	. 97	. 97
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 980	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 998	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 999	. 9994	. 9995	9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	.999
3.4	9997	9997	. 9997	. 999						

All the following curves are the standard normal $N(0,1)$. Find the area of the shaded regions.

> pnorm(1.67) - pnorm(-1)
[1] 0.7938851
> 1-pnorm(-1.625)
[1] 0.9479187
Alternatively, we can ask R to find the area in the UPPER tail.
> pnorm(-1.625,lower.tail=FALSE)
[1] 0.9479187

Conversely, we sometimes want to find the z for a given area.

The R command to find z for a given area under the $N(0,1)$ curve is qnorm().
> qnorm(0.95)
[1] 1.644854
> qnorm(0.1)
[1] -1.281552

Lecture 3-19

> qnorm(1-0.05)
[1] 1.644854
Alternatively, one can specify that 0.05 is the upper-tail area.
> qnorm(0.05,lower.tail=F)
[1] 1.644854

Now we know how to find area under a $N(0,1)$ curve using the normal table or R . How about a general normal curve $N(\mu, \sigma)$? This has to do with a standardized value or a z-score. See next slide.

Lecture 3-20

Standardized Value (aka. z-Scores) (2)
Standardization is simply a change of units.

For a variable X with a normal distribution $N(\mu, \sigma)$, after standardization, its z-score $Z=\frac{X-\mu}{\sigma}$ has a standard normal distribution $N(0,1)$.
This is because all normal distributions have the same shape; differ only in center and scale.

Lecture 3-22

Example: Length of Pregnancy

The length of the human pregnancy is not fixed. It is known that it varies according to a distribution which is roughly normal, with a mean of 266 days, and an SD of 16 days.
What percent of pregnancies last more than 240 days (8 months)?

The z-score of 240 is $\frac{240-266}{16}=-1.625$.

So the proportion is

Inverse Normal Calculation
How long are the longest 5\% of pregnancies (in the pregnancy length example)?

Must find a z such that
 $=0.05$, which was found in

Lecture $3-18$ to be 1.645 . As $z=\frac{x-266}{16}$ is the z-score of the unknown x, we can find the value of x as

$$
x=266+16 \times z=266+16 \times 1.645=292.32 \approx 292 \text { days }
$$

The method:
standard normal curve $\rightarrow z$-scores \rightarrow original variable.
Lecture 3-25

Normal Quantile Plots (aka. Normal QQ Plots)

How to make a normal quantile plot?

1. Given data $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, arrange the data in increasing order: $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$.
2. Find quantiles of the $N(0,1)$ distribution: $z_{\left(\frac{1}{n+1}\right)}, z_{\left(\frac{2}{n+1}\right)}$,
$\ldots, z_{\left(\frac{n}{n+1}\right)}$.
That is, $z_{\left(\frac{i}{n+1}\right)}$ is a value such that $\mathrm{P}\left(Z \leq z_{\left(\frac{i}{n+1}\right)}\right)=\frac{i}{n+1}$ for $Z \sim N(0,1)$.
3. Plot the $x_{(i)}$ values against the $z_{\left(\frac{i}{n+1}\right)}$ values.

That is, plot the points $\left(z_{\left(\frac{i}{n+1}\right)}, x_{(i)}\right)$ for $i=1,2, \ldots, n$

Draw the picture!

- Sketch the normal curve
- Put in the axis for the original variable
- Put in the axis for the z-scores
- Shade the area of interest
- Proceed

Follow this procedure on the HW, exercises, and exams!
Lecture 3-26

Interpreting Normal Probability Plots

- If the data are approximately normal, the plot will be close to a straight line.
- Systematic deviations from a straight line indicate a non-normal distribution.
- Outliers appear as points that are far away from the overall pattern of the plot.
- In R, use qqnorm()

