Time Series Clustering Methods
With Applications In Environmental Studies

Xiang Zhu
The University of Chicago
xiangzhu@uchicago.edu
https://sites.google.com/site/herbertxiangzhu

September 5, 2013
Argonne National Laboratory
Overview

1. Short survey of time series clustering

2. High-dimensional time series clustering via factor modelling
 - Factor modelling for high-dimensional time series
 - A new clustering approach based on factor modelling
 - Example: channel selection in hyper-spectral imagery

3. Shapelet-based feature extraction for long time series
 - Motivating example: Indoor Environmental Time Series
 - Unsupervised-shapelets algorithm for time series clustering
 - Indoor environmental data revisit: shapelets extraction
Motivation

Example (Hyper-spectral Imagery)

Investigate the **spectral-temporal** relationship

- Number of wave bands: 100–1000 (900 in the 2008 dataset)
- Number of measurements: \leq 10 (6 in the 2008 dataset)
- More complicated if multiple pixels included (spatial)

Figure: Hyper-spectral cube with 240 bands (left) and a conceptual diagram of hyper-spectral image layers and spectral reflectance plot from a single pixel (right)
Motivation

Choose a subset of channels to study.

Figure: Eight wavelengths were selected via expert elicitation

Can we select the channels purely based on the data?
Motivation

Example (Environmental Sensor Networks)

To detect events based on different properties, various types of sensors are deployed on different occasions. How to decide when to turn on them?

- Empirical knowledge from professional technicians
- Hidden patterns discovered from historical dataset

Figure: Composite Event Detection in Wireless Sensor Networks, T. Vu et al. (2007)
Time Series Clustering

Objective

Clustering is an **unsupervised** learning method

- In general: To identify hidden structures and similarities
- For time series: To discover similar stochastic dynamics

Applications

- Genetics
- Economics & Finance
- Remote Sensing

- Engineering
- Meteorology
-
Time Series Clustering

(a) Rock Categorization, Cerra et al. (2011)

(b) Gene Expression, Heard et al. (2005)

(c) Climate Index, Steinbach et al. (2003)

(d) Bank Evaluation, Vilar et al. (2009)
Time Series Clustering

Basics
- General-purpose clustering algorithms
- Evaluation criteria of the clustering performance
- Similarity measures between two time series

Approaches
- Raw-data-based
- Feature-based
- Model-based
- Prediction-based

Literatures
For an extensive review, refer *Liao, 2005.*
A very active area: many new works have been done.
Short survey of time series clustering

High-dimensional time series clustering via factor modelling
 Factor modelling for high-dimensional time series
 A new clustering approach based on factor modelling
 Example: channel selection in hyper-spectral imagery

Shapelet-based feature extraction for long time series
 Motivating example: Indoor Environmental Time Series
 Unsupervised-shapelets algorithm for time series clustering
 Indoor environmental data revisit: shapelets extraction
High-dimensional Time Series

Example:
Matrix Representation: $Y_{N \times p}$

$$
\begin{align*}
\text{Var}_1 & \quad \text{Var}_2 & \cdots & \quad \text{Var}_p \\
\text{Time}_1 : & \quad y_{11} & \quad y_{12} & \cdots & \quad y_{1p} \\
\text{Time}_2 : & \quad y_{21} & \quad y_{22} & \cdots & \quad y_{2p} \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
\text{Time}_N : & \quad y_{N1} & \quad y_{N2} & \cdots & \quad y_{Np}
\end{align*}
$$

High-dimension: $p > N$; really common in environmental sciences.
High-dimensional Time Series

Major Difficulties

• Visualization
 • One variate: 2-D plot
 • Two variates: 3-D plot
 • More than three variates?

• Identification
 • Three equations
 • Ten unknown quantities
 • Can we solve them?

• Computation

Figure: Curse of Dimensionality, Hastie et al. (2009)
High-dimensional Time Series

Reduce the dimensionality

- **Variable Selection**: select a subset of original attributes

 \[
 \text{Micro-organism} = \text{Nitrogen} + \text{Moisture} + \text{Grazing} + \text{Wind} + \text{Temperature} + \text{Fertilizer} + \text{Solar} + \text{Policy}
 \]

- **Feature Extraction**: extract a set of new features from the original attributes via functioning mapping

 - Principal Component Analysis (the most renown one)
 - Wavelet Transformation (widely embraced by information scientists)
 - Factor analysis (originated in psychometrics; economist's favorite)
Factor Modelling for Time Series

Factor Model

Decompose $y_t \sim \text{latent factor process } x_t \oplus \text{white noise } \epsilon_t$

$$y_t = Ax_t + \epsilon_t,$$

where x_t: $r \times 1$ factor process with unknown $r \leq p$, A: $p \times r$
unknown constant matrix.

