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Abstract

We propose a semiparametric method to estimate spectral densities of

isotropic Gaussian processes with scattered data. The spectral density func-

tion (Fourier transform of the covariance function) is modeled as a linear

combination of B-splines up to a cutoff frequency and, from this point, a

truncated algebraic tail. We calculate an analytic expression for the covariance

function and tackle several numerical issues that arise when calculating the

likelihood. The parameters are estimated by maximizing the likelihood using

the simulated annealing method. Our method directly estimates the tail

behavior of the spectral density, which has the biggest impact on interpolation

properties. The use of the likelihood in parameter estimation takes fully into

account the correlations between observations. We compare our method with

a kernel method proposed by Hall et al. (1994) and a parametric method using

the Matérn model. Simulation results show that our method outperforms

∗Hae Kyung Im is Research Associate, CISES, the University of Chicago, Chicago, IL 60637 (E-

mail: haky@uchicago.edu). Michael L. Stein is Professor, Department of Statistics, the University

of Chicago, Chicago, IL 60637. Zhengyuan Zhu is Assistant Professor, Department of Statistics

and Operations Research, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

(E-mail: zhuz@email.unc.edu).

1



the other two by several criteria. Application to rainfall data shows that our

method outperforms the kernel method.
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1 Introduction

Estimation of the covariance structure of physical processes observed at a finite set of

locations is fundamental to understand the behavior of such processes and to inter-

polate to locations where measurements are not available. Kriging, an interpolation

method widely used by the geophysical community, is based on the knowledge of the

covariances between observed and interpolated locations.

We will concentrate on Gaussian isotropic processes, which are invariant under all

rigid motions. Under this assumption, the covariance of the process at two locations

only depends on the distance between them, so a covariance function on R
+ fully

describes the second order properties of the process. This function has to be positive

definite in order to ensure that the variance of any linear combinations of values of the

process at various locations is positive. The most common solution to this problem is

to restrict the estimation to parametric forms that are proven to be positive definite.

There has been some work in using nonparametric methods or a broad class of

positive definite functions based on the spectral representation of covariance functions.

Before describing these methods some review of positive definite functions is in order.

Bochner’s Theorem (Yaglom, 1987) states that a function is continuous and positive

definite if and only if it is the Fourier transform of a positive bounded measure on

R
d, i.e.,

C(x) =

∫

Rd
exp(iwx)F (dw). (1)

2



For isotropic processes (1) can be reduced to a one-dimensional integral

C(r) = 2(d−2)/2Γ(d/2)

∫ ∞

0
(ru)−(d−2)/2J(d−2)/2(ru)dG(u), (2)

where G(u) =
∫

|w|<u dF (dw) is a bounded positive measure on R, Γ(·) is the Gamma

function, and Jν(·) is the Bessel function of the first kind of order ν (Abramowitz

and Stegun (1965), pg.355).

Shapiro and Botha (1991) proposed using a finite discrete measure with nodes

placed at t1, ..., tn so that the integral in (2) is reduced to a finite sum:

C̃(r) =
m

∑

j=1

pjΩd(tjh), (3)

where the pj ’s are positive and Ωd(x) =
(

2
x

)(d−2)/2
Γ

(

d
2

)

J(d−2)/2(x). For a random

field Z on R
d, they use a raw covariogram estimate given by

Ĉ(h) =
1

N(h)

∑

N(h)

(Z(xi) − Z̄)(Z(xj) − Z̄), (4)

where x1, . . . ,xn are observation sites, Z̄ is the average of the observations, the sum

in (4) runs over all pairs of observations that are approximately distance h apart, and

N(h) is the total number of such pairs. They estimate the values of pj by minimizing

the mean squared difference between the raw covariogram estimate at different lags

and their estimator, with positivity constraint.

Genton and Gorsich (2002) follow this idea but propose using the zeros of the

Bessel functions as the nodes of the discrete measure and show that their method is

computationally simpler, needs fewer nodes, and does not show spurious oscillations.

A problem with this choice of nodes is that these numbers are nondimensional. It

is not clear what scale should be used to translate these nodes into nodes in the

frequency domain (which have dimension 1 / unit of distance). Although not totally

explicit, they seem to propose using 1/rmax as their scale. This would mean that if we
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added an additional observation at distance 1.5 rmax from the most distant existing

observation, then the nodes would be shifted by a factor of 1.5 in the frequency

domain. This behavior seems problematic.

Hall et al. (1994) propose using a kernel estimator for a preliminary covariogram

estimate and, in order to ensure positive definiteness, they propose Fourier transform-

ing the kernel estimator, setting the negative values to zero and Fourier transforming

back to the spatial domain. For d = 2, denoting Ẑij = (Z(xi) − Z̄)(Z(xj) − Z̄),

hij the distance between the observations Zi and Zj , K a kernel function (a positive

symmetric probability density), and δ the bandwidth, the first step estimator of the

covariogram is

C̃(h) =

∑

i,j ẐijK(
h−hij
δ )

∑

i,j K(
h−hij
δ )

. (5)

The final estimate of the covariogram is

C̄(h) =

∫ ∞

0

(∫ ∞

0
C̃(x)xJo(wx)dx

)

+
wJo(wh)dw, (6)

where the subscript + means to take the positive part of the expression. We will call

this function the kernel estimator of the covariance function.

All three methods use the raw covariogram as the basis for estimation, which

does not take into account the correlation between different Ẑij ’s. Furthermore, it

is well known that the high frequency properties of the spectral density determine

the performance of interpolation procedures (Stein (1999), pg.65). None of the above

methods gives proper consideration to the tail properties.

We propose a flexible family of models for the spectral density that is a linear

combination of B-splines of order 4 (cubic splines) up to a cutoff frequency wt and

an algebraically decaying tail from wt to infinity. We use positive coefficients for the

B-splines, which ensure positiveness of the spectral density and, as a consequence, pos-

itive definiteness of the covariance function. Assuming the process is well described
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by a Gaussian random field, we find the parameters that maximize the likelihood.

This method estimates the tail property of the spectral density in an explicit way.

It does exclude exponential decay of the tail. However, we consider this restriction

to be beneficial, since such a fast decay would imply an unrealistically smooth pro-

cess (Stein (1999), pg.29, Stein (2002)). It also excludes oscillatory tails such as

w−γ cos2w, which are generally undesirable (Stein (1999), pg.67-8 and Stein (2002)).

Additionally, through the use of likelihood, our method takes fully into account all the

correlations between observations. This is, to the extent of our knowledge, the first

work that uses a likelihood approach for scattered spatial data without a parametric

model.

In section 2 we present our model and the methodology to estimate the covariance

function. Section 3 describes how to deal with the numerical challenges that arise

when calculating the likelihood. In section 4 we describe several performance mea-

sures and, via a simulation study, compare our method with a parametric method

using the Matérn model and the nonparametric kernel method in Hall et al. (1994).

