Random partitions and other combinatorial
objects

Peter McCullagh

Department of Statistics
University of Chicago

Hotelling Lecture I
UNC Chapel Hill
December 3 2008



Outline

Random partitions
Ewens partition process

Applications
Gauss-Ewens process
lllustration
Classification
lllustration

Trees
Gibbs fragmentation trees



Partitions
[n] ={1,...,n} afinite set
A partition B of the set [n] = [6] is
(i) a set of disjoint non-empty subsets b C [n] called blocks...
e.g. B={{2,4,6},{1,3},{5}} = 246[13|5 = 13|246|5
(i) an equivalence relaton B: [n] x [n] — {0,1}
s.t. B(i,j) = 1if i ~ j belong to the same block
(iii) a symmetric Boolean matrix
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#B: number of elements (no. of blocks)
for b € B, #b > 0 is the number of elements (#b > 0)
Integer partition v(B) = 1 + 2 + 3 associated with B = 246|13|5



The set &, of partitions of [n]

&1

12, 112

£3:123, 123, 132, 23|11, 1|2I3]

Ea4: 1234, 123|4[4], 12|34[3], 12/3|4[6], 1]2|3|4

Es: 12345, 1234|5[5], 123|45[10], 123|4|5[10], 12|34|5[15],
12/3|4[5[10], 1]2|3|4|5

#En: 1,2, 5,15,52, 203, 877, 4140, 21147, 115975, 678570

Permutation map =: [n] — [n] also acts 7*: &, — &y
partition type v(B) is maximal invariant
Deletion map: D,: &, — &,_1 (0nto)
D4: 1234, 123|4 — 123
12|3|4, 12|34, 124|3 — 12|3 (three types)
112|3/4, 1|2/34, 1|243, 14]2|3 — 1|23

Same as removal of last row and column from matrix

€ represents the sets {&,} with permutation and deletion maps



Probability distributions on partitions

P, a probability distribution on &,
Finitely exchangeable if v(B) = v(B') implies Py(B) = Pn(B’)
Examples:

& 123 12)3 132 231 123
P, 1/3 1/6 1/6 1/6  1/6
P, 1/6 1/6 1/6 1/6  1/3
£ 1234 12314 13]24 23114  1]2[34
P, 1/4  1/12  1/24  1/24 1/24
P, 1/10 1/15 1/30  1/15  2/15

Compatibility:

Ps(1234U123|4) =1/4+1/12 =1/3 = P3(123)

P4(12]3|4 U 12|34 U 124(3) = 2/24 + 1/12 = 1/6 = P3(12|3)
P4(1/2|3|14 U 1|2|34[3]) = 1/24 + 3/24 = 1/6 = P3(1]2|3)

P5 is the marginal distribution of P4 under deletion

Py is the marginal distribution of P, under deletion



Exchangeable partition process

An exchangeable partition process is a sequence Pp, such that
each P, is finitely exchangeable
Pn(B) depends only on block sizes v(B)
Pp, is the marginal distribution of Py, 1.

Kolmogorov compatibility condition:

Pu(B)= >,  Pn(B)

B': D,.1B'=B
Conditional distribution

, _ | Pn1(B)/Pn(B) Dn1B' =B
Pni1(B'|B € &n) = { 0 otherwise.

Kingman’s paintbox characterization



The Ewens partition process
Ewens distribution with parameter A > 0

F(A\)A#B
Pn(B) = [ r(#b)
r(n+A) beB

Conditional distributions

Pnii(B) _ [#b/(n+)) beB
Pn+1(Un+1’_>b|B):PJ:(B)_{)‘/(”J“)‘) =0

(Pitman’s CRP description)

Induced distribution on integer partitions v(B) = 1*12"2 ... p*

V

Qn(l/

L v n!
E( U= gy

No deletion operation for integer partitions
Hence no process on integer partitions



Permutation process

Exponential family of distributions on permutations o: [n] — [n]

Po(o; \) = \77 /Mp()\), #o0 = #cycles
Mn(N) = Z )‘rSn,r
“AA+ 1) (A +n—1)=T(n+\)/T())

o T)AFe
PrliA) = F(n+\)

Exponential family with canonical statistic #o
Cumulant function K(\) = log M(X)

determines the mean, variance,... of #o
(Goes back to Euler)

In what sense is this an exchangeable process?