Identification assumptions

1. No linear combinations of x_t are white noise.
2. The rank of A is r and its columns are orthonormal.

The keys for the inference of factor models

$K1$ determine the number of factors r
$K2$ estimate the $p \times r$ factor loading matrix A
Factor Modelling for Time Series

Lam and Yao (2012)
Conducted simple eigen-analysis of a non-negative definite matrix.

Time lag information accumulator \mathbf{M}

For prescribed integer $k_0 \geq 1$, define

$$
\mathbf{M} = \sum_{k=1}^{k_0} \Sigma_y(k) \Sigma_y^T(k), \quad \Sigma_y(k) = \text{Cov}(y_{t+k}, y_t), \quad k \in \mathbb{N}.
$$

Why consider \mathbf{M}?

Under mild *stationary* assumptions

- the number of non-zero eigenvalues of \mathbf{M} is r (**K1**)
- the factor loading space $\mathcal{M}(\mathbf{A})$ is spanned by the eigenvectors of \mathbf{M} corresponding to its non-zero eigenvalues (**K2**).
In practice, \mathbf{M} can be estimated by

$$\hat{\mathbf{M}} = \sum_{k=1}^{k_0} \hat{\Sigma}_y(k) \hat{\Sigma}_y^T(k)$$

where $\hat{\Sigma}_y(k) = \frac{1}{T-k} \sum_{t=1}^{T-k} (y_{t+k} - \bar{y}) \cdot (y_t - \bar{y})^T$, $\bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$.

Tuning parameter k_0

- smaller values are favored
 - autocorrelation often at its strongest for small time lags
 - estimation of $\Sigma_y(k)$ is less accurate when k is larger
- result is robust to the choice of k_0
Factor Modelling for Time Series

Estimation Procedures (*Lam and Yao, 2012*)

1. A ratio-based estimator \hat{r} for the number of factors:

$$
\hat{r} = \arg \min_{1 \leq i \leq R} \frac{\hat{\lambda}_{i+1}}{\hat{\lambda}_i}, \quad \text{(Intuition?)}
$$

where $\hat{\lambda}_1 \geq \ldots \geq \hat{\lambda}_p$ are the eigenvalues of \hat{M} and $r \leq R \leq p$ is a constant. (In practice take $R = p/2$.)

2. The columns of \hat{A} are the \hat{r}th orthonormal eigenvectors of \hat{M} corresponding to its \hat{r}–largest eigenvalues.

3. $\hat{x}_t = \hat{A}^T y_t$, $\hat{\epsilon}_t = (I_p - \hat{A}\hat{A}^T)y_t$ and $\hat{y}_t = \hat{A}\hat{x}_t$.

Clustering based on Factor Modelling

Zhu (2013) [my working paper at ANL this summer]

Basic Idea

Cluster the variates of multiple time series:

\(\rightsquigarrow \) How similar they are in terms of temporal dynamics?

1. Dynamic structures extraction: \(y_t = Ax_t + \epsilon_t \)
2. Similarity measure: compare loadings in \(A \)
3. Variate clustering: clustering rows of \(A \)
Clustering based on Factor Modelling:
1. Temporal Dynamics Extraction

The loading matrix A conveys all useful information about stochastic dynamics of $Y = \{y_t\}_{t \in [N]}$.

\[
\begin{pmatrix}
 y_{t1} \\
 y_{t2} \\
 \vdots \\
 y_{tp}
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1r} \\
 a_{21} & a_{22} & \ldots & a_{2r} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{p1} & a_{p2} & \ldots & a_{pr}
\end{pmatrix}
\begin{pmatrix}
 x_{t1} \\
 x_{t2} \\
 \vdots \\
 x_{tp}
\end{pmatrix} +
\begin{pmatrix}
 \epsilon_{t1} \\
 \epsilon_{t2} \\
 \vdots \\
 \epsilon_{tp}
\end{pmatrix}.
\]

