Measuring Causality between Volatility and Returns with High-Frequency Data*

Jean-Marie Dufour†
Université de Montréal

René Garcia‡
Université de Montréal

Abderrahim Taamouti§
Université de Montréal

First version: April 17, 2006
This version: October 27, 2006

*The authors thank Benoit Perron and the participants of 2006 NBER-NSF Time Series Conference at Montreal for their helpful comments.

† Canada Research Chair Holder (Econometrics). Centre interuniversitaire de recherche en économie quantitative (C.I.R.E.Q), Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Département de sciences économiques, Université de Montréal. Mailing address: Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Québec, Canada H3C 3J7. TEL: 1 514 343 2400; FAX: 1 514 343 5831; e-mail: jean.marie.dufour@umontreal.ca. Web page: http://www.fas.umontreal.ca/SCECO/Dufour.

‡ (C.I.R.E.Q), (CIRANO), and Département de sciences économiques, Université de Montréal. Mailing address: Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Québec, Canada H3C 3J7. TEL: 1 514 343 5960; FAX: 1 514 343 5831; e-mail: rene.garcia@umontreal.ca. Web page: http://www.sceco.umontreal.ca/renegarcia.

§ Centre interuniversitaire de recherche en économie quantitative (CIREQ), Centre interuniversitaire de recherche en analyse des organisations (CIRANO), et Département de sciences économiques, Université de Montréal. Adresse: Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Québec, Canada H3C 3J7. E-mail: abderrahim.taamouti@umontreal.ca.

1
ABSTRACT

In this paper we measure the relationship between volatility and return with high-frequency equity returns. The leverage hypothesis claims that return shocks lead to changes in conditional volatility. The feedback effect theory, based on the existence of a time-varying risk premium, implies that return shocks are caused by changes in conditional volatility. Within the framework of a vector autoregressive linear model of returns and realized volatility (bipower variation), we quantify these effects by applying short-run and long-run causality measures proposed by Dufour and Taamouti (2005). These causality measures go beyond simple correlation measures used recently by Bollerslev, Litvinova, and Tauchen (2006). Using 5-minute observations on S&P 500 Index futures contracts, we measure a strong dynamic leverage effect for the first hour in hourly data and the first three days in daily data. The volatility feedback effect is found to be insignificant at all horizons. We also use these causality measures to quantify and test statistically the dynamic impact of good and bad news on volatility. First, we assess by simulation the ability of causality measures to detect the differential effect of good and bad news in various parametric volatility models. Then, empirically, we measure a much stronger impact for bad news at several horizons. Statistically, the impact of bad news is found to be significant for the first three days, whereas the impact of good news is insignificant at all horizons.

Keywords: Volatility asymmetry, Leverage effect, Volatility Feedback Effect, Multi-Horizon Causality, Causality Measure, High-frequency Data, Realized volatility, bipower variation.