Section 5 compares the three methods using a rainfall dataset. The simulation study

shows that our method is substantially better than the kernel method and often better

than using the Matérn model. A real data example also shows that our method out-

performs the kernel method. Section 6 summarizes the paper and discusses possible

further work.

2 Methodology

We assume the observations come from realizations of a Gaussian random field whose

value at location x is of the form

Z(x) = m(x)Tβ + ǫ(x), (7)
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where m(x) is a known vector valued function, β is a vector of unknown coefficients,

ǫ has mean 0 with covariance function C(ǫ(x), ǫ(y)) = Cθ(|x−y|), and θ is the vector

of unknown parameters of the covariance function.

2.1 The splines+tail (S+T) model and the Matérn model for

the spectral density

Let any f(w) be the spectral density of ǫ(x) in (7), our S+T model can be written as

fθ(w) = σ2
l+1
∑

i=−1

biBi(w)1[0,wt]
(w) + Cf

(wt
w

)γ
1(wt,∞)(w), (8)

where 1A(w) is an indicator function of value one if w ∈ A, and zero otherwise. The

Bis are B-splines of order 4 (See Appendix A for a brief description and references)

with node sequence (w0, ..., wl) on the interval [0, wt], with wt the threshold frequency.

The sum goes from −1 to l + 1 in order to include all B-splines that have support

on the interval [0, wt]. We chose order 4 because of the flexibility that cubic splines

give to represent a wide range of smooth functions. B-splines of other orders could be

used with minor adjustments. We require the spectral density to be continuous and

have continuous derivative at wt. The constant Cf is chosen to achieve continuity at

wt; more explicitly, Cf = σ2 ∑l+1
i=−1 biBi(wt). The coefficients of the B-splines are

constrained to be positive except for bl+1, which is chosen so that the derivative of

fθ(w) is continuous at wt. It is shown in Appendix D that the function is still positive.

Restricting the coefficients to be positive is a simple way of ensuring positivity of the

function.

To specify a S+T model, we first need to determine the number and location of

the nodes for the B-splines. In this paper, we restrict the B-splines to have uniformly

distributed nodes between 0 and wt, i.e., given the number of nodes (l + 1) and the

cutoff frequency (wt), we place the nodes at locations iwt/l for i = −1, 0, ..., l, l + 1.

6



Conditional on knowing the number of nodes, the parameter θ of our S+T model

includes smoothness parameter γ, sill σ2, cutoff frequency wt, and the coefficients of

B-splines (bi for i = 0, ..., l). The coefficients b−1 and bl+1 determine the derivatives of

the function at the end points. We chose b−1 to equal b1 in order to make f ′(0) = 0

and bl+1 to be such that the derivative of the function is continuous at wt (See

Appendix C).

Let us briefly describe the Matérn model in order to compare it to our model.

This class is considered to be a sensible model for a wide range of processes arising in

environmental problems (Stein, 1999; Handcock and Wallis, 1994). With only three

easily interpretable parameters (σ2, φ and ν), the Matérn class allows considerable

flexibility in the type of processes it can represent. The parameter σ2 is simply the

variance of the process at a given location, φ is the inverse range parameter, and ν is

a measure of the smoothness of the process. The spectral density of the Matérn class

has the form

f(w) =
σ2λ(φ, ν)

(φ2 + w2)ν+d/2
(9)

with λ(φ, ν) =
Γ(ν+d/2)

πd/2Γ(ν)
φ2ν such that the variance, C(0), is σ2. At high frequencies

both the Matérn and our S+T model approach zero at the rate 1/wγ , with γ = 2ν+d.

In the simulation studies, we will use ν as the parameter for the S+T model.

2.2 Compute covariance function using the Hankel transform

The covariance function can be calculated from the spectral density fθ(w) by applying

(2) for d = 2:

Cθ(r) = 2π

∫ ∞

0
wJo(rw)fθ(w)dw. (10)

The transform in (10) is called the Hankel transform of order 0. A function fθ(w) in

the S+T family is a linear combination of B-splines and an algebraic tail; the Hankel

transform of both components can be calculated analytically. The Hankel transform
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of B-splines requires calculating two Bessel functions of the first kind of orders 1 and 2

and two Struve functions of orders 1 and 2 (Abramowitz and Stegun (1965), pg.495)

for each node. The computation of this part is straightforward albeit moderately

time consuming. See Appendix B for details. The Hankel transform of the truncated

algebraic tail is
∫ ∞

wt

w1−γJo(wr)dw

= rγ−2
(

γΓ(−γ/2)

2γΓ(γ/2)
+

(wtr)
2−γ

1F2(1 − γ/2; 1, 2 − γ/2;−(rwt)
2/4)

γ − 2

)

,

(11)

where 1F2(a; b, c; z) is a generalized hypergeometric function with series representa-

tion
∑∞
k=0

(a)k
(b)k(c)k

zk

k! . Here (·)k represents the Pochhammer’s symbol (Abramowitz

and Stegun (1965), pg.256), which is defined by (z)0 = 1 and (z)k = z(z + 1)(z +

2)...(z + n− 1) =
Γ(z+n)

Γ(z)
.

Several features make the Hankel transform of the tail (11) numerically hard to

compute. First, there is no easy way of evaluating this hypergeometric function accu-

rately without resorting to summing a large number of terms of its series expansion,

which can lead to severe numerical errors. Second, the Γ function is infinite when

the argument is a negative integer, and we have no reason to exclude negative integer

values for −γ/2. Third, the first term, γΓ(−γ/2)/2γΓ(γ/2), is the limit of the second

term, (wtr)
2−γ

1F2(1 − γ/2; 1, 2 − γ/2;−(rwt)
2/4)/γ − 2, as rwt → ∞, so in the case

where rwt is large we need to take the difference of two very similar numbers.

The first problem is addressed by using arbitrary precision arithmetic libraries

(code downloaded from http://www.mpfr.org/). For the second problem, we note

that the divergence of the Γ function is compensated by the divergence of one of the

terms of the series expansion of the hypergeometric function. When γ/2 is an integer,

we use an asymptotic expansion of the Γ function when the argument is close to −γ/2,

and subtract it from the series expansion of the hypergeometric function. Only one

term in each series expansion diverges as the arguments approaches −γ/2, and we

8



get a modified series expansion for the difference between the two terms, which can

be computed in the same fashion as the hypergeometric function, i.e., by adding the

series until convergence is achieved and using arbitrary precision libraries to avoid

numerical errors. The final expression for the tail integral when γ/2 = n+ 1 is
∫ ∞

wt

w1−γJo(wr)dw

= r2n
log(2) − log(rwt) + ψ(n+ 1)

(−4)nn!2
+
w2n
t

2n

∞
∑

k=0,k 6=n

−n
−n+ k

(−(rwt)
2/4)k

k!2
,

(12)

where ψ(n) is the digamma function (Abramowitz and Stegun (1965), pg.258), which

for positive integer arguments can be evaluated as
∑n−1
k=1

1
k − γeg ,where γeq =

0.577216... is the Euler’s constant. The details are given in Appendix E.

