Random partitions and other combinatorial objects

Peter McCullagh

Department of Statistics
University of Chicago
Hotelling Lecture II
UNC Chapel Hill
December 32008

Outline

Random partitions

Ewens partition process

Applications
Gauss-Ewens process
Illustration
Classification
Illustration

Trees

Gibbs fragmentation trees

Partitions

$[n]=\{1, \ldots, n\}$ a finite set
A partition B of the set $[n]=[6]$ is
(i) a set of disjoint non-empty subsets $b \subset[n]$ called blocks...

$$
\text { e.g. } B=\{\{2,4,6\},\{1,3\},\{5\}\} \equiv 246|13| 5 \equiv 13|246| 5
$$

(ii) an equivalence relaton $B:[n] \times[n] \rightarrow\{0,1\}$
s.t. $B(i, j)=1$ if $i \sim j$ belong to the same block
(iii) a symmetric Boolean matrix

$$
B=\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

\#B: number of elements (no . of blocks)
for $b \in B, \# b>0$ is the number of elements ($\# b>0$)
Integer partition $\nu(B)=1+2+3$ associated with $B=246|13| 5$

The set \mathcal{E}_{n} of partitions of [$\left.n\right]$

```
\mathcal{E}
\mathcal{E}}:12,12, 1|
\mathcal{E}
\mathcal{E}4:1234, 123|4[4], 12|34[3], 12|3|4[6], 1|2|3|4
\mathcal{E}5: 12345, 1234|5[5], 123|45[10], 123|4|5[10], 12|34|5[15],
12|3|4|5[10], 1|2|3|4|5
#\mp@subsup{\mathcal{E}}{n}{}:1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975,678570
```

Permutation map $\pi:[n] \rightarrow[n]$ also acts $\pi^{*}: \mathcal{E}_{n} \rightarrow \mathcal{E}_{n}$ partition type $\nu(B)$ is maximal invariant
Deletion map: $D_{n}: \mathcal{E}_{n} \rightarrow \mathcal{E}_{n-1}$ (onto)

$$
\begin{aligned}
& D_{4}: 1234,123 \mid 4 \mapsto 123 \\
& 12|3| 4,12|34,124| 3 \mapsto 12 \mid 3 \text { (three types) } \\
& 1|2| 3|4,1| 2|34,1| 24|3,14| 2|3 \mapsto 1| 2 \mid 3
\end{aligned}
$$

Same as removal of last row and column from matrix
\mathcal{E} represents the sets $\left\{\mathcal{E}_{n}\right\}$ with permutation and deletion maps

Probability distributions on partitions

P_{n} a probability distribution on \mathcal{E}_{n}
Finitely exchangeable if $\nu(B)=\nu\left(B^{\prime}\right)$ implies $P_{n}(B)=P_{n}\left(B^{\prime}\right)$
Examples:

\mathcal{E}_{3}	123	$12 \mid 3$	$13 \mid 2$	$23 \mid 1$	$1\|2\| 3$	
P_{3}	$1 / 3$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	
P_{3}^{\prime}	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 3$	
\mathcal{E}_{4}	1234	$123 \mid 4$	$13 \mid 24$	$23\|1\| 4$	$1\|2\| 3 \mid 4$	
P_{4}	$1 / 4$	$1 / 12$	$1 / 24$	$1 / 24$	$1 / 24$	
P_{4}^{\prime}	$1 / 10$	$1 / 15$	$1 / 30$	$1 / 15$	$2 / 15$	

Compatibility:
$P_{4}(1234 \cup 123 \mid 4)=1 / 4+1 / 12=1 / 3=P_{3}(123)$
$P_{4}(12|3| 4 \cup 12|34 \cup 124| 3)=2 / 24+1 / 12=1 / 6=P_{3}(12 \mid 3)$
$P_{4}(1|2| 3|4 \cup 1| 2 \mid 34[3])=1 / 24+3 / 24=1 / 6=P_{3}(1|2| 3)$
P_{3} is the marginal distribution of P_{4} under deletion
P_{3}^{\prime} is the marginal distribution of P_{4}^{\prime} under deletion

Exchangeable partition process

An exchangeable partition process is a sequence P_{n} such that each P_{n} is finitely exchangeable
$P_{n}(B)$ depends only on block sizes $\nu(B)$
P_{n} is the marginal distribution of P_{n+1}.
Kolmogorov compatibility condition:

$$
P_{n}(B)=\sum_{B^{\prime}: D_{n+1} B^{\prime}=B} P_{n+1}\left(B^{\prime}\right)
$$

