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The econometric problem

When we observe variations in the level of any state variable, are these
variations continouous or discontinuous?
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The econometric problem

When we observe variations in the level of any state variable, are these
variations continouous or discontinuous?

In the financial econometrics terminology, can we disentangle diffusive
variations from jumps?

At a first sight, it looks like an hopeless problem: observations are
discrete.

Disentangling continuity from abrut changes needs using infill
asymptotics.
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The modulus of continuity

Our idea to disentangle diffusion from jumps is based on the modulus
of continuityof the Brownian motion:

r(δ) =

√

2δ log
1
δ

which has the following property, as established by Lévy:

P



limsup
δ→0

max
|t−s|≤δ

|W(t)−W(s)|

r(δ)
= 1



= 1

It measures the speedat which the Brownian motion shrinks to zero.
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The intuition

When δ → 0, diffusive variations go to zero, while jumps do not.

Moreover, we know the rate at which the diffusive variations shrink to
zero: the modulus of continuity.
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The intuition

When δ → 0, diffusive variations go to zero, while jumps do not.

Moreover, we know the rate at which the diffusive variations shrink to
zero: the modulus of continuity.

Thus, we can identify the jumps as those variations which are larger
than a suitable thresholdϑ(δ) which goes to zero, as δ → 0, slower
than r(δ).
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Threshold estimators (Mancini, 2004)

Suppose
X = Y +J

Where Y is a Brownian martingale plus drift and J is a jump process
with non explosive counting process N with E[NT ] < ∞ and time
horizon T < ∞.

If ϑ(δ) is a real deterministic function such that

lim
δ→0

ϑ(δ) = 0 and lim
δ→0

δ log 1
δ

ϑ(δ)
= 0

then for P-almost all ω, ∃δ̄(ω) such that ∀δ < δ̄(ω) we have

∀i = 1, ...,n, I{∆N=0}(ω) = I{(∆X)2≤ϑ(δ)}(ω).
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The model

We use the above intuition to estimate univariate models of the kind:

dXt = µ(Xt)dt+σ(Xt)dWt +dJt , t ∈ [0,T],
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The model

We use the above intuition to estimate univariate models of the kind:

dXt = µ(Xt)dt+σ(Xt)dWt +dJt , t ∈ [0,T],

Drift and diffusion are level-dependent. Jt can be a finite activity doubly
stochastic Poisson process with level-dependent intensity λ(Xt), or a
Lévy process with finite or infinite activity.
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Estimation of the jump process

We first get (in the case of finite activity) an estimate of the whole jump
process using:

Ĵ1,t = ∑
{i:ti≤t}

γ̂τ(i) ,

where
γ̂τ(i)

.
= (Xti+1 −Xti ) · I{(Xti+1−Xti )

2>ϑ(δ)}

It is remarkable that we estimate contemporaneously jump times and
sizes.
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The proposed estimator

Let X be a jump-diffusion process with finite activity, and assume that:

• P{γℓ = 0} = 0;

• ti = iδ (equally spaced observations)

• as δ → 0 both the threshold function ϑ(δ) and
δ ln 1

δ
ϑ(δ) tend to zero;

• nh4 → 0 as n→ ∞ and ∃β > 1 : nhβ → ∞.

Then for all x visited by X

σ̂2
n,h(x)=

n
n

∑
i=1

K

(

Xti − Ĵ1,ti −x
h

)

(Xti+1 −Xti )
2I{(Xti+1−Xti )

2≤ϑ(δ)}

T
n

∑
i=1

K

(

Xti − Ĵ1,ti −x
h

) →P σ2(x)
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Application: The Variance of the short rate
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Estimating the drift function

When J is a doubly stochastic Poisson process it is possible to estimate
the drift and the jump intensity functions by letting T → ∞ and T/n→ 0.
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Estimating the drift function

When J is a doubly stochastic Poisson process it is possible to estimate
the drift and the jump intensity functions by letting T → ∞ and T/n→ 0.