To solve the third problem of subtracting two very similar numbers, we again

use an asymptotic expansion of the hypergeometric function, whose leading term is

γΓ(−γ/2)(γ−2)
/

(

2γΓ(γ/2)(rwt)
2−γ). As a result, we are left with an expression that

directly calculates the difference. See details in Appendix F. For large values of rwt

the Hankel transform of the truncated tail is approximated by
∫ ∞

wt

w1−γJo(wr)dw

≈





cos(rwt) − sin(rwt)
√
π(rwt)

γ−1
2

−
(

−15 + 16 γ + 128 γ2
)

(cos(rwt) − sin(rwt))

128
√
π(rwt)

γ+3
2

+
(−3 + 8 γ) (cos(rwt) + sin(rwt))

8
√
π(rwt)

γ+1
2

+ . . .



 rγ−2.

(13)

The approximation (13) also apply when γ/2 is an integer.

2.3 Likelihood based parameter estimation

Let Z = (Z(x1), ..., Z(xn))T be our observation and M = (m(x1)...m(xn))
T . Under

model (7), the log-likelihood has the form

l(θ, β;Z) = −1

2
log |detΣθ| −

1

2
(Z − Mβ)TΣ−1

θ
(Z − Mβ) − n

2
log(2π), (14)
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where Σij = Cθ(|xi − xj |) can be computed using (10) and (8). If the mean param-

eter β can be assumed known, one can estimate the parameter θ of the S+T model

by maximizing (14). When β is unknown, θ can be estimated by maximizing the fol-

lowing restricted likelihood, REML (Stein (1999), pg.170 and McCullagh and Nelder

(1989), section 7.2), which can be calculated by (ignoring an additive constant):

rl(θ|;Z) = −1

2
log |detΣθ|−

1

2
log |detW|−1

2
ZT (Σ−1

θ
−Σ−1

θ
MW−1MTΣ−1

θ
)Z (15)

where W = MTΣ−1
θ

M.

3 Numerical Implementation

The need for high computational speed forced us to discretize some of the parameters

(smoothness and cutoff frequencies), so the usual continuous optimization routines are

not applicable, and we use the simulated annealing method (Section 3.1) to maximize

the likelihood.

The number of nodes can be determined using some model selection criteria. We

use Akaike Information Criterion, which penalizes large number of parameters. We fix

the number of nodes l and optimize using simulated annealing as described in 3.1. We

repeat this for a few different values for l and choose the one that has smallest AIC. We

compared the performance of Akaike Information Criterion (AIC, Akaike (1974)) and

Bayes information criterion (BIC, Schwarz (1978)). Our simulation results indicate

that AIC is more likely to select the correct number of nodes when the data are

simulated using the S+T model, and the prediction performance using AIC is also

slightly better than BIC for all the models we used for simulation. We use AIC to

select nodes in all the simulation studies presented in section 4 and in the application

to rainfall data in section 5.
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3.1 Simulated Annealing

We implemented the maximization using the simulated annealing method (Givens

and Hoeting, 2005). This method is based on the way a physical system finds its

minimum energy state when it is first heated to high temperature and then cooled

down slowly to zero temperature. In our problem, the energy to be minimized is

the negative of the log-likelihood function. One starts with an initial value of the

parameters and calculates the energy. New values of the parameters are drawn from

a proposal distribution and the new energy is calculated. If the new energy is lower

than the previous one, the parameters get updated with the new values. If the

new energy is higher than the initial energy, the new parameters are accepted with

probability exp(−(Ef − Ei)/T )/(1 + exp(−(Ef − Ei)/T )), where Ei and Ef are the

initial and final energies and T is the temperature. This helps keep the system from

being trapped in local minima. These steps are repeated several times, after which

the temperature is lowered and the same procedure is followed until the temperature

is close to 0.

We have noticed that the convergence depends on the starting values of the pa-

rameters, most notably on the threshold frequency wt. We use three different starting

values of wt (1/rmin, 1/rmax, and the average of the two), and choose the estimated

parameters that have the largest likelihood. We start by fitting a Matérn model and

using the estimated sill (σ) and smoothness (ν) as starting values for the optimiza-

tion. The initial values for the coefficients of the B-Splines are set to be constant 1 at

all nodes. Since we normalize the spectral density so that it yields variance σ2, the

overall scale of the coefficients is not relevant.

The proposal distribution for the coefficients of the B-splines is a mixture of two

lognormal distributions, one with mean parameter zero and variance parameter one,

and the other one with mean centered at the initial value and variance 0.1. The

11



proposal distribution for the sill is also a mixture of lognormals, one with mean

given by the sample variance of the observations and variance 1, and the other one

centered at the initial value with variance 0.1. These numbers were chosen so that

the convergence was satisfactory. We let wt take 100 discrete values between 1/rmax

to 1/rmin. The proposal was a mixture of two uniform distributions, one that ranges

over all 100 values, and the other one centered at the previous value with a range

that is 10% of the whole range. Likewise, we let the smoothness parameter take

100 discrete values between 0.05 and 5. Larger values of smoothness give rise to

almost singular covariance matrices. The proposal was also a mixture of uniforms,

one centered at the previous value with a range that is 10% of the total range, and

the other one over the whole range.

Several cooling schedules were tested. The one that gave slightly better conver-

gence was one that updated the temperature in each step according to Ti =
Ti−1

1+aTi−1

with a = 30 and T0 = 1000. We stopped after 10000-20000 iterations, after which

no changes in parameters occurred. Each optimization took around 2-5 minutes on a

Linux machine with dual AMD OpteronTM processors and 2Gb of memory.

3.2 Tabulation of Hankel transforms

To speed up the computation of the Hankel transforms of the truncated tail, we

resort to some further approximations and shortcuts. We calculated the covariance

function for nr = 100 equispaced values between rmin and rmax and interpolated using

cubic spline interpolation for distances between these points. Also, we restricted

the values of the threshold frequency wt and the power of the tail γ to nw = 100

and nγ = 100 discrete values. Namely, wt(j) = 1
rmax

+ j
nw

(

1
rmin

− 1
rmax

)

and

γ(j) = 2 + 2
(

0.05 + j
nγ

(5 − 0.05)
)

.

The Hankel transform of the truncated tail, t(i, j, k) =
∫ ∞
wt(k)

w1−γ(j)Jo(wr(i))dw,
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was tabulated into an array of dimensions nr×nγ×nw = 100×100×100. The Hankel

transform of piecewise polynomials of the form 1[wi,wi+1)(w − wi)
m for m = 0, 1, 2,

and 3 were tabulated into an array of dimensions l× 4×nr×nw = l× 4× 100× 100,

where l is the number of polynomial pieces used in the representation of the spectral

density. In order to take advantage of this tabulation at the time of calculating the

transform, we converted the splines S(w) (linear combination of B-splines) into a

piecewise polynomial form

S(w) =
l

∑

i=0

3
∑

j=0

aij1[wi,wi+1)(w − wi)
j . (16)

Hence the Hankel transform was reduced to multiplying the tabulated values by the

corresponding coefficients.