Conditional distribution

$$
P_{n+1}\left(B^{\prime} \mid B \in \mathcal{E}_{n}\right)= \begin{cases}P_{n+1}\left(B^{\prime}\right) / P_{n}(B) & D_{n+1} B^{\prime}=B \\ 0 & \text { otherwise }\end{cases}
$$

Kingman's paintbox characterization

The Ewens partition process

Ewens distribution with parameter $\lambda>0$

$$
P_{n}(B)=\frac{\Gamma(\lambda) \lambda^{\# B}}{\Gamma(n+\lambda)} \prod_{b \in B} \Gamma(\# b)
$$

Conditional distributions

$$
P_{n+1}\left(u_{n+1} \mapsto b \mid B\right)=\frac{P_{n+1}\left(B^{\prime}\right)}{P_{n}(B)}= \begin{cases}\# b /(n+\lambda) & b \in B \\ \lambda /(n+\lambda) & b=\emptyset\end{cases}
$$

(Pitman's CRP description)
Induced distribution on integer partitions $\nu(B)=1^{\nu_{1}} 2^{\nu_{2}} \cdots n^{\nu_{n}}$

$$
Q_{n}(\nu)=\frac{\Gamma(\lambda) \lambda^{\nu}}{\Gamma(n+\lambda)} \prod_{j=1}^{n}((j-1)!)^{\nu_{j}} \times \frac{n!}{\prod(j!)^{\nu_{j}} \nu_{j}!}
$$

No deletion operation for integer partitions Hence no process on integer partitions

Permutation process

Exponential family of distributions on permutations $\sigma:[n] \rightarrow[n]$

$$
\begin{aligned}
P_{n}(\sigma ; \lambda) & =\lambda^{\# \sigma} / M_{n}(\lambda), \quad \# \sigma=\# \text { cycles } \\
M_{n}(\lambda) & =\sum \lambda^{r} S_{n, r} \\
& =\lambda(\lambda+1) \cdots(\lambda+n-1)=\Gamma(n+\lambda) / \Gamma(\lambda) \\
P_{n}(\sigma ; \lambda) & =\frac{\Gamma(\lambda) \lambda^{\# \sigma}}{\Gamma(n+\lambda)}
\end{aligned}
$$

Exponential family with canonical statistic \# σ
Cumulant function $K(\lambda)=\log M(\lambda)$ determines the mean, variance,... of $\# \sigma$
(Goes back to Euler)
In what sense is this an exchangeable process?

Permutations $\left\{\Pi_{n}\right\}$ as a projective system

Projective system with respect to sub-sampling
A sub-sample of size m taken from [n] (not random) is an ordered subset $\varphi_{1}, \ldots, \varphi_{m}$ distinct in [n]
a 1-1 map $\varphi:[m] \rightarrow[n]$
sub sample $\varphi:[m] \rightarrow[n] \quad \longrightarrow \quad$ deletion $\varphi^{*}: \Pi_{n} \rightarrow \Pi_{m}$
φ^{*} in reverse direction on permutations
by conjugation $\varphi^{*} \sigma=\varphi^{-1} \sigma \varphi$ if $m=n$
by deletion from cycle representation if $m \leq n$
$(i, j, \ldots)(\ldots) \mapsto\left(\varphi^{-1}(i), \varphi^{-1}(j), \ldots\right)(\ldots)$
delete if $\varphi^{-1}(\{j\})=\emptyset$
$(\varphi \psi)^{*}=\psi^{*} \varphi^{*}$ (composition in reverse order)
Exponential family distributions are compatible with these maps

Ewens permutation process

Ewens distribution on permutations Π_{n}

$$
P_{n}(\sigma ; \lambda)=\frac{\Gamma(\lambda) \lambda^{\# \sigma}}{\Gamma(n+\lambda)}
$$

Induced distribution on partitions (cycles ignoring cyclic order)

$$
P_{n}(B ; \lambda)=\frac{\Gamma(\lambda) \lambda^{\# B}}{\Gamma(n+\lambda)} \prod_{b \in B} \Gamma(\# b)
$$

Conditional distribution given Π_{n}

$$
\begin{aligned}
P_{n+1}(n+1 \mapsto(i, n+1, \sigma(i), \ldots) \mid \sigma) & =1 /(n+\lambda) & & 1 \leq i \leq n \\
P_{n+1}(n+1 \mapsto(n+1) \mid \sigma) & =\lambda /(n+\lambda) & & \text { new cycle }
\end{aligned}
$$

