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Partitions
[n] = {1, . . . ,n} a finite set
A partition B of the set [n] = [6] is

(i) a set of disjoint non-empty subsets b ⊂ [n] called blocks...
e.g. B = {{2,4,6}, {1,3}, {5}} ≡ 246|13|5 ≡ 13|246|5

(ii) an equivalence relaton B : [n]× [n]→ {0,1}
s.t. B(i , j) = 1 if i ∼ j belong to the same block

(iii) a symmetric Boolean matrix

B =



1 0 1 0 0 0
0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 0 1 0
0 1 0 1 0 1


#B: number of elements (no. of blocks)

for b ∈ B, #b > 0 is the number of elements (#b > 0)

Integer partition ν(B) = 1 + 2 + 3 associated with B = 246|13|5



The set En of partitions of [n]

E1: 1
E2: 12, 1|2
E3: 123, 12|3, 13|2, 23|1, 1|2|3|
E4: 1234, 123|4[4], 12|34[3], 12|3|4[6], 1|2|3|4
E5: 12345, 1234|5[5], 123|45[10], 123|4|5[10], 12|34|5[15],
12|3|4|5[10], 1|2|3|4|5
#En: 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570

Permutation map π : [n]→ [n] also acts π∗ : En → En
partition type ν(B) is maximal invariant
Deletion map: Dn : En → En−1 (onto)

D4: 1234, 123|4 7→ 123
12|3|4, 12|34, 124|3 7→ 12|3 (three types)
1|2|3|4, 1|2|34, 1|24|3, 14|2|3 7→ 1|2|3

Same as removal of last row and column from matrix

E represents the sets {En} with permutation and deletion maps



Probability distributions on partitions
Pn a probability distribution on En
Finitely exchangeable if ν(B) = ν(B′) implies Pn(B) = Pn(B′)
Examples:

E3 123 12|3 13|2 23|1 1|2|3
P3 1/3 1/6 1/6 1/6 1/6
P ′3 1/6 1/6 1/6 1/6 1/3

E4 1234 123|4 13|24 23|1|4 1|2|3|4
P4 1/4 1/12 1/24 1/24 1/24
P ′4 1/10 1/15 1/30 1/15 2/15

Compatibility:
P4(1234 ∪ 123|4) = 1/4 + 1/12 = 1/3 = P3(123)
P4(12|3|4 ∪ 12|34 ∪ 124|3) = 2/24 + 1/12 = 1/6 = P3(12|3)
P4(1|2|3|4 ∪ 1|2|34[3]) = 1/24 + 3/24 = 1/6 = P3(1|2|3)
P3 is the marginal distribution of P4 under deletion
P ′3 is the marginal distribution of P ′4 under deletion



Exchangeable partition process

An exchangeable partition process is a sequence Pn such that
each Pn is finitely exchangeable

Pn(B) depends only on block sizes ν(B)
Pn is the marginal distribution of Pn+1.

Kolmogorov compatibility condition:

Pn(B) =
∑

B′ : Dn+1B′=B

Pn+1(B′)

Conditional distribution

Pn+1(B′ |B ∈ En) =

{
Pn+1(B′)/Pn(B) Dn+1B′ = B
0 otherwise.

Kingman’s paintbox characterization



The Ewens partition process
Ewens distribution with parameter λ > 0

Pn(B) =
Γ(λ)λ#B

Γ(n + λ)

∏
b∈B

Γ(#b)

Conditional distributions

Pn+1(un+1 7→ b |B) =
Pn+1(B′)

Pn(B)
=

{
#b/(n + λ) b ∈ B
λ/(n + λ) b = ∅

(Pitman’s CRP description)

Induced distribution on integer partitions ν(B) = 1ν12ν2 · · · nνn

Qn(ν) =
Γ(λ)λν.

Γ(n + λ)

n∏
j=1

((j − 1)!)νj × n!∏
(j!)νj νj !