The frequency thresholding in the tabulation is unlikely to have an effect in the

results since in all the simulations the estimated cutoff frequency was about one order

of magnitude smaller than the maximum tabulated value.

4 Simulations

We first simulated Gaussian random fields with mean zero and various covariance

functions and estimated the spectral density using the S+T family of functions. For

comparison purposes, we also estimated the covariance function using the Matérn

model as well as the kernel method proposed by Hall et al. (1994). The locations

were chosen to be where the National Acid Deposition Program sites are situated.

We used a total of 63 sites that are shown in Figure 1. The smallest distance between

sites is 14 km, the largest distance is 2000 km, and the median distance is 802 km. For

simplicity, we use chordal distance and ignore the fact that the surface is spherical.

The covariance models we used to simulate the data are Matérn, polynomial
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Matérn, S+T, and spectral exponential. Polynomial Matérn is a family of spectral

density which is the product of Matérn spectral density and a positive polynomial,

f(w) = ((w − u)2 + v2)((w + u)2 + v2)/(a2 + w2)ν+d/2. This function is positive on

R
+, thus a valid spectral density. The spectral density of the spectral exponential

model has the form f(w) = exp(−w/φ), which should not be confused with the expo-

nential correlation function that belongs to the Matérn family and is exponential in

the spatial domain. In the simulation study we set φ = wt. Matérn, S+T and poly-

nomial Matérn share the same high frequency behavior, namely, 1/ωγ . The spectral

exponential model has a much faster decay and has analytic realizations of the pro-

cess. Though we do not consider this type of behavior to be reasonable for modeling

natural physical processes, it is included here to test the method.

Each simulation includes 200 independent realizations of a Gaussian random field

at 63 locations, totaling 12,600 observations with the given covariance functions. The

covariance matrix corresponding to this type of datasets is block diagonal, which

allows us to have a large number of observations (so that the parameters can be

estimated well) while keeping the computational load at a manageable level. For

each simulation, the ML parameters for S+T and Matérn models were estimated.

Also the kernel estimate of the covariance function was calculated.

In order to assess the performance of each method, we look at the following quan-

tities.

• Parameter values: When the true model and the model used to estimate the

covariance functions have common parameters (for example, σ2 is common to

all models) the difference between the true and the estimated parameters is an

obvious measure of performance.

• Likelihood values: The value of the likelihood also gives us an indication of how

good the models are fitting the data. Although it is a bit unfair to compare
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methods that seek maximizing the likelihood with methods that seek to optimize

other criteria, large deviations from the true likelihood should give us an idea

of how good the estimated function is.

• Covariance function: Comparing the distance between the true and estimated

covariance function or spectral densities seems to be an obvious and esthetically

pleasing way of assessing the performance of methods. We use the L2-norm be-

tween the true and estimated covariance function as a measure of performance.

• Prediction performance measures: In most applications, the ultimate goal of

estimating the covariance functions is the prediction of the random field at

unobserved locations. In this context the L2-norm can be a misleading bench-

mark as illustrated by Stein (1999) pg. 66. Following Stein (1999) pg. 58,

we define two quantities that are more useful for interpolation purposes. Let

Ẑi(x) be the predicted value at location x using covariance function Ci and let

ei(x) = Z(x) − Ẑi(x) be the prediction error; Ei and E0 are the expectations

under the estimated covariance function Ci and under the true covariance func-

tion C0, respectively. With this notation, E0e
2
0 is the mean squared prediction

error (MSPE) of the best linear unbiased predictor or the kriging variance as in

Stein (1999) pg. 8 eq. (11), which is computed using the true covariance func-

tion; Eie
2
i is the estimated prediction variance (EPV) computed by plugging in

the estimated covariance function Ci in the usual kriging variance; and E0e
2
i is

the actual variance of the prediction error. It is easy to show that

E0e
2
i (x)/E0e

2
0(x) = 1 + E0(Ẑi(x) − Ẑ0(x))

2/E0e
2
0(x). (17)

We estimate the numerator on the right side of (17) by computing the sample

mean (over 100 simulations and 200 replications in time) of the squared differ-

ence between the interpolated values with the misspecified covariance function
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and the interpolated values with the true covariance function:

1

200

1

100

100
∑

simul.

200
∑

repl.

(Ẑi(x) − Ẑ0(x))
2.

So the prediction performance measures we use are:

– The increase in Prediction Error, IPE(x), is the second term on the right

hand side of (17) and represents the extra mean squared prediction error

incurred by using estimated (misspecified) covariance function instead of

the true covariance function.

– The Log Variance Ratio, LVR(x) = | log(Eie
2
i (x)/E0e

2
i (x))|, is the ratio

between the estimated and actual variance of the prediction error at loca-

tion x.

For testing, we use 100 prediction locations on a square grid inside the obser-

vation region. The median of IPE and LVR over the prediction locations are

used as performance measures.

Table 1 shows the average results of running 100 simulations for each of the fol-

lowing models: Matérn (ν = 3, φ = 9.4), polynomial Matérn (ν = 3, φ = 9.4, u = 4.7,

v = 0.94), S+T (ν = 3, wt = 9.4, l = 4, b = (1, 0.2, 2, 0.6, 0.4)), and spectral expo-

nential (φ = 9.4). For all the models σ2 = 1, and the unit for φ and wt is 1/1000

km.

The first three rows show the smoothness parameters, true and estimated, using

the S+T and Matérn models. When the true model is Matérn or polynomial Matérn,

the estimated smoothness for the S+T model is around 2.2, a bit smaller than the

truth, which was 3. This is expected for the Matérn model, since the rate of decay of

the estimating tail function 1/w2ν+2 is faster than the rate of decay of the true tail

function 1/(a2 + w2)ν+1. We can see this more clearly by comparing the derivatives
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of the logs of the two tail functions

−2ν + 2

w
vs. − 2(ν + 1)w

a2 + w2
= −2ν + 2

w
+

2a2(ν + 1)

w(w2 + a2)
,

or more clearly

ν vs. ν − a2(ν + 1)

w2 + a2
. (18)

Hence the estimated power should be smaller in absolute value than the true

power. The estimation process will try to match the left and right side of (18) in an

average sense. A similar argument works for the polynomial Matérn function.

When simulating under the S+T model, there is no approximation in the tail,

and the S+T model gives an estimated value that is very close to the truth. In the

case of the spectral exponential model, we do not have a true parameter with which

to compare. We notice that S+T and Matérn methods give similar estimates of the

smoothness when the true model is spectral exponential.