Permutations {I1,} as a projective system

Projective system with respect to sub-sampling

A sub-sample of size m taken from [n] (not random) is
an ordered subset ¢4, . .., ¢on distinct in [n]
ai1-—1map¢: [m — [n]

sub sample ¢: [m] — [n] — deletion p*: M, — My
©* in reverse direction on permutations
by conjugation ¢*c = ¢~ 'opif m=n
by deletion from cycle representation if m < n
(- )() = (o (0o (), ()
delete if o~ 1({j}) =0

(p)* = *p* (composition in reverse order)

Exponential family distributions are compatible with these maps



Ewens permutation process
Ewens distribution on permutations I,

F(A)A#O

Pl )= e
Induced distribution on partitions (cycles ignoring cyclic order)

A)A#E
Pn(B; \) () ) H (#b)

Conditional distribution given I,

Poii(n+1—(i,n+1,0(i),...)|o)=1/(n+ ) 1<i<n
Pori(n+1—(n+1)|o)=A/(n+X) new cycle
Defines an infinite exchangeable random permutation

#o is approximately Po(Alog n)
Note difference between permutation and a ranking



Other interpertations of the Ewens process

Conditional Poisson interpretation
X1, X, ... independent Poisson variables X; ~ Po(\/j)
as multiplicities 1%12%3% ... in integer partition

Conditional distribution of Xj,..., X, given )" jX; =n

A

ALV~
p(X)Oce Hjxjxj!

is exactly the Ewens partition

Negative binomial model for the number of species

Fisher 1943; Good 1953; Mosteller & Wallace 197?; Efron & Thisted
1976

Kendall’s (1975) family-size process (Kelly’s book)

Prime factorization of large integers (Billingsley 1972; Donnelly &
Grimmett)

Partition induced by Dirichlet process



Characterization of the Ewens distribution

Why is the Ewens distribution ubiquitous?
(i) Exchangeability: B ~ P, implies B = 7~ 'Br ~ P,

(i) Restriction to subsets [m] C [n]
if B ~ Py, the restriction is B[m] ~ Pn, (process property)

(iii) Self-similarity (lack of memory)
Given that B < b|b/, conditional distn is B ~ Pyp x Pyp
(Aldous, 1997)

Leading to a theory of Markov fragmentation trees...
by recursive partitioning...



The Gauss-Ewens cluster process

Cluster process has following parts:
(i) An index set N
(i) A random sequence Yy, Ya,... with Y; € S, (S = RY)
(iii) A random partition B of N (not a partition of S)
(iv) Finite-dimensional distributions such as

_AFET(A
P,(B) TCES] H I(#b)
Y[n]| BIN]~N(1u, I, Z + Bln]® ¥')
Note B = BIN] (no interference)

Parameters: 1 € R, A > 0;
¥, ¥ within- and between-cluster covariance matrices



Exchangeability of cluster process

Observation for a finite sample [n] C Nis (Y[n], B[n])
Observation space is S x &,

Permutation = : [n] — [n] acts on observation space
(Y[n], B[n]) — (Y™, B™) by composition B"(i,j) = B(m;, )

Restriction ¢: [m] — [n] acts on observation spaces
(Y[n], B[n]) — (Y%, B¥) by composition
Yo(i) = Y(e(1),  B?(i.)) = B(vi. ¥))
(i) Distribution Q, on &, x 8" unaffected by permutation = of [n]
(i) Qm on &y x 8™ is the marginal distn of Q,

Hence there exists an infinite random clustering (Y, B)



More conventional version

Gauss-Ewens cluster model is more or less equivalent to

n~1IDN(0,¥), e~ IIDN(0,X) independent
tbl; =1+ max(tbl[i — 1]) w.p. A/(i =1+ A);
else one of (tbly, ..., tbl;_4) with equal prob
Yi=p+ € + nwi(i)

with (Y7, tblq),...,(Yns,tbl,) observed
.. .except that this version is not exchangeable

Can fix this by forgetting/ignoring table numbers
i.e. by defining B = outer (tbl, tbl, "==")
and saying that (Y[n], B[n]) is observed.
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Statistical classification (aka supervised learning)

Feature Y, € S in feature space and class t, € C

Training sample uy, ..., Up:
observed features (Yi,..., Ys) and types (t, ..., tn)
and Y, 1 = y*, to which class does u,, 1 belong?