Defines an infinite exchangeable random permutation $\# \sigma$ is approximately $\operatorname{Po}(\lambda \log n)$
Note difference between permutation and a ranking

Other interpertations of the Ewens process

Conditional Poisson interpretation
X_{1}, X_{2}, \ldots independent Poisson variables $X_{j} \sim \operatorname{Po}(\lambda / j)$ as multiplicities $1^{X_{1}} 2^{X_{2}} 3^{X_{3}} \ldots$ in integer partition

Conditional distribution of X_{1}, \ldots, X_{n} given $\sum j X_{j}=n$

$$
p(x) \propto e^{-\lambda \sum 1 / j} \frac{\lambda^{x}}{\prod j^{x_{j} x_{j}!}}
$$

is exactly the Ewens partition
Negative binomial model for the number of species
Fisher 1943; Good 1953; Mosteller \& Wallace 197?; Efron \& Thisted
1976
Kendall's (1975) family-size process (Kelly's book)
Prime factorization of large integers (Billingsley 1972; Donnelly \& Grimmett)
Partition induced by Dirichlet process

Characterization of the Ewens distribution

Why is the Ewens distribution ubiquitous?
(i) Exchangeability: $B \sim P_{n}$ implies $B^{\pi}=\pi^{-1} B \pi \sim P_{n}$
(ii) Restriction to subsets $[m] \subset[n]$
if $B \sim P_{n}$, the restriction is $B[m] \sim P_{m}$ (process property)
(iii) Self-similarity (lack of memory)

Given that $B \leq b \mid b^{\prime}$, conditional distn is $B \sim P_{\# b} \times P_{\# b^{\prime}}$
(Aldous, 199?)
Leading to a theory of Markov fragmentation trees... by recursive partitioning...

The Gauss-Ewens cluster process

Cluster process has following parts:
(i) An index set \mathbb{N}
(ii) A random sequence Y_{1}, Y_{2}, \ldots with $Y_{i} \in \mathcal{S},\left(\mathcal{S}=\mathcal{R}^{d}\right)$
(iii) A random partition B of \mathbb{N} (not a partition of \mathcal{S})
(iv) Finite-dimensional distributions such as

$$
\begin{aligned}
P_{n}(B) & =\frac{\lambda^{\# B} \Gamma(\lambda)}{\Gamma(n+\lambda)} \prod_{b \in B} \Gamma(\# b) \\
Y[n] \mid B[\mathbb{N}] & \sim N\left(\mathbf{1} \mu, I_{n} \otimes \Sigma+B[n] \otimes \Sigma^{\prime}\right)
\end{aligned}
$$

Note $B \equiv B[\mathbb{N}]$ (no interference)
Parameters: $\mu \in \mathcal{R}^{d}, \lambda>0$;
Σ, Σ^{\prime} within- and between-cluster covariance matrices

Exchangeability of cluster process

Observation for a finite sample $[n] \subset \mathbb{N}$ is $(Y[n], B[n])$
Observation space is $\mathcal{S}^{n} \times \mathcal{E}_{n}$
Permutation $\pi:[n] \rightarrow[n]$ acts on observation space
$(Y[n], B[n]) \mapsto\left(Y^{\pi}, B^{\pi}\right)$ by composition $B^{\pi}(i, j)=B\left(\pi_{i}, \pi_{j}\right)$
Restriction $\varphi:[m] \rightarrow[n]$ acts on observation spaces
$(Y[n], B[n]) \mapsto\left(Y^{\varphi}, B^{\varphi}\right)$ by composition

$$
Y^{\varphi}(i)=Y(\varphi(i)), \quad B^{\varphi}(i, j)=B\left(\varphi_{i}, \varphi_{j}\right)
$$

(i) Distribution Q_{n} on $\mathcal{E}_{n} \times \mathcal{S}^{n}$ unaffected by permutation π of $[n]$
(ii) Q_{m} on $\mathcal{E}_{m} \times \mathcal{S}^{m}$ is the marginal distn of Q_{n}

Hence there exists an infinite random clustering (Y, B)

More conventional version

Gauss-Ewens cluster model is more or less equivalent to

$$
\begin{aligned}
\eta \sim & I I D N\left(0, \Sigma^{\prime}\right), \quad \epsilon \sim I I D N(0, \Sigma) \quad \text { independent } \\
\operatorname{tbl}_{i}= & 1+\max (\operatorname{tbl}[i-1]) \quad \text { w.p. } \lambda /(i-1+\lambda) ; \\
& \text { else one of }\left(\operatorname{tbl}_{1}, \ldots, \operatorname{tbl}_{i-1}\right) \text { with equal prob } \\
Y_{i}= & \mu+\epsilon_{i}+\eta_{\mathrm{tbl}(i)}
\end{aligned}
$$

with $\left(Y_{1}, \operatorname{tbl}_{1}\right), \ldots,\left(Y_{n}, \operatorname{tbl}_{n}\right)$ observed
. . .except that this version is not exchangeable
Can fix this by forgetting/ignoring table numbers
i.e. by defining $B=$ outer (tbl, tbl, "==") and saying that $(Y[n], B[n])$ is observed.