When the true models are polinomial Matérn and S+T, the Matérn method yields

very large estimates for smoothness, 10 and 7.47, respectively. The comparison with

the S+T method may seem a bit unfair since for the latter we have restricted the

smoothness parameter to be smaller than 5. But when we restricted the Matérn’s

smootheness to be smaller than 5, the estimated smoothness was exactly 5 for all 100

simulations and we found no substantial change in the performance of the method.

So the thresholding of the smoothness had no effect in the advantage of our method

over the Matérn.

The estimated values of the sill (σ2) are very close to the true value of 1 for all

three methods except for the Matérn method when the true model is S+T, which

yields a mean of 1.15 with standard deviation 0.03, and the kernel method when the

truth is spectral exponential, which yields a mean of 0.97 with standard deviation

0.01. The S+T method gives 1.00 with error 0.02 when the true model is Matérn,
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polynomial Matérn and S+T. When the true model is spectral exponential, we get

1.00 with standard deviation 0.01.

The next two blocks of rows show the cutoff frequency wt and the inverse range.

For the S+T model, the average estimated value of wt is 10.6 (in 1/1000km units)

with standard deviation 1.4, compared to true value of 9.4. For the Matérn model

the average estimated inverse range parameters are 9.4 with a standard deviation of

0.3.

The L2-norm between the true and estimated covariance functions are shown

next. The S+T method is better by factors of 2.3, 2.8, 2.8 and 1.8 compared to

the kernel method when the true models are Matérn, polynomial Matérn, S+T, and

spectral exponential, respectively. The S+T method also gives smaller L2-norm com-

pared to Matérn method except when the Matérn model is the truth. The L2-norms

were calculated by averaging the squared differences between the true and estimated

covariance function values at 100 equispaced points in the range 0 to rmax.

The last block shows the log likelihood ratio between alternative models and the

S+T model. The S+T model gives larger likelihood in all cases except when we use

the Matérn model to estimate and the data were simulated from the Matérn model.

Even then, the advantage of using the correct parametric model is modest.

Table 2 shows the prediction performance measures of each method. The first

three rows compare the median IPE, the increase in MSPE by using estimated co-

variance function instead of the truth.

The IPEs of the predictors using the S+T method are less than 0.2% for all four

simulated models. Namely, the increases are only 0.16%, 0.12%, 0.05%, and 0.12%.

The kernel method gives prediction errors 17.5%, 3.8%, 68.5% and 0.3% higher than

the best linear predictor while the Matérn method gives errors 0.01%, 1.8%, 4.2%

and 0.4% higher. The next three rows compare the LVR, log ratios of the estimated
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(via plug in) and the actual variances of the prediction error.

Our method gives EPVs that differ by about half a percent from the actual pre-

diction variance. As a comparison, the kernel method gives EPVs that differed from

the actual prediction variance by 59.1%, 27.0%, 100.8% and 5.8% for the four models,

and the Matérn method’s differences were 0.3%, 0.9%, 8.3%, and 1.2%, both substan-

tially worse than the S+T method except for the Matérn method when the truth is

Matérn.

We plotted (not shown in the paper) the smoothed difference between the MSPE

of the S+T and the other two methods vs. the minimum distance to observations.

In all cases except when the true model was Matérn, our method yielded smaller

MSPEs than the other two for all distances. Most of the times the kernel method

performed substantially worse than the other two methods. For the polmatern and

S+T models, the difference between our method and Matérn increased with distance,

which has a natural connection with the fact that our method gives better fit at small

frequencies for all simulated models. In contrast, the difference with kernel method

decreased with distance. We attribute this fact to the inability of the kernel method

to capture the high frequency properties of the spectral density. When the true model

was spectral exponential the performance of all three methods was very good since

their IPE was less than 1% but we found no obvious pattern in the differences as

functions of distance.

We have done simulation studies for other parameter values with qualitatively

similar results. In practice, we often need to estimate the mean. When the mean

is unknown, we can use restricted likelihood to estimate the parameters, and the

simulation results are very similar to the case when the mean is assumed known.

These numerical results can be found in Im (2005) and are not presented here.

Figures 2 - 5 show the covariance function (left) and the spectral density (right)
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for the Matérn, polynomial Matérn, S+T, and spectral exponential models. These

figures show one typical simulation from each model. As suggested by the L2-norm

values from Table 1, the covariance functions estimated using S+T method are closer

to the true covariance functions than the kernel estimators. The kernel estimator

of the covariance function becomes wiggly for large distances, mainly because there

are fewer pairs of observations that contribute to this region. The right sides of

Figures 2 - 5 show that our method yields estimates of the spectral densities that

are quite close to the truth except near the origin. The Matérn method is not able

to reproduce the structure of the spectral density at low and mid frequencies, but

it captures reasonably well the tail behavior. The kernel estimates of the spectral

density follow the overall shape of the function, but they are very wiggly. We also

see several intervals of frequencies where the kernel estimator takes value 0, which

is due to the truncation of the function necessary to ensure positive definiteness of

the corresponding covariance function. When we calculated the spectral density, we

followed the ad hoc solution proposed by Hall et al. (1994): from some point T1 use

a straight line that goes from the value of the estimator at T1 to zero at some other

distance T2. We chose T1 = 1500km and T2 = 2000km. The actual transformation

was done using the fast Hankel transform method proposed by Siegman (1977).

5 Application to rainfall data

In this section we applied the three aforementioned methods to an annual rainfall

dataset in the eastern US to compare their performance in prediction. We chose the

study region to be between latitudes 27.1 and 49.0 and longitudes -100.5 and -80.2,

which includes 2742 stations (dots on the right of Figure 1). The time period of

the data is between 1960 and 1999. Detailed documentation of this dataset can be

found at http://www1.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td9651.pdf.
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We used 2082 stations that had no missing data. For each station data we subtracted

the mean over the 40 years of data and modeled the difference as a Gaussian random

process. We looked at the normal quantile plots of the difference for all the stations at

each year, and in most of the years the data are consistent with the Gaussian assump-

tion. Some of those normal quantile plots appear to have a few large outliers. The

number of possible outliers are never larger than 0.5% of the stations. No attempts

were made to identify those outliers. Instead we used robust measures to compare

the three methods. An examination of the autocorrelation and cross correlation of

the observations at different stations reveals no significant time dependence, thus we

model the observations from each year as independent realizations of the same pro-

cess with a different mean. The empirical variogram suggested the need to include a

nugget term in the covariance model. This is straightforward for the two likelihood

methods (S+T and Matérn). The kernel method needs some modification in order

to handle the nugget effect. One possible way is to estimate the covariance function

using only distinct pairs, i.e., (Zi− Z̄)(Zj− Z̄) with i 6= j. This leaves out the nugget

term. We estimate the nugget by subtracting the estimated covariance function at

zero from the sample variance.

We randomly chose 200 training stations among 2082 stations to estimate the

covariance function using all three methods (S+T, Matérn, and kernel). With the

estimated covariance functions, we kriged the data at the remaining 1882 test stations.