Use Lam and Yao (2012)'s method to solve the factor modelling problem.
Clustering based on Factor Modelling
2. Measure of Similarity

Given two variates \(i \) and \(j \), at time \(t \),

\[
y_{ti} = a_{i1}x_{t1} + a_{i2}x_{t2} + \ldots + a_{ir}x_{tr},
\]
\[
y_{tj} = a_{j1}x_{t1} + a_{j2}x_{t2} + \ldots + a_{jr}x_{tr}.
\]

A metric of similarity between variate \(i \) and \(j \) is defined as

\[
d(i, j) = \sqrt{\sum_{k=1}^{r} (a_{ik} - a_{jk})^2}
\]
Clustering based on Factor Modelling

3. Loading Matrix is Enough

Mapping:
- each variate of Y_t
- each row of A

One simple choice:
Pass A into
- k-means
- hierarchical
-

More ‘complex’:
still working on.......
Clustering based on Factor Modelling

This new method is validated by

- Monte-Carlo experiments
- Classical test datasets in time series clustering

 http://www.cs.ucr.edu/~eamonn/time_series_data

Extensive comparisons are made.

Five evaluation criterion

- Jaccard Score
- Rand Index
- Folkes and Mallow Index
- Cluster similarity measure
- Normalized mutual information

Three existing methods

- Directly with raw data
- Wavelet feature extraction
- AR(∞) approximation

[Details are reported in my working paper.]
Example: Hyper-spectral Imagery

Hyper-spectral Imagery Dataset (From 08/17 To 08/21 in 2013)

- Focus on a single pixel (spatial variation ignored)
- Daily temporal profiles: 08:30–17:00, every 30 minutes
- Wide range of wave bands: 374.26–1038.6 nm, 128 in total

Figure: Hyper-spectral cube collected from an aircraft using SOC710 (Hamada 2012). The photo represents landscape of the study area and the profile represents the spectral reflectance of the 128 bands.
Example: Hyper-spectral Imagery
Example: Hyper-spectral Imagery

Figure: Reflectance time series from band 374.26 nm to 1038.60 nm on 2013-08-19, Hamada (2013)
Example: Hyper-spectral Imagery

wavelength palette: <450 nm purple; 450-500 nm blue; 500-600 nm green; 600-720 nm red; >720 nm grey

Hyperspectral profile on 2013-08-19
1. Short survey of time series clustering

2. High-dimensional time series clustering via factor modelling
 Factor modelling for high-dimensional time series
 A new clustering approach based on factor modelling
 Example: channel selection in hyper-spectral imagery

3. Shapelet-based feature extraction for long time series
 Motivating example: Indoor Environmental Time Series
 Unsupervised-shapelets algorithm for time series clustering
 Indoor environmental data revisit: shapelets extraction
Environmental Sensor Network Systems

(a) Hardware Network, Strunk (2013)

(b) Software Network, Strunk (2013)

(c) Conceptual Diagram of Data Collection and Analysis, Hamada (2013)
Indoor Environmental Time Series

Variables:
Temperature, Humidity, Soil moisture and Light intensity

Figure: Sensory Profiles of Plant on Two Days
Indoor Environmental Time Series

Inconsistent in temporal manner: feature of sensory datasets

Figure: First 20 time points in three different daily profiles
Data Preprocessing