Deterministic interpretation: (forced choice of one t* € C)
Statistical classification: probability distribution on C
Enormous literature going back to Fisher (1936)

Logistic classification model (more recent; 1970s?)

eﬁ;y
logpr(tu=rlyu=y)= W
,

for r € C, independently for distinct units



Cluster models for classification w/o classes

Problem: No set C of classes in a cluster process (Y, B)
Observation (Y, B)[n] in training sample uy, ..., up
How can we assign new unit u, ¢ to classes?

Conditional distribution

beB

pr(Uns1 — b[(Y,B)[n],y*) = {f() otherwise.

Blocks of B are the classes!
Also need parameter estimates (at least \,0 = ¥’ 1)

Lack of C is a big advantage!
possibility of assigning u,. 1 to a previously unseen class



Explicit calculation of conditional distribution

Simplification ¥’ = 6% in S = R¢

#bog(y(U) — fini L) beB
b=10

pr(d — b|...) x {Agbd(y(u’);ZU )

fib = (n+ npb¥s)/(1+ npb),  p=3(1+6/(1+ npd))

Typical values § > 5and ny, > 5
SO fip/yp = npf/(1 + nph) > 0.96

(similar to Fisher discriminant model, but with shrinkage)

Tree version with classes and sub-classes



Block having maximum conditional probability
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Trees (rooted and leaf-labelled)
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Set of rooted leaf-labelled trees

Each tree T is a positive definite matrix

d b a c e
d 7 6 2 2 2 T=2creeme
b 6 8 2 2 2
c 2 2 5 7 6 .
e 2 2 5 6 9 Ty 2 min(Tic, Ti)

Skeleton tree sk(T) is the set of edges (also called topology)

sk(T) = {abcde, ace, bd, ce, a, b, c,d, e}
No. of edges <2n-—1.



Structure of 7,

Symmetric, non-negative, Tj; > min(Ti, Ti)

(i) Closed under component-wise monotone transformation
T — g(T) with g(0) >0

(i) closed under component-wise scalar multiplication

(iii) Define (AB); = maxx{min(Aj, Bxj)}
then 72 = T ifand only if T € 7,.

(iv) if Ais non-negative, then lim,_ ., A" = T exists

(v) Tpis the union of intersecting manifolds of dimension 2n—1.
How many? 1-3.--(2n—3)

(vi) Contrast unrooted trees: U = T; + T; — 2Tj;
Uj + Uy < max{Uy + Uy, Uy + Uy} (Buneman)



Exchangeable fragmentation trees

Gibbs fragmentation trees:

Exchangeable random tree:
(i) distribution P, on 7, invariant under permutation
(i) Py is marginal distribution of P, 1

Markov property:
splits independent of waiting times
edge lengths independent exponential
Branches behave independently following split
Branch of size r distributed as P, (self-similarity)

Binary splits



Kolmogorov consistency for the Gibbs skeletal tree

Gibbs skeletal tree T: a random collection of subsets of [n]
satisfying certain tree conditions

pn(T) = Ky ' T w(#b) (1)
beT
Yn),n=1,2,3,... Gibbs potential function
Kolmogorov consistency condition P, is marginal distn of P, 4

Can take ¢y = 1o = 1 w.l.o.g.
Consistency implies

Yn(1 4+ (n—1)y)
2+ Yn+(n—2)y

wn+1 =

for some v > 0.
Y3 = (1 + v)/3 determines the entire sequence



Leaf deletion forn =3

To+ T
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Gibbs fragmentation trees

The class of exchangeable homogeneous Markovian trees
one-dimensional family (Aldous’s beta-splitting rules 5 > —2)
(Bertoin, Le Gall, Berestyki, McC, Pitman, Winkel,)

One member (5 = —1)
Waiting time exponential with rate
e(n)=1+1/2+---4+1/(n—1)
mean waiting time 1/p(n) ~ 1/log(n) (¢(1) =0)
splitting distribution n—r + s

pn(r,s) 1<r<n-1, r+s=n

- 2rsp(n)



Exercises connected with Gibbs trees

(i) Beginning with [n] at t = 0, find the partition at time ¢
(i) Description of behaviour as n — oo

e.g. size of largest block at time t
(iii) Time to complete fragmentation: T = 2log(n) + Op(1)
(B=-1)

Density: f(t) o« (1 — e~ 1/2)"—2¢~t
(iv) Distn of time until uy is isolated (leaf height)

Density: S-7_; ("= (—1)"pre—#"!
(v) Expected fragmentation rate given [n] at time 0

An(t) = 3274 (7)(=1)"pre=#!

(vi) Analogous theory for unrooted trees

(vii) Applications of Gibbs trees in statistical models
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