Statistical classification (aka supervised learning)

Feature $Y_{u} \in \mathcal{S}$ in feature space and class $t_{u} \in \mathcal{C}$
Training sample u_{1}, \ldots, u_{n} :
observed features (Y_{1}, \ldots, Y_{n}) and types $\left(t_{1}, \ldots, t_{n}\right)$ and $Y_{n+1}=y^{*}$, to which class does u_{n+1} belong?
Deterministic interpretation: (forced choice of one $t^{*} \in \mathcal{C}$) Statistical classification: probability distribution on \mathcal{C} Enormous literature going back to Fisher (1936)

Logistic classification model (more recent; 1970s?)

$$
\log \operatorname{pr}\left(t_{u}=r \mid y_{u}=y\right)=\frac{e^{\beta_{r}^{\prime} y}}{\sum_{r} e^{\beta_{s}^{\prime} y}}
$$

for $r \in \mathcal{C}$, independently for distinct units

Cluster models for classification w/o classes

Problem: No set \mathcal{C} of classes in a cluster process (Y, B)
Observation $(Y, B)[n]$ in training sample u_{1}, \ldots, u_{n} How can we assign new unit u_{n+1} to classes?

Conditional distribution

$$
\operatorname{pr}\left(u_{n+1} \mapsto b \mid(Y, B)[n], y^{*}\right)= \begin{cases}f(\ldots) & b \in B \\ \ldots & \text { otherwise } .\end{cases}
$$

Blocks of B are the classes!
Also need parameter estimates (at least $\lambda, \theta=\Sigma^{\prime} \Sigma^{-1}$)
Lack of \mathcal{C} is a big advantage!
possibility of assigning u_{n+1} to a previously unseen class

Explicit calculation of conditional distribution

Simplification $\Sigma^{\prime}=\theta \Sigma$ in $\mathcal{S}=\mathcal{R}^{d}$

$$
\begin{array}{r}
\operatorname{pr}\left(u^{\prime} \mapsto b \mid \ldots\right) \propto \begin{cases}\# b \phi_{d}\left(y\left(u^{\prime}\right)-\tilde{\mu}_{b} ; \tilde{\Sigma}_{b}\right) & b \in B \\
\lambda \phi_{d}\left(y\left(u^{\prime}\right) ; \Sigma(1+\theta)\right) & b=\emptyset\end{cases} \\
\tilde{\mu}_{b}=\left(\mu+n_{b} \theta \bar{y}_{b}\right) /\left(1+n_{b} \theta\right), \quad \tilde{\Sigma}_{b}=\Sigma\left(1+\theta /\left(1+n_{b} \theta\right)\right)
\end{array}
$$

Typical values $\theta \geq 5$ and $n_{b} \geq 5$

$$
\text { so } \tilde{\mu}_{b} / \bar{y}_{b}=n_{b} \theta /\left(1+n_{b} \theta\right) \geq 0.96
$$

(similar to Fisher discriminant model, but with shrinkage)
Tree version with classes and sub-classes

Block having maximum conditional probability

Trees (rooted and leaf-labelled)

$$
T=\begin{array}{cccccc}
& a & b & c & d & e \\
a & 6 & 2 & 5 & 2 & 5 \\
b & 2 & 8 & 2 & 6 & 2 \\
c & 5 & 2 & 7 & 2 & 6 \\
d & 2 & 6 & 2 & 7 & 2 \\
e & 5 & 2 & 6 & 2 & 9 \\
& \\
& \\
T_{i j} \geq \min \left(T_{i k}, T_{j k}\right)
\end{array}
$$

Set of rooted leaf-labelled trees

Each tree T is a positive definite matrix

$$
T=\begin{array}{ccccccc}
& d & b & a & c & e & T=\sum_{e} \lambda_{e} e \otimes e \\
d & 7 & 6 & 2 & 2 & 2 & \\
b & 6 & 8 & 2 & 2 & 2 & \operatorname{sk}(T)=\sum e \otimes e \\
a & 2 & 2 & 6 & 5 & 5 & \\
c & 2 & 2 & 5 & 7 & 6 & T_{i j} \geq \min \left(T_{i k}, T_{j k}\right) \\
e & 2 & 2 & 5 & 6 & 9 &
\end{array}
$$

Skeleton tree $\operatorname{sk}(T)$ is the set of edges (also called topology) $\operatorname{sk}(T)=\{a b c d e, a c e, b d, c e, a, b, c, d, e\}$
No. of edges $\leq 2 n-1$.