No deletion operation for integer partitions
Hence no process on integer partitions



Permutation process

Exponential family of distributions on permutations σ : [n]→ [n]

Pn(σ;λ) = λ#σ/Mn(λ), #σ = #cycles

Mn(λ) =
∑

λr Sn,r

= λ(λ+ 1) · · · (λ+ n − 1) = Γ(n + λ)/Γ(λ)

Pn(σ;λ) =
Γ(λ)λ#σ

Γ(n + λ)

Exponential family with canonical statistic #σ
Cumulant function K (λ) = log M(λ)

determines the mean, variance,... of #σ
(Goes back to Euler)

In what sense is this an exchangeable process?



Permutations {Πn} as a projective system

Projective system with respect to sub-sampling

A sub-sample of size m taken from [n] (not random) is
an ordered subset ϕ1, . . . , ϕm distinct in [n]
a 1–1 map ϕ : [m]→ [n]

sub sample ϕ : [m]→ [n] −→ deletion ϕ∗ : Πn → Πm
ϕ∗ in reverse direction on permutations
by conjugation ϕ∗σ = ϕ−1σϕ if m = n
by deletion from cycle representation if m ≤ n
(i , j , . . .)(...) 7→ (ϕ−1(i), ϕ−1(j), . . .)(. . .)
delete if ϕ−1({j}) = ∅

(ϕψ)∗ = ψ∗ϕ∗ (composition in reverse order)

Exponential family distributions are compatible with these maps



Ewens permutation process
Ewens distribution on permutations Πn

Pn(σ;λ) =
Γ(λ)λ#σ

Γ(n + λ)

Induced distribution on partitions (cycles ignoring cyclic order)

Pn(B;λ) =
Γ(λ)λ#B

Γ(n + λ)

∏
b∈B

Γ(#b)

Conditional distribution given Πn

Pn+1(n + 1 7→ (i ,n + 1, σ(i), . . .) |σ) = 1/(n + λ) 1 ≤ i ≤ n
Pn+1(n + 1 7→ (n + 1) |σ) = λ/(n + λ) new cycle

Defines an infinite exchangeable random permutation
#σ is approximately Po(λ log n)
Note difference between permutation and a ranking



Other interpertations of the Ewens process

Conditional Poisson interpretation
X1,X2, . . . independent Poisson variables Xj ∼ Po(λ/j)

as multiplicities 1X12X23X3 · · · in integer partition

Conditional distribution of X1, . . . ,Xn given
∑

jXj = n

p(x) ∝ e−λ
P

1/j λx.∏
jxj xj !

is exactly the Ewens partition

Negative binomial model for the number of species
Fisher 1943; Good 1953; Mosteller & Wallace 197?; Efron & Thisted
1976
Kendall’s (1975) family-size process (Kelly’s book)
Prime factorization of large integers (Billingsley 1972; Donnelly &
Grimmett)
Partition induced by Dirichlet process



Characterization of the Ewens distribution

Why is the Ewens distribution ubiquitous?

(i) Exchangeability: B ∼ Pn implies Bπ = π−1Bπ ∼ Pn

(ii) Restriction to subsets [m] ⊂ [n]
if B ∼ Pn, the restriction is B[m] ∼ Pm (process property)

(iii) Self-similarity (lack of memory)
Given that B ≤ b|b′, conditional distn is B ∼ P#b × P#b′

(Aldous, 199?)

Leading to a theory of Markov fragmentation trees...
by recursive partitioning...



