Sampling bias in logistic models

Peter McCullagh

Department of Statistics
University of Chicago

Taipei, June 2007
Outline

1. Conventional regression models
 - Gaussian models
 - Binary regression model
 - Properties of conventional models

2. Unlabelled units
 - Point process model

3. Consequences
 - Sampling bias
 - Non-attenuation
 - Inconsistency
 - Estimating functions
 - Robustness
Conventional regression model

Units: u_1, u_2, \ldots subjects, patients, plots,
Covariate $x(u_1), x(u_2), \ldots$ (non-random)
Response $Y(u_1), Y(u_2), \ldots$ (random)

Regression model
For each finite subset u_1, \ldots, u_n with $\mathbf{x} = (x(u_1), \ldots, x(u_n))$
Distribution $p_{\mathbf{x}}(\mathbf{y})$ on \mathcal{R}^n depends on \mathbf{x}

Example

$$p_{\mathbf{x}}(A; \theta) = \mathcal{N}_n(X\beta, \sigma_0^2 I_n + \sigma_1^2 K)(A)$$

$A \subset \mathcal{R}^n$, $K_{ij} = K(x_i, x_j)$
block-factor models, spatial models, generalized spline models,...
Binary regression model

Units: u_1, u_2, \ldots subjects, patients, plots (labelled)
Covariate $x(u_1), x(u_2), \ldots$ (non-random, X valued)
Process η on X (Gaussian for example)
Responses $Y(u_1), \ldots$ conditionally independent given η

$$\text{logit} \, \text{pr}(Y(u) = 1 \mid \eta) = \alpha + \beta x(u) + \eta(x(u))$$

Joint distribution

$$\rho_x(y) = E_\eta \prod_{i=1}^{n} \frac{e^{\alpha + \beta x_i + \eta(x_i)}}{1 + e^{\alpha + \beta x_i + \eta(x_i)}}$$

parameters α, β, K. $K(x, x') = \text{cov}(\eta(x), \eta(x'))$.

Peter McCullagh
Random effects
Conventional regression models
Unlabelled units
Consequences

Gaussian models
Binary regression model
Properties of conventional models

Binary regression model: computation

Computational problem: The marginal distribution

\[p_{\mathbf{x}}(\mathbf{y}) = \int_{\mathbb{R}^n} \prod_{i=1}^{n} \frac{e^{\alpha + \beta x_i + \eta(x_i)}}{1 + e^{\alpha + \beta x_i + \eta(x_i)}} \phi(\eta; K) \, d\eta \]

is not easy to compute.

Options:
- Taylor approximation: Laird and Ware; Schall; Breslow and Clayton
- Laplace approximation: Wolfinger 1993
- Numerical approximation: Egret
- Monte Carlo:

But \(p_{\mathbf{x}}(\mathbf{y}) \) is not the correct likelihood!
Conventional regression models
Unlabelled units
Consequences

Gaussian models
Binary regression model
Properties of conventional models

Binary regression model (contd)

$$\text{logit pr}(Y(u) = 1 \mid \eta) = \alpha + \beta x(u) + \eta(x(u))$$

Approximate one-dimensional marginal distribution

$$\text{logit pr}(Y(u) = 1) = \alpha^* + \beta^* x(u)$$

$$|\beta^*| < |\beta|$$ (parameter attenuation)

Subject-specific approach versus population-average approach

$$E(Y(u)) = \frac{e^{\alpha^* + \beta^* x(u)}}{1 + e^{\alpha^* + \beta^* x(u)}}$$

$$\text{cov}(Y(u), Y(u')) = V(x(u), x(u'))$$

PA more acceptable than SS?
Properties of conventional regression model

(i) Population \(\mathcal{U} \) is a fixed set of labelled units

(ii) Two sets of units having same \(\mathbf{x} \) also have same response distribution. (exchangeability, no unmeasured confounders,...)

(iii) Distribution of \(Y(u) \) depends only on \(x(u) \), not on \(x(u') \)
 (no interference, Kolmogorov consistency)

(iii) \(u_1, \ldots, u_n \) is a fixed set of units \(\Rightarrow \) \(\mathbf{x} \) fixed
 No concept of random sampling of units

(iv) Does not imply independence of components:
 fitted value \(E(Y(u')) \neq \text{predicted } E(Y(u') \mid \text{data}) \)

What if ... \(u_1, \ldots, u_n \) were generated at random?
Point process model

Intensity $\lambda_1(x)$ for $y = 1$: $m_1(x) = E(\lambda_1(x))$

Intensity $\lambda_0(x)$ for $y = 0$: $m_0(x) = E(\lambda_0(x))$

Intensity $\lambda.(x)$ for superposition: $m.(x) = E(\lambda.(x))$

$\Pr(Y(x) = 1 \mid \lambda, x) = \lambda_1(x)/\lambda.(x)$

$\Pr(Y(x) = 1 \mid x) = ? E\left(\frac{\lambda_1(x)}{\lambda.(x)}\right) \text{ or } \frac{m_1(x)}{m.(x)} = \frac{E(\lambda_1(x))}{E(\lambda.(x))}$
Point process model

Intensity process $\lambda_0(x)$ for class 0, $\lambda_1(x)$ for class 1
Log ratio: $\eta(x) = \log \lambda_1(x) - \log \lambda_0(x)$
Events form a PP with intensity λ on $\{0, 1\} \times \mathcal{X}$.