The estimator for the drift is:

µ̂n(x) =

n
n

∑
i=1

K

(

Xti−1 − Ĵ1,ti−1 −x
h

)

(Xti+1 −Xti ) · I{(Xti+1−Xti )
2≤ϑ( T

n )}

T
n

∑
i=1

K

(

Xti−1 − Ĵ1,ti−1 −x
h

)

Then for each x visited by X we have

µ̂n(x) →P µ(x).
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Estimation of the intensity function

The estimator for λ(x) is:

λ̂n(x) =

n
n

∑
i=1

K

(

Xti−1 −x
h

)

ci,nI{(Xti+1−Xti )
2>ϑ(δ)}

T
n

∑
i=1

K

(

Xti−1 −x
h

)

where supi |1−ci,n| → 0 when n→ ∞.

Then, for each x visited by X, letting T → ∞ and T/n→ 0,

λ̂n(x) →P λ(x).
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A small sample correction

The coefficients ci can help in recovering an unbiased estimated
intensity by making assumptions on the distribution of jumps.
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The coefficients ci can help in recovering an unbiased estimated
intensity by making assumptions on the distribution of jumps.

Under normality, we choose:

ci,n =
1

2N (−
√

ϑ/σJ)
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A small sample correction

The coefficients ci can help in recovering an unbiased estimated
intensity by making assumptions on the distribution of jumps.

Under normality, we choose:

ci,n =
1

2N (−
√

ϑ/σJ)

This corrects for the jumps whose size is in the central part of the
distribution, which cannot be identified using a threshold in finite
samples.
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Application: The Intensity of the short rate

Conference on Volatility and High Frequency Data - Chicago, April 21-22, 2007 – p. 14/34



Threshold setting

How do we set the threshold ϑ(δ)?
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Threshold setting

How do we set the threshold ϑ(δ)?

If ϑ is too small −→ many variations will be detected as jumps.

If ϑ is too large −→ many jumps will not be detected.
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Threshold setting for equity markets

For equity markets, we use the following iterative nonparametric filter:

ϑZ(t) = 9·

L

∑
i=−L,i 6=0

K

(

i
L

)

(Xt+i −Xt+i−1)
2I{(Xt+i−Xt+i−1)2<ϑZ−1(δ)}

L

∑
i=−L,i 6=0

K

(

i
L

)

I{(Xt+i−Xt+i−1)2<ϑZ−1(δ)}

where ϑ0(t) = 0 and K(x) is the Gaussian kernel.
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For equity markets, we use the following iterative nonparametric filter:

ϑZ(t) = 9·

L

∑
i=−L,i 6=0

K

(

i
L

)

(Xt+i −Xt+i−1)
2I{(Xt+i−Xt+i−1)2<ϑZ−1(δ)}

L

∑
i=−L,i 6=0

K

(

i
L

)

I{(Xt+i−Xt+i−1)2<ϑZ−1(δ)}

where ϑ0(t) = 0 and K(x) is the Gaussian kernel.

We iterate on Z until convergence.
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Threshold setting for equity markets

For equity markets, we use the following iterative nonparametric filter:

ϑZ(t) = 9·

L

∑
i=−L,i 6=0

K

(

i
L

)

(Xt+i −Xt+i−1)
2I{(Xt+i−Xt+i−1)2<ϑZ−1(δ)}

L

∑
i=−L,i 6=0

K

(

i
L

)

I{(Xt+i−Xt+i−1)2<ϑZ−1(δ)}

where ϑ0(t) = 0 and K(x) is the Gaussian kernel.

We iterate on Z until convergence.