NA: No data available; **DC**: Data collected

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>...</th>
<th>T_l</th>
<th>...</th>
<th>T_k</th>
<th>...</th>
<th>T_{N-2}</th>
<th>T_{N-1}</th>
<th>T_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>NA</td>
<td>DC</td>
<td>DC</td>
<td>NA</td>
<td>...</td>
<td>NA</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>NA</td>
<td>DC</td>
<td>NA</td>
</tr>
<tr>
<td>Day 2</td>
<td>NA</td>
<td>NA</td>
<td>DC</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>DC</td>
<td>NA</td>
</tr>
<tr>
<td>Day 3</td>
<td>DC</td>
<td>NA</td>
<td>DC</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
</tr>
<tr>
<td>Day $s-1$</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>NA</td>
<td>...</td>
<td>NA</td>
<td>DC</td>
<td>NA</td>
</tr>
<tr>
<td>Day s</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>NA</td>
<td>...</td>
<td>DC</td>
<td>DC</td>
<td>NA</td>
</tr>
<tr>
<td>Day $s+1$</td>
<td>DC</td>
<td>DC</td>
<td>NA</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>NA</td>
<td>...</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
</tr>
<tr>
<td>Day $M-2$</td>
<td>NA</td>
<td>DC</td>
<td>DC</td>
<td>NA</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>DC</td>
<td>NA</td>
</tr>
<tr>
<td>Day $M-1$</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>NA</td>
<td>...</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
</tr>
<tr>
<td>Day M</td>
<td>NA</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>...</td>
<td>DC</td>
<td>...</td>
<td>NA</td>
<td>...</td>
<td>DC</td>
<td>DC</td>
<td>NA</td>
</tr>
</tbody>
</table>
For most real world problems regarding time series
- Contamination: Significant noise, Extraneous data,
- Series from the same class might be various in length.

General solution
Refine the raw data and Extract the most useful information

Zakaria et al. (2012) extended a recently-introduced concept in data mining, **shapelets**, and proposed a new method for time series clustering based on shapelets.
Unsupervised-shapelets

Basic Idea

Ignore part of the raw data and only use some local patterns

Figure: Zakaria et al. 2012
Unsupervised-shapelets

Heuristic Definition

Given a collection of time series DATA

- a subsequence \(S^* \) of a time series \(T \) in DATA
- an effective separation for the entire dataset DATA:
 - Group \(D_A \) \(\Rightarrow d_A \) ‘distance’ between \(S^* \) and \(D_A \)
 - Group \(D_B \) \(\Rightarrow d_B \) ‘distance’ between \(S^* \) and \(D_B \)
 - Effective separation: \(d_A \) ‘much smaller/larger than’ \(d_B \)

Figure: Illustration of effective separation of \(D_A \) and \(D_B \) (Zakaria et al. 2012)
Unsupervised Shapelets

Three kinds of distances between series

1. $\text{dist}(\cdot, \cdot)$: length-normalized Euclidean distance

2. Distance between shorter series S^* and longer series T

 $$sdist(S, T) = \min_{1 \leq i \leq n-m} \text{dist}(S, T_{i,m})$$

3. Distance between subsequence S^* and a group of series D_A

 $$d_A := \{ sdist(S^*, T) : T \in D_A \}$$

Two more questions

- How to decide the division of DATA to obtain D_A and D_B?
- What if there are more than one unsupervised shapelet?

They will be answered when you see ♠ and ♠♠ later on.
Unsupervised Shapelets Clustering

Algorithm Overview

1. Extracting all shapelets
2. Pruning away some shapelets
3. Clustering time series
Unsupervised Shapelets Clustering:

1. Shapelet Extraction

Separation Measure \textit{Gap}

Given a shapelet S^*. Suppose that S^* can divide \textbf{DATA} into two groups of time series D_A and D_B. Let

\[
\text{sdist}(S^*, D_A) \quad \text{sdist}(S^*, D_B)
\]

\[
\begin{array}{ll}
\text{mean} & \mu_A \quad \mu_B \\
\text{variance} & \sigma^2_A \quad \sigma^2_B
\end{array}
\]

The separation measure is defined as

\[
\text{Gap}(D_A, D_B, S^*) = (\mu_B - \sigma_B) - (\mu_A + \sigma_A)
\]

Essence of Unsupervised Shapelet Extraction

Greedy search to maximize \textit{Gap} between any dichotomy of \textbf{DATA}
Unsupervised Shapelets Clustering: Shapelet Extraction

Shapelets Extraction

Initially, \(T \leftarrow \) the first series in time series dataset \(\text{DATA} \)

while true
 for each subsequence length \(L \)
 for each subsequence \(T_{L,k} \) in a time series \(T \)
 ♠ Find the \(D_A \) and \(D_B \) s.t. \(\text{gap}(D_A, D_B, T_{L,k}) \) is maximized
 end for
 Store the maximum of all gap values as \(\text{GAP} \)
 end for
 ♠ Find maximum of \(\text{GAP} \) and the corresponding subsequence \(S^* \)
 update \(T \) to be the most ‘dissimilar’ series to \(S^* \) (Shapelet)
 remove ‘some’ series from \(\text{DATA} \) which are ‘similar’ to \(S^* \)
 stop until there is only one series ‘similar’ to \(S^* \)
end while
return the set of all shapelets
Unsupervised Shapelets Clustering:
2. Shapelet Selection