The Gauss-Ewens cluster process

Cluster process has following parts:
(i) An index set N
(ii) A random sequence Y1,Y2, . . . with Yi ∈ S, (S = Rd )
(iii) A random partition B of N (not a partition of S)
(iv) Finite-dimensional distributions such as

Pn(B) =
λ#B Γ(λ)

Γ(n + λ)

∏
b∈B

Γ(#b)

Y [n] |B[N]∼N(1µ, In ⊗ Σ + B[n]⊗ Σ′)

Note B ≡ B[N] (no interference)

Parameters: µ ∈ Rd , λ > 0;
Σ,Σ′ within- and between-cluster covariance matrices



Exchangeability of cluster process

Observation for a finite sample [n] ⊂ N is (Y [n],B[n])

Observation space is Sn × En

Permutation π : [n]→ [n] acts on observation space
(Y [n],B[n]) 7→ (Y π,Bπ) by composition Bπ(i , j) = B(πi , πj)

Restriction ϕ : [m]→ [n] acts on observation spaces
(Y [n],B[n]) 7→ (Yϕ,Bϕ) by composition

Yϕ(i) = Y (ϕ(i)), Bϕ(i , j) = B(ϕi , ϕj)

(i) Distribution Qn on En × Sn unaffected by permutation π of [n]

(ii) Qm on Em × Sm is the marginal distn of Qn

Hence there exists an infinite random clustering (Y ,B)



More conventional version

Gauss-Ewens cluster model is more or less equivalent to

η∼ IIDN(0,Σ′), ε ∼ IIDN(0,Σ) independent
tbli = 1 + max(tbl[i − 1]) w.p. λ/(i − 1 + λ);

else one of (tbl1, . . . , tbli−1) with equal prob
Yi = µ+ εi + ηtbl(i)

with (Y1, tbl1), . . . , (Yn, tbln) observed
. . .except that this version is not exchangeable

Can fix this by forgetting/ignoring table numbers
i.e. by defining B = outer(tbl, tbl, "==")
and saying that (Y [n],B[n]) is observed.



0

0

11

0

0

10

0

5

0

5



0

0

5

0

0

6

0

9

0

12



Statistical classification (aka supervised learning)

Feature Yu ∈ S in feature space and class tu ∈ C

Training sample u1, . . . ,un:
observed features (Y1, . . . ,Yn) and types (t1, . . . , tn)
and Yn+1 = y∗, to which class does un+1 belong?

Deterministic interpretation: (forced choice of one t∗ ∈ C)
Statistical classification: probability distribution on C
Enormous literature going back to Fisher (1936)

Logistic classification model (more recent; 1970s?)

log pr(tu = r | yu = y) =
eβ

′
r y∑

r eβ′
sy

for r ∈ C, independently for distinct units



Cluster models for classification w/o classes

Problem: No set C of classes in a cluster process (Y ,B)
Observation (Y ,B)[n] in training sample u1, . . . ,un
How can we assign new unit un+1 to classes?

Conditional distribution

pr(un+1 7→ b | (Y ,B)[n], y∗) =

{
f (...) b ∈ B
. . . otherwise.

Blocks of B are the classes!
Also need parameter estimates (at least λ, θ = Σ′Σ−1)

Lack of C is a big advantage!
possibility of assigning un+1 to a previously unseen class



Explicit calculation of conditional distribution

Simplification Σ′ = θΣ in S = Rd

pr(u′ 7→ b | ...) ∝

{
#b φd (y(u′)− µ̃b; Σ̃b) b ∈ B
λφd (y(u′); Σ(1 + θ)) b = ∅

µ̃b = (µ+ nbθȳb)/(1 + nbθ), Σ̃b = Σ(1 + θ/(1 + nbθ))

Typical values θ ≥ 5 and nb ≥ 5
so µ̃b/ȳb = nbθ/(1 + nbθ) ≥ 0.96

(similar to Fisher discriminant model, but with shrinkage)

Tree version with classes and sub-classes
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Trees (rooted and leaf-labelled)
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abcde(2)

bd(4)
ace(3)

ce(1)

c(1)
e(3)

a(1)

b(2) d(1)

T =

a b c d e
a 6 2 5 2 5
b 2 8 2 6 2
c 5 2 7 2 6
d 2 6 2 7 2
e 5 2 6 2 9

Tij ≥ min(Tik ,Tjk )