The threshold depends on the smoothing bandwidth L.
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Stock price time series example

AMD, daily data from 1 March 1996 to 1 March 2006
(2558 observations)
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Threshold convergence

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

iter=1
iter=2
iter=3
iter=4
iter=5

Conference on Volatility and High Frequency Data - Chicago, April 21-22, 2007 – p. 18/34



Threshold dependence on L
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Threshold robustness
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Threshold robustness
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Threshold robustness
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Comparison with GARCH
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Threshold robustness
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Jump detection
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Jumps on stock returns

Sample:
386 stocks in the S&P 500 index

10 years of daily observations

AVERAGE NUMBER OF JUMPS

iterations L=10 L=20 L=30 L=40 L=50

1 38.72 32.27 30.25 29.31 28.68

2 46.62 41.16 39.99 39.64 39.27

3 47.85 43.10 42.18 42.10 42.04

4 48.04 43.50 42.71 42.67 42.80

5 48.05 43.56 42.78 42.81 42.97

6 48.06 43.57 42.80 42.86 43.02
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Distribution of jumps among stock

386 stocks, L = 20, six iterations
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Electricity prices: a nonparametric approach

The above techniques are suitable for electricity prices, where sudden
spikes are frequent.
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Electricity prices: a nonparametric approach

The above techniques are suitable for electricity prices, where sudden
spikes are frequent.

Typically traders distinguish a normalstatus and an abnormalstatus.

We can first separate the two operational regimes; then study the
dynamics of the normal status in a nonparametric way.
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Electricity prices: the German market
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Setting the threshold for jump detection

Given the seasonality of these markets, we first fit a GARCH model:

rt = µ+δ rt−1 +∑
i∈I

ci Di + εt

√

ht

ht = ω+α r2
t−1 +βht−1 +∑

i∈I

di Di
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Setting the threshold for jump detection

Given the seasonality of these markets, we first fit a GARCH model:

rt = µ+δ rt−1 +∑
i∈I

ci Di + εt

√

ht

ht = ω+α r2
t−1 +βht−1 +∑

i∈I

di Di

We then set ϑ(t) = 9· ĥt , where ĥt is the filtered value of the variance.
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A semi-nonparametric approach

Our model can be written as:

rt+1 = µ(rt)

(

1+∑
i∈I

ci Di

)

+σ(rt)

(

1+∑
i∈I

di Di

)

εt +dJt (1)

where Di are dummy variables for the day of the week.
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where Di are dummy variables for the day of the week.
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A semi-nonparametric approach

Our model can be written as:

rt+1 = µ(rt)

(

1+∑
i∈I

ci Di

)

+σ(rt)

(

1+∑
i∈I

di Di

)

εt +dJt (3)

where Di are dummy variables for the day of the week.

First we separate dJ from continuous variations

Then we estimate the functions µ and σ with an iterative technique.
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Estimates of dummy coefficients

If we know µ(x),σ(x) we can estimate the coefficients via maximum
likelihood:

1+c j =

∑
t/D j=1

rt
µ(rt−1)

σ(rt−1)
2

∑
t/Di=1

µ(rt−1)
2

σ(rt−1)
2

(1+d j)
2 =

1
ND j=1

∑
t/D j=1

(rt −µ(rt−1) (1+c j))
2

σ(rt−1)
2
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Estimates of drift and volatility

If we know the dummies on weekdays, we can estimate µ(x),σ(x) with
the Nadaraya-Watson estimators:

µ̂(x) =
N ∑N−1

i=1 K
(

r i−x
h

) r i+1
1+∑q∈I cq Dq

T ∑N
i=1 K

(

r i−x
h

) for all x visited byrt

σ̂2 (x)=

N ∑N−1
i=1 K

(

r i−x
h

)

(

r i+1−µ̂(r i)(1+∑q∈I cq Dq)
1+∑q∈I dq Dq

)2

T ∑N
i=1 K

(

r i−x
h

) for all x visited byrt .
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Drift estimates
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Volatility estimates
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Conclusions

• Our results are preliminary......
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Conclusions

• Our results are preliminary......

• We exploit threshold estimators for jump detection and
nonparametric modelling of the continuous part

• On equity, we implement a (nonparametric!) threshold, which
displays good robustness on stock return data

• We use the above techniques for estimating a model for electricity
price dynamics

• We highlight distinctive common features in the normal status of
European electricity markets

• Re-phrasing point one: Work is in progress,

suggestions are welcome!
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