$$\Pr(Y = 1 \mid x, \lambda) = \frac{\lambda_1(x)}{\lambda_0(x)} = \frac{e^{\eta(x)}}{1 + e^{\eta(x)}}$$

$$\Pr(Y = 1 \mid x) = E\left(\frac{e^{\eta(x)}}{1 + e^{\eta(x)}}\right)$$

Conventional Bayesian calculation, but wrong!

$$\Pr(Y(x) = 1 \mid \text{superposition event at } x) = \frac{E\lambda_1(x)}{E\lambda_0(x)}$$
(Correct calculation)

Sampling bias: fixed x versus x in superposition set.
Two ways of thinking

First way: (Conventional Bayesian calculation)

Fix $x \in \mathcal{X}$ and wait for an event to occur at x

$$\text{pr}(Y = 1 \mid \lambda, x) = \frac{\lambda_1(x)}{\lambda^*(x)}$$
$$\text{pr}(Y = 1; x) = E\left(\frac{\lambda_1(x)}{\lambda^*(x)}\right)$$

Mathematically correct but seldom relevant

Second way:

First SPP event occurs at x, a random point in \mathcal{X}

joint density at (y, x) proportional to $E(\lambda_y(x)) = m_y(x)$

x has marginal density proportional to $E(\lambda^*(x)) = m^*(x)$

$$\text{pr}(Y = 1 \mid x) = \left(\frac{E\lambda_1(x)}{E\lambda^*(x)}\right) \neq E\left(\frac{\lambda_1(x)}{\lambda^*(x)}\right)$$
Explanation of sampling bias

Fix x, x' non-random points in λ'
No reason to think that $\lambda(x) > \lambda(x')$ versus $\lambda(x') > \lambda(x)$

Now let x^* be the point where first superposition event occurs
Good reason to think that $\lambda(x^*) > \lambda(x)$
because x-values have density $\lambda(x)$

Correct calculation for predetermined non-random x:

$$p_x(y) = E \prod_{j=1}^{n} \frac{\lambda_y(x_j)}{\lambda(x_j)}$$

Correct calculation for random x

$$p(y \mid x) = \frac{E \prod \lambda_y(x_j)}{E \prod \lambda(x_j)}$$
Consequences of a miscalculation: attenuation

In conventional Bayesian calculation

$$\text{logit pr}(Y(u) = 1 \mid \eta, x) = \alpha + \beta x(u) + \eta(x(u))$$

implies marginally after integration

$$\text{logit pr}(Y(u) = 1; x) \simeq \alpha^* + \beta^* x(u)$$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as $1/3$.

β called subject-specific effect; β^* population-average effect;

Correct calculation for random x

$$\text{logit pr}(Y(x) = 1 \mid x \text{ in superposition}) = \alpha^* + \beta x$$

No labelled units, no attenuation, same coefficient β

Distinction between SS effect and PA effect is spurious
Consequences of a miscalculation: inconsistency

Conventional Bayesian likelihood for predetermined \mathbf{x}:

$$p_{\mathbf{x}}(\mathbf{y}) = E \prod_{j=1}^{n} \frac{\lambda_{y_j}(x_j)}{\lambda(.)(x_j)}$$

Correct likelihood for random \mathbf{x}

$$p(\mathbf{y} \mid \mathbf{x}) = \frac{E \prod \lambda_{y_j}(x_j)}{E \prod \lambda(.)(x_j)}$$

If \mathbf{x} is randomly generated

parameter estimates based on $p_{\mathbf{x}}(\mathbf{y})$ are inconsistent
bias is approximately $1/\tau > 1$
Consequences: estimating functions

\((y, x)\) generated at random by PP

Mean intensity for class \(r\): \(m_r(x) = E(\lambda_r(x))\)

\(\pi(x) = \frac{m_1(x)}{m.(x)}; \quad \rho(x) = E(\lambda_1(x)/\lambda.(x))\)

For predetermined \(x\), \(E(Y) = \rho(x)\)

\[T = \sum_x h(x)(Y(x) - \rho(x))\]

has zero mean for predetermined \(x\). (PA estimating function)

For random \(x\), \(E(Y|x \in \text{SPP}) = \pi(x)\)

\[T = \sum_{x \in \text{SPP}} h(x)(Y(x) - \pi(x))\]

has zero mean for random \(x\).
Consequences: robustness of PA

Bayes/likelihood has the right target parameter initially but ignores sampling bias in the likelihood estimates the right parameter inconsistently.

Population-average estimating equation establishes the wrong target parameter $\rho(x) = E(Y; x)$ misses the target because sampling bias is ignored but consistently estimates $\pi(x) = E(Y \mid x \in \text{SPP})$ because conventional notation $E(Y \mid x)$ is ambiguous.

PA is remarkably robust but does not consistently estimate the variance.
(y, x) generated by point process;

\[T(x, y) = \sum_{x \in \text{SPP}} h(x)(Y(x) - \pi(x)) \]

\[E(T(x, y)) = 0 \quad E(T | x) \neq 0 \]

\[\text{var}(T) = \int_{x} h(x)\pi(x)(1 - \pi(x)) m.(x) \, dx \]

\[+ \int_{x^2} h(x)h(x')[\pi_{11}(x, x') - \pi_{1.}^2(x, x')] m..(x, x') \, dx \, dx' \]

\[+ \int_{x^2} h(x)h(x')[\pi_{1.}(x, x') - \pi(x)]^2 m..(x, x') \, dx \, dx' \]