We repeated this process for 10 different samples of 200 stations. The location of the

first sample of 200 stations are shown as “+”’s on the right panel of Figure 1.

We calculated the mean over 40 years of the prediction error MPE(x) =
√

∑40
t=1(Z(x) − Ẑi(x))2/40 and an empirical estimate of the LVR as | log(MPE2(x)/EPV(x))|.

Table 3 shows the median over locations and samples of the MPEs and LVRs. Our

method yields on average 1.5% better prediction errors than the kernel method.
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The LVR of our method is about 4% better than the kernel method. There is

no noticeable difference in performance between our method and Matérn. The

estimated spectral density using ourmethod did not show any interesting structure

in the middle freequencies that could be missed by the Matérn spectral function.

This could explain the lack of advantage of using our method.

We have tried using 100 training stations and the results were similar. We plot-

ted (not shown in the paper) smoothed MPEs and LVRs vs. the closest distance to

observations and found no obvious pattern.

6 Summary and discussion

In this paper we propose a new method to estimate spectral densities of isotropic

Gaussian processes with scattered data using a flexible semiparametric S+T model,

whose parameters can be estimated using ML or REML methods. We have calculated

explicit expressions of the Hankel transform of the spectral density and tackled several

numerical issues arising during the computation of the covariance function. Simulated

annealing is used to maximize the likelihood.

To compare our method with other existing method for estimating spectral den-

sity, we simulated observations with Matérn, polynomial Matérn, S+T, and spectral

exponential spectral densities. Our simulation results showed that our method (S+T)

outperforms the non-parametric kernel method in terms of estimated sill, L2-norms

of the covariance functions, the likelihood values, MSPE, and errors in the estimated

variances of the predictions. Our method also outperforms the parametric method

using the Matérn covariance model when the true model is not Matérn by all these

performance criteria. All three methods are applied to a rainfall data to compare the

prediction performance, with our method doing better than the kernel method and

as well as the Matérn method.
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The IPEs and the LVRs are the most relevant measures of performance when our

ultimate goal is interpolation to locations where there are no observations. With this

criteria, the Matérn method outperforms the kernel method, although it generally has

larger L2-norm values of the covariance function than the kernel method when the

truth is not Matérn. The reason for the better prediction properties of the Matérn

method is that the tail properties of the spectral function play a fundamental role

in the prediction. This result point out the inefficiency of methods that rely on

minimizing the distance to empirical variograms such as kernel method

Our method does well because it directly estimates the tail property just like

the Matérn method does, while it also offers more flexibility for modeling the lower

frequencies. A point to note is that our method outperforms the kernel method even

when the true model is spectral exponential, which has an exponential tail, whereas

our method assumes an algebraic tail.

We have performed simulations with smaller number of replicates (20 and 1 instead

of 200 of the 63 sites) per simulation. Using the prediction performance criteria, we

found that our method outperforms the Matérn method when the number of replicates

is 20, but not so when we only have one replicate of the spatial process. So our method

should be applied with caution when one does not have a large amount of data.

We applied all three methods to 40 years of annual rainfall data in the Eastern US

and showed that our method outperforms the kernel method in terms of prediction

error and estimated uncertainty. However, we did not find any noticeable difference

in performance between our method and the Matérn method when applied to this

dataset. We may need to look for a dataset with a more comlex middle frequency

structrure in order to see an advantage of using our method.

In this work we used equally spaced nodes for the B-splines and did not attempt

to estimate the optimal spacing of the nodes. Our method can be modified to allow
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the spacing of the nodes to be estimated from the data. One possible way of doing

this efficiently is to utilize the information contained in the kernel estimator. Even

though the kernel method fails to capture the tail behavior of the spectral density, it

does seem to have useful information about the mid frequency shape of the function.

We plan to address this possibility in a separate paper.

One interesting extension of our work would be to use transdimensional markov

chains, such as reversible jump Markov Chains, to optimize over both parameter and

number and location of nodes. Although some form of regularization is built into our

model through the smoothness of the B-splines and the algebraic tail, we may need

to consider Tychanoff’s regularizations or a prior distribution that discourages large

number of knots when using the Markov Chain approch.
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Appendix

A B-splines

The following is a summary of the properties of B-splines relevant for this work. For

a more extensive description see de Boor (2001).

A piecewise polynomial of order k with strictly increasing break (node) sequence

ξ is a function of the form
∑

j

1[ξj ,ξj+1)p
(k)(x) (19)

where p(k)(x) is a polynomial of degree k − 1 or smaller. The set of all piecewise

polynomial functions of order k with break sequence ξ is denoted Π<k,ξ.
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B-splines are defined in terms of a non-decreasing knot sequence t = (tj). The

jth B-spline of order 1 for knot sequence t is the indicator function of the interval

[tj , tj+1):

Bj,1 := Bj,1,t = 1[tj ,tj+1). (20)

If tj = tj+1, Bj = 0. The jth B-spline of order k > 1 is defined by the following

recurrence relation

Bjk := Bj,k,t := wjkBj,k−1 + (1 − wj+1,k)Bj+1,k−1 (21)

with wjk := wj,k,t :=
x−tj

tj+1−tj . Bjk is a piecewise polynomial function with break

sequence tk, ..., tj+k. It is positive on [tj , tj+k] and 0 outside this interval. B-splines

of order k with knot sequence t span the space of piecewise polynomial functions

of order k with break sequence ξ and continuity conditions on the breaks given by

the multiplicity of the knots. More specifically, the sum of the number of continuity

conditions at a break ξj and the number of repeated knots at ξj equals the order k.

For the uniform knot sequence t = (...,−∆, 0,∆, 2∆, ...) the corresponding B-

splines are

B∆
j,k,t(x) =

k
∑

r=0

(−1)k−r

(k − 1)!

(

k

r

)

(r − x/∆ + j)k−1
+ (22)

In particular, for k = 4, j = 0, and t = Z and ∆ = 1

B(x) := B1
0,4,Z(x) =















































x3/6 if 0 ≤ x < 1;

(−3x3 + 12x2 − 12x+ 4)/6 if 1 ≤ x < 2;

(3x3 − 24x2 + 60x− 44)/6 if 2 ≤ x < 3;

(−x3 + 12x2 − 48x+ 64)/6 if 3 ≤ x < 4;

(23)

For arbitrary ∆ and j 6= 0 the B-splines are obtained from (23) by translating the

argument by j∆ and scaling it by 1/∆, i.e., B∆
j,4,Z(x) = B1

0,4,Z(x−j∆∆ ) .
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B Hankel transform of polynomials

The Hankel Transforms of piecewise polynomials of the form (w − c)m are given by

∫ b′

a′

(w − k′)mwJo(wr)dw = r−m−2

∫ b′r

a′r

u(u− k′r)mJo(u)du, (24)

which for a = a′r, b = b′r, k = k′r, and m = 0, 1 ,2, and 3 are

∫ b

a

uJo(u)du = −aJ1(a) + bJ1(b),

∫ b

a

(u− k)uJo(u)du = J1(a)(−a2 + a(k + (πHo(a))/2)) + J1(b)(b
2 + b(−k − (πHo(b))/2))