- Too many shapelets extracted
- Recall ♠ in the last page
- Selection \rightsquigarrow Stopping criterion

Figure: Zakaria et al. 2012
Unsupervised Shapelets Clustering:
2. Shapelet Selection

When to stop the searching process?

for i from 1 to the total number of all shapelets
 do clustering based on shapelet 1, . . . , shapelet i (HOW?)
 do clustering based on shapelet 1, . . . , shapelet $(i + 1)$ (HOW??)

$\text{CHANGE} := \text{Eva}(i, i) - \text{Eva}(i, i + 1) \overset{*}{=} 1 - \text{Eva}(i, i + 1)$

end for

return the i minimizing CHANGE as the stopping step
Unsupervised Shapelets Clustering:

3. Clustering

Recall the red **HOWs** in last page.
Also recall the second question: what if more than one shapelets?

Distance Map

m shapelets in a dataset of N time series

$$
\begin{pmatrix}
\text{sdist}(S^*_1, T_1) & \text{sdist}(S^*_2, T_1) & \ldots & \text{sdist}(S^*_m, T_1) \\
\text{sdist}(S^*_1, T_2) & \text{sdist}(S^*_2, T_2) & \ldots & \text{sdist}(S^*_m, T_2) \\
\vdots & \vdots & \ddots & \vdots \\
\text{sdist}(S^*_1, T_N) & \text{sdist}(S^*_2, T_N) & \ldots & \text{sdist}(S^*_m, T_N)
\end{pmatrix}^{N \times m}
$$

Pass the Distance Map into any off-the-shelf algorithms:

- $k-$means clustering
- hierarchical clustering
-
Revisit: Indoor Environmental Time Series

Data

- 16 daily sensory profiles
 - starting: 2013-05-18
 - ending: 2013-06-02
- 4 variates in each profile
 - light intensity
 - soil moisture
 - temperature
 - humidity

Results

<table>
<thead>
<tr>
<th>variable</th>
<th># of shapelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>light intensity</td>
<td>10</td>
</tr>
<tr>
<td>soil moisture</td>
<td>10</td>
</tr>
<tr>
<td>temperature</td>
<td>3</td>
</tr>
<tr>
<td>humidity</td>
<td>4</td>
</tr>
</tbody>
</table>
Revisit: Indoor Environmental Time Series

Figure: Plots of Changes in the Values of Rand Index

(a) Light intensity

(b) Soil moisture
Revisit: Indoor Environmental Time Series

Figure: Time series plots for 16 daily soil moisture profiles
Revisit: Indoor Environmental Time Series

Figure: Time series plots for 16 daily light intensity profiles
Revisit: Indoor Environmental Time Series

(a) 1st shapelet
(b) 2nd shapelet
(c) 3rd shapelet
(d) 4th shapelet
(e) 5th shapelet

Figure: Selected 5 shapelets for light intensity profiles
Conclusion

Factor-modelling-based Clustering

- Effective in the high-dimensional settings
- Can be applied the ‘too-many-variables’ case
- How to generalize to non-stationary case?

Unsupervised-shapelet-based Clustering

- Series can be different in lengths
- Cannot handle series with missing values
- Open a door for research on event detection
Acknowledgement

- FOREST Group, Beckman, P. et al., ANL, 2013
 - Hyper-spectral: Hamada, Y. & Keever, E.
 - Sensor: Sankaran, R.
 - Field site: Adamiec, J.

- External Help
 - Keogh E., University of California, Riverside
 - Bagnall, A, The University of East Anglia, UK
 - Vilar, A., Universidade da Coruña, Spain
This summer is merely a start!

Ongoing Sub-projects

- Shape-based clustering for short time series
- Missing-value-tolerant feature extraction algorithm
- Borrowing strengths: co-clustering across all measurements
- Multi-dimensional time series clustering
-

Update will be posted on

- STAT page on FOREST blog:
 http://press3.mcs.anl.gov/forest/stat
- Personal page:
 https://sites.google.com/site/herbertxiangzhu/research
Thank you!