Structure of \mathcal{T}_{n}

Symmetric, non-negative, $T_{i j} \geq \min \left(T_{i k}, T_{j k}\right)$
(i) Closed under component-wise monotone transformation $T \mapsto g(T)$ with $g(0) \geq 0$
(ii) closed under component-wise scalar multiplication
(iii) Define $(A B)_{i j}=\max _{k}\left\{\min \left(A_{i k}, B_{k j}\right)\right\}$ then $T^{2}=T$ if and only if $T \in \mathcal{T}_{n}$.
(iv) if A is non-negative, then $\lim _{n \rightarrow \infty} A^{n}=T$ exists
(v) T_{n} is the union of intersecting manifolds of dimension $2 n-1$. How many? $1 \cdot 3 \cdots(2 n-3)$
(vi) Contrast unrooted trees: $U_{i j}=T_{i j}+T_{j j}-2 T_{i j}$ $U_{i j}+U_{k l} \leq \max \left\{U_{i k}+U_{j l}, U_{i l}+U_{j k}\right\}$ (Buneman)

Exchangeable fragmentation trees

Gibbs fragmentation trees:
Exchangeable random tree:
(i) distribution P_{n} on \mathcal{T}_{n} invariant under permutation
(ii) P_{n} is marginal distribution of P_{n+1}

Markov property:
splits independent of waiting times
edge lengths independent exponential
Branches behave independently following split Branch of size r distributed as P_{r} (self-similarity)

Binary splits

Kolmogorov consistency for the Gibbs skeletal tree

Gibbs skeletal tree T: a random collection of subsets of [n] satisfying certain tree conditions

$$
\begin{equation*}
p_{n}(T)=K_{n}^{-1} \prod_{b \in T} \psi(\# b) \tag{1}
\end{equation*}
$$

$\left.\psi_{(} n\right), n=1,2,3, \ldots$ Gibbs potential function
Kolmogorov consistency condition P_{n} is marginal distn of P_{n+1}
Can take $\psi_{1}=\psi_{2}=1$ w.l.o.g.
Consistency implies

$$
\psi_{n+1}=\frac{\psi_{n}(1+(n-1) \gamma)}{2+\psi_{n}+(n-2) \gamma}
$$

for some $\gamma>0$.
$\psi_{3}=(1+\gamma) / 3$ determines the entire sequence

Leaf deletion for $n=3$

Gibbs fragmentation trees

The class of exchangeable homogeneous Markovian trees one-dimensional family (Aldous's beta-splitting rules $\beta>-2$) (Bertoin, Le Gall, Berestyki, McC, Pitman, Winkel,)

One member $(\beta=-1)$
Waiting time exponential with rate
$\varphi(n)=1+1 / 2+\cdots+1 /(n-1)$
mean waiting time $1 / \varphi(n) \simeq 1 / \log (n) \quad(\varphi(1)=0)$ splitting distribution $n \mapsto r+s$

$$
p_{n}(r, s)=\frac{n}{2 r s \varphi(n)} \quad 1 \leq r \leq n-1, \quad r+s=n
$$

Exercises connected with Gibbs trees

(i) Beginning with $[n]$ at $t=0$, find the partition at time t
(ii) Description of behaviour as $n \rightarrow \infty$
e.g. size of largest block at time t
(iii) Time to complete fragmentation: $T=2 \log (n)+O_{p}(1)$
($\beta=-1$)
Density: $f(t) \propto\left(1-e^{-t / 2}\right)^{n-2} e^{-t}$
(iv) Distn of time until u_{1} is isolated (leaf height)

Density: $\sum_{r=1}^{n}\binom{n-1}{r-1}(-1)^{r} \varphi_{r} e^{-\varphi_{r} t}$
(v) Expected fragmentation rate given [n] at time 0

$$
\lambda_{n}(t)=\sum_{r=1}^{n}\binom{n}{r}(-1)^{r} \varphi_{r} e^{-\varphi_{r} t}
$$

(vi) Analogous theory for unrooted trees
(vii) Applications of Gibbs trees in statistical models