−(aπJo(a)H1(a))/2 + (bπJo(b)H1(b))/2,

∫ b

a

(u− k)2u2Jo(u)du = J1(a)(−a3 + 2a2k + a(4 − k2 − kπHo(a))) + Jo(a)(−2a2 + akπH1(a))

+J1(b)(b
3 − 2b2k + b(−4 + k2 + kπHo(b))) + Jo(b)(2b

2 − bkπH1(b)),

and

∫ b

a

(u− k)3uJo(u)du = J1(a)(−a4 + 3a3k + a2(9 − 3k2) + a(−12k + k3 + (−9/2 + (3k2)/2)πHo(a)))

+J1(b)(b
4 − 3b3k + b2(−9 + 3k2) + b(12k − k3 + (9/2 − (3k2)/2)πHo(b)))

+Jo(a)(−3a3 + 6a2k + a(9/2 − (3k2)/2)πH1(a))

+Jo(b)(3b
3 − 6b2k + b(−9/2 + (3k2)/2)πH1(b)),

where Jν(·) are Bessel functions of the first kind of order ν and Hν(·) are Struve functions

of order ν (Abramowitz and Stegun, 1965).

C Continuity of derivative

For uniform knots with spacing ∆, the values of the spectral density on (wn−1, wn)

where wn = ∆n = wt is

f(w) =fnB(
w − wn−2

∆
) + fn−1B(

w − wn−3

∆
) + fn−2B(

w − wn−4

∆
) + fn+1B(

w − wn−1

∆
).

(25)
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It follows that

f ′(w) = fnB
′(
w − wn−2

∆
) + fn−1B

′(
w − wn−3

∆
) + fn−2B

′(
w − wn−4

∆
) + fn+1B

′(
w − wn−1

∆
).

At w = wt, f
′(wt) = −nfn−1

2wn
+

nfn+1
2wt

. If we want f ′(w) to be continuous at wt, we

need f ′(wt) = −−γft
wt

, where ft = 1
6fn−1 + 2

3fn + 1
6fn+1. Thus we have

fn+1 =
3n− γ

3n+ γ
fn−1 −

4γ

3n+ γ
fn. (26)

D Positivity of the spectral density

Our model allows the values of the (n + 1)th coefficient to be negative, and we need

to check whether the spectral density is still positive on the interval (0, wt). Because

of the linearity of the derivative, it is enough to consider separately the cases where

fn = 0 and fn−1 = 0. If we get positive spectral density in each case the sum of

the two will also result in a positive function. Also, since the support of the B-spline

with coefficient fn+1 (B) is (wn−1, wn+3), we only need to worry about the interval

(wn−1, wn).

Case fn−1 = 0

Since each of the terms in (25) is nonnegative except possibly for the term corre-

sponding to fn+1, we have

f(w) ≥ fnB(x) + fn+1B(x− 1) := g(x), (27)

where x =
w−wn−2

∆ . To show f(w) ≥ 0 for w ∈ (wn−1, wn), it is enough to show

g(x) ≥ 0 for x ∈ (1, 2). Substituting the corresponding piecewise polynomial in each

case and using (26), we get

g(x) =
fn
6

(

−3x3 + 12x2 − 12x+ 4 − 4γ

3n+ γ
(x− 1)3

)

=
fn
6

(

2γ + 3n

2(3n+ γ)
(2 − x)(4 − 10x+ 7x2) +

3n

2(3n+ γ)
x3

)

.

(28)
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Since 4 − 10x+ 7x2 > 0, it follows that g(x) ≥ 0 for x ∈ (1, 2).

Case fn = 0

We have

f(w) ≥ fn−1B(x) + fn+1B(x− 2) := g(x), (29)

where x =
w−wn−3

∆ , and x ∈ (2, 3) for w ∈ (wn−1, wn). To show g(x) ≥ 0 for

x ∈ (2, 3), we next show that the function g(x) is monotone decreasing and that the

value at x = 3 is positive. Since

g(x) =
fn−1

6

(

3x3 − 24x2 + 60x− 44 +
3n− γ

3n+ γ
(x− 2)3

)

, (30)

we have g(3) = fn−1
n

3n+γ > 0, and

g′(x) = 6fn−1
(x− 2)(γ(x− 4) + 6n(x− 3))

3n+ γ
≤ 0 (31)

for x ∈ (2, 3). Thus g(x) > 0 for x ∈ (2, 3)

E Tail integral with integer smoothness

Using the series representation of the hypergeometric function, the integral of the tail

given in (11) can be written as

∫ ∞

st

u1−γJo(u)du =
(−γ/2)Γ(−γ/2)

2γ−1Γ(−γ/2)
+
s
2−γ
t

γ − 2

∞
∑

k=0

−γ/2 + 1

−γ/2 + 1 + k

(−st2/4)k

k!2
. (32)

Let −γ/2 + 1 = −n+ δ with n ∈ N. As δ goes to zero, the first term in (32) and the

nth term in the second term of (32) go to infinity but the total contribution of the

diverging terms is finite. This can be shown by using the asymptotic expansion of

the gamma function when the argument is close to a negative integer. We reorder the
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terms in (32) to make explicit the two terms that diverge when γ/2 is integer valued:

∫ ∞

st

u1−γJo(u)du =
Γ(−n+ δ)

2γ−1Γ(n+ 1 − δ)
+
s
2−γ
t

γ − 2

−n+ δ

δ

(−st2/4)n

n!2
+

+
s
2−γ
t

γ − 2

∞
∑

k=0,k 6=n

−γ/2 + 1

−γ/2 + 1 + k

(−st2/4)k

k!2
.

(33)

Using Γ(−n+δ) =
(−1)n

n!δ +
(−1)nψ(n+1)

n! +O(δ) (Wolfram Research,Inc., 2001a), where

ψ(n+ 1) is the digamma function (Wolfram Research,Inc., 2001b), we get

∫ ∞

st

u1−γJo(u)du = − 2−1−2n st
2 (δ−n)

(

−st2
)n

δ n!2
− (−1)n 2−1+2 δ−2n

δ n! Γ(1 − δ + n)

+
(−1)n 2−1+2 δ−2n ψ(0, 1 + n)

n! Γ(1 − δ + n)
+

∞
∑

k=0,k 6=n
...+O(δ).

(34)

By letting δ go to zero, we have

∫ ∞

st

u1−γJo(u)du =
log(2) − log(st) + ψ(n+ 1)

(−4)nn!2
+
s
2−γ
t

γ − 2

∞
∑

k=0,k 6=n

−γ/2 + 1

−γ/2 + 1 + k

(−s2t /4)k

k!2
.

(35)

F Asymptotic expansion of tail

We use the following asymptotic expansion of 1F2 for large z to find an approximate

expression for the truncated tail integral.