Set of rooted leaf-labelled trees

Each tree T is a positive definite matrix

T =

d b a c e
d 7 6 2 2 2
b 6 8 2 2 2
a 2 2 6 5 5
c 2 2 5 7 6
e 2 2 5 6 9

T =
∑

e λe e ⊗ e

sk(T ) =
∑

e ⊗ e

Tij ≥ min(Tik ,Tjk )

Skeleton tree sk(T ) is the set of edges (also called topology)

sk(T ) = {abcde,ace,bd , ce,a,b, c,d ,e}
No. of edges ≤ 2n − 1.



Structure of Tn

Symmetric, non-negative, Tij ≥ min(Tik ,Tjk )

(i) Closed under component-wise monotone transformation
T 7→ g(T ) with g(0) ≥ 0

(ii) closed under component-wise scalar multiplication
(iii) Define (AB)ij = maxk{min(Aik ,Bkj)}

then T 2 = T if and only if T ∈ Tn.
(iv) if A is non-negative, then limn→∞ An = T exists
(v) Tn is the union of intersecting manifolds of dimension 2n−1.

How many? 1 · 3 · · · (2n − 3)

(vi) Contrast unrooted trees: Uij = Tii + Tjj − 2Tij
Uij + Ukl ≤ max{Uik + Ujl ,Uil + Ujk} (Buneman)



Exchangeable fragmentation trees

Gibbs fragmentation trees:

Exchangeable random tree:
(i) distribution Pn on Tn invariant under permutation
(ii) Pn is marginal distribution of Pn+1

Markov property:
splits independent of waiting times
edge lengths independent exponential
Branches behave independently following split
Branch of size r distributed as Pr (self-similarity)

Binary splits



Kolmogorov consistency for the Gibbs skeletal tree

Gibbs skeletal tree T: a random collection of subsets of [n]
satisfying certain tree conditions

pn(T ) = K−1
n

∏
b∈T

ψ(#b) (1)

ψ(n),n = 1,2,3, . . . Gibbs potential function

Kolmogorov consistency condition Pn is marginal distn of Pn+1

Can take ψ1 = ψ2 = 1 w.l.o.g.
Consistency implies

ψn+1 =
ψn(1 + (n − 1)γ)

2 + ψn + (n − 2)γ

for some γ > 0.
ψ3 = (1 + γ)/3 determines the entire sequence



Leaf deletion for n = 3
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Gibbs fragmentation trees

The class of exchangeable homogeneous Markovian trees
one-dimensional family (Aldous’s beta-splitting rules β > −2)
(Bertoin, Le Gall, Berestyki, McC, Pitman, Winkel,)

One member (β = −1)
Waiting time exponential with rate

ϕ(n) = 1 + 1/2 + · · ·+ 1/(n − 1)
mean waiting time 1/ϕ(n) ' 1/ log(n) (ϕ(1) = 0)
splitting distribution n 7→ r + s

pn(r , s) =
n

2 r sϕ(n)
1 ≤ r ≤ n − 1, r + s = n



Exercises connected with Gibbs trees

(i) Beginning with [n] at t = 0, find the partition at time t
(ii) Description of behaviour as n→∞

e.g. size of largest block at time t
(iii) Time to complete fragmentation: T = 2 log(n) + Op(1)
(β = −1)

Density: f (t) ∝ (1− e−t/2)n−2e−t

(iv) Distn of time until u1 is isolated (leaf height)
Density:

∑n
r=1
(n−1

r−1

)
(−1)rϕr e−ϕr t

(v) Expected fragmentation rate given [n] at time 0
λn(t) =

∑n
r=1
(n

r

)
(−1)rϕr e−ϕr t

(vi) Analogous theory for unrooted trees

(vii) Applications of Gibbs trees in statistical models
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