1F2(a1; b1, b2; z) ≈
Γ(b1) Γ(b2) (−z)a1

Γ(−a1 + b1) Γ(−a1 + b2)

(

1 +
a1 (1 + a1 − b1) (1 + a1 − b2)

z

+
a1 (1 + a1) (1 + a1 − b1) (2 + a1 − b1) (1 + a1 − b2) (2 + a1 − b2)

2 z2
+ . . .

)

+
(−z)χ Γ(b1) Γ(b2)

2
√
π Γ(a1)

(

cos
(

2
√
−z + πχ

)

(

1 +
d2

z
+ . . .

)

+ sin
(

2
√
−z + πχ

)

(

d1√
−z + . . .

))

(36)
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for large z (Wolfram Research,Inc., 2001c), where

χ =
1

2

(

1

2
+ a1 − b1 − b2

)

,

d1 =
1

16

(

−3 + 12 a1
2 − 4 b1

2 + 8 b2 − 4 b2
2 + 8 b1 (1 + b2) − 8 a1 (1 + b1 + b2)

)

,

d2 =
1

512

(

−15 + 144 a1
4 + 16 b1

4 + 16 b2 + 56 b2
2 − 64 b2

3 + 16 b2
4

−64 b1
3 (1 + b2) − 64 a1

3 (7 + 3 b1 + 3 b2) + 8 b1
2

(

7 + 8 b2 + 12 b2
2
)

+16 b1
(

1 + 25 b2 + 4 b2
2 − 4 b2

3
)

−8 a1
2

(

−43 + 4 b1
2 − 72 b2 + 4 b2

2 − 8 b1 (9 + 5 b2)
)

+16 a1

(

−1 + 4 b1
3 − 25 b2 − 4 b2

2 + 4 b2
3 − 4 b1

2 (1 + b2) − b1
(

25 + 40 b2 + 4 b2
2
)))

.

Substituting this expression for 1F2 in (11) and we have (13) for wr → ∞.
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Truth
Matérn polMatérn S+T spect. exp’l

true 3 3 3 –
ν S+T 2.15 (0.10) 2.21 (0.26) 3.00 (0.06) 1.82 (0.70)

Mat 2.98 (0.09) 10.00 (2.39) 7.47 (0.31) 1.63 (0.18)
true 1 1 1 1
S+T 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.01)

σ2 Mat 1.00 (0.02) 1.00 (0.02) 1.15 (0.03) 1.00 (0.01)
Ker 0.99 (0.03) 0.98 (0.02) 0.99 (0.02) 0.97 (0.01)
true – – 9.4 –

wt × 1000 S+T 12.3 (1.2) 18.7 (2.1) 10.6 (1.4) 32.7 (5.1)
inv.range true 9.4 – – –
×1000 Mat 9.4 (0.3) 35.4 (4.6) 15.3 (0.5) 41.0 (195.7)

L2-norm S+T 8.7 (4.7) 7.9 (3.9) 7.4 (2.7) 5.2 (1.7)
Cov Mat 7.4 (5.0) 53.6 (0.3) 123.9 (7.8) 10.4 (16.0)

×1000 Ker 20.6 (6.7) 21.9 (4.8) 20.9 (6.2) 9.2 (1.6)
loglik Mat 4 (4) -181 (22) -296 (22) -20 (96)
ratio Ker -1093 (167) -254 (34) -3173 (246) -28 (9)

Table 1: Summary of simulation results for ν = 3.00, σ2 = 1.00, and inverse range (or wt) = 9.4(1/1000 km). Maximum
likelihood estimation. Average estimates from 100 simulations are shown. Each simulation consisted of 12,600 observations
(200 replications of 63 spatially correlated observations). Standard deviations are shown in parentheses. Columns correspond
to true models and rows correspond to estimating methods: ML using S+T, ML using Matérn, and kernel. Log-likelihoods are
differences from S+T.
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Matérn polMatérn S+T spect. exp’l

E0e
2
1/E0e

2
0 − 1 S+T 0.16 (0.10) 0.12 (0.05) 0.05 (0.07) 0.12 (0.08)

E0e
2
2/E0e

2
0 − 1 Mat 0.01 (0.00) 1.77 (3.17) 4.24 (3.17) 0.40 (0.63)

E0e
2
3/E0e

2
0 − 1 Ker 17.51 (32.30) 4.10 (9.10) 68.54 (118.61) 0.26 (0.45)

| log(E1e
2
1/E0e

2
1)| S+T 0.93 (2.83) 0.39 (0.68) 0.33 (0.52) 0.31 (1.29)

| log(E2e
2
2/E0e

2
2)| Mat 0.30 (0.76) 0.86 (2.28) 8.57 (17.24) 1.21 (2.16)

| log(E3e
2
3/E0e

2
3)| Ker 59.08 (94.75) 27.06 (43.31) 100.78 (157.13) 5.79 (16.41)

Table 2: Simulations as in Table 1. The first block of three rows show the median over 100 prediction locations of IPE, the
increase in MSPE by using estimated covariance function instead of the truth. The second block of three rows show the median
of the log ratio of the estimated prediction variance (EPV) and the actual prediction variance. In all rows the interquartile
range is shown in parenthesis. The values are in percentual units.
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S+T Matérn Kernel
median MPE 3.12 3.12 3.16

median | log(MPE2/EPV)| 0.50 0.50 0.54

Table 3: Prediction performance comparison for annual rainfall data in the eastern
US. We used 10 samples of 200 training stations (randomly chosen) to estimate the
covariance function and predicted the values at the remaining 1882 stations. The
median over samples and prediction locations of the mean prediction error, MPE,
and the empirical log variance ratio, LVR, are shown for each method.
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Figure 1: Plot of NADP monitoring sites used for simulations (left), and the moni-
toring sites for the rainfall dataset (right).

35



0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

distance

cov function

0 0.005 0.01 0.015 0.02
0

20

40

60

80

100

freq

sq
rt

(f
(w

))

SQRT Spectral density

True
ML S+T
ML Matern
Kernel

True
ML S+T
ML Matern
Kernel

Figure 2: True and estimated a) covariance function and b) spectral density. The
true model is Matérn with ν = 3, σ2 = 1.00, and inverse range = 9.4 (1/1000km)
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Figure 3: True and estimated a) covariance function and b) spectral density. The
true model is polynomial Matérn with ν = 3, σ2 = 1.00, inverse range (or wt) = 9.4
(1/1000km), u = 0.5wt, and v = 0.1wt.
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Figure 4: True and estimated a) covariance function and b) spectral density. The
true model is S+T with ν = 3, σ2 = 1.00, wt = 9.4 (1/1000km), and coefficients
b = (1, 0.2, 2, 0.6, 0.4)
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Figure 5: True and estimated a) covariance function and b) spectral density. The true
model is spectral exponential with σ2 = 1.00 and inverse range = 9.40 (1/1000km)
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