Improper mixtures and Bayes’s theorem

Peter McCullagh and Han Han

Department of Statistics
University of Chicago

DASF-III conference
Toronto, March 2010
Outline

1. Bayes’s theorem
 - Improper mixtures

2. Poisson processes
 - Bayes’s theorem for PP
 - Gaussian sequences
Bayes’s theorem

Non-Bayesian model: Domain $S = \mathcal{R}^\infty$
Parameter space Θ; elements $\theta \in \Theta$:
$\{P_\theta : \theta \in \Theta\}$ family of prob distributions on S
Observation space $S_n = \mathcal{R}^n$; event $A \subset S$; elements $y \in S_n$

Bayesian model: above structure plus
π: prob distn on Θ implies
$P_\pi(A \times d\theta) = P_\theta(A)\pi(d\theta)$ joint distn on $S \times \Theta$
$Q_\pi(A) = P_\pi(A \times \Theta)$ mixture distribution on S

Bayes’s theorem: conditional probability given $Y = y$
associates with each $y \in S_n$ a probability distribution on Θ
y \leftrightarrow $P_\pi(d\theta \mid Y = y) = P_\pi(dy \times d\theta)/Q_\pi(dy)$
Bayes/non-Bayes remarks

Non-Bayesian model:

family of distributions \{P_\theta\} on \(S\)

Bayesian model is a *single* distribution/process:

Joint distribution \(P_\theta(A) \, \pi(d\theta)\) on \(S \times \Theta\), or

Mixture distribution \(P_\pi(A)\) on \(S\)

Parametric inference:

Use the joint density to get a posterior distn \(P_\pi(d\theta \mid y)\)

 e.g. \(P_\pi(2.3 < \theta_1 < 3.7 \mid y)\)

Nonparametric inference (sample-space inference):

\(S = \mathcal{R}^\infty = \mathcal{R}^n \times \mathcal{R}^\infty\) : \(Y^{(n)} : \mathcal{R}^\infty \rightarrow \mathcal{R}^n\)

obs \(y^{(n)} \in \mathcal{R}^n \mapsto Q_\pi(A \mid y^{(n)})\) for \(A \subset S\)

 e.g. \(Q_\pi(Y_{n+1} < 3.7 \mid y^{(n)})\) or \(Q_\pi(2.3 < \bar{Y}_\infty < 3.7 \mid y^{(n)})\)
Improper mixtures: $\nu(\Theta) = \infty$

$P_{\theta}(A)\nu(d\theta)$ not a probability distribution on $S \times \Theta$
— No theorem of conditional probability

Nonetheless
If $Q_{\nu}(dy) = \int P_{\theta}(dy; \theta) \nu(d\theta) < \infty$, the formal Bayes ratio
$P_{\theta}(dy) \nu(d\theta)/Q_{\nu}(dy)$ is a probability distribution on Θ

Distinction: Bayes calculus versus Bayes’s theorem

If there is a theorem here, what is its nature?
(i) conditional distn is associated with some y-values and not others
(ii) what about DSZ marginalization paradoxes?
Exponential ratio model:

\[Y \sim \phi e^{-\phi y}, \quad X \sim \theta \phi e^{-\theta \phi x} \text{ indep} \]

Parameter of interest: \(\theta = E(Y)/E(X) \).

Prior: \(\pi(\theta)d\theta\ d\phi \)

Analysis I:

Joint density: \(\theta \phi^2 e^{-\phi (\theta x + y)} \ dx\ dy \)

Marginal posterior: \(\pi(\theta \mid x, y) \propto \frac{\theta \pi(\theta)}{(\theta + z)^3} \)

where \(z = y/x \).

Analysis II: based on \(Z \) alone

\[p(z \mid \theta) = \frac{\theta}{(\theta + z)^2} \quad \pi(\theta \mid z) \propto \frac{\theta \pi(\theta)}{(\theta + z)^2} \]

Apparent contradiction or paradox

Prior \(\pi(\theta)d\theta\ d\phi/\phi \) gives same answer both ways.
What does Bayes’s theorem do?

Conventional proper Bayes:
Begins with the family \(\{ P_\theta : \theta \in \Theta \} \) and \(\pi(d\theta) \)
Creates a random element \((Y, T)\) in \(S \times \Theta \)
with distribution \(P_\theta(dy) \pi(d\theta) \)
Computes the conditional distribution given \(Y = y \)

Can we do something similar with an improper mixture \(\nu \)?

(i) Associate with the family \(\{ P_\theta \} \) and measure \(\nu \) some sort of random object in \(S \times \Theta \)
(ii) Observe a piece of this object, (projection onto \(S \) or \(S_n \))
(iii) Compute the conditional distribution given the observation

What sort of random object?
(i) Bayes’s theorem is just conditional probability; joint distribution on $S \times \Theta \mapsto$ conditional distribution

(ii) Bayes’s theorem needs joint probability distribution (Lindley) — but not necessarily on $S \times \Theta$

(iii) Poisson process converts a measure ν on Θ into a prob distn on the power set $\text{Pow}(\Theta)$

(iv) Prob distn π generates a random element $T \in \Theta$ measure ν generates a random subset $T \subset \Theta$

(v) Sampling: how do we observe a random set?

(vi) Can Bayes’s theorem now be used?
Domain S, measure space with measure μ
Countability condition (Kingman 1993)

$$\mu = \sum_{n=1}^{\infty} \mu_n \quad \mu_n(S) < \infty.$$

$Z \subset S$ a Poisson process with mean measure μ: $Z \sim \text{PP}(\mu)$
$\#(Z \cap A) \sim \text{Po}(\mu(A))$ independently for $A \cap A' = \emptyset$

Product structure $S = S_0 \times S_1$ gives

$$Z = (Y, X) = \{(Y_i, X_i) : i = 1, 2, \ldots\} \quad (Y_i \in S_0, \quad X_i \in S_1)$$

Projection $Y = Z[n] \subset S_0$ is $\text{PP}(\mu_0)$ where $\mu_0(A) = \mu(A \times S_1)$
Point process \(Z \subset \mathcal{R}^\infty \): countable set of infinite sequences

\[
Z_1 = (Z_{11}, Z_{12}, \ldots, Z_{1n}, Z_{1,n+1}, \ldots)
\]

\[
Y_1 = Z_1[n]
\]

\[
Z_m = (Z_{m1}, Z_{m2}, \ldots, Z_{mn}, Z_{m,n+1}, \ldots)
\]

\[
Y_m = Z_m[n]
\]

\[Z \subset \mathcal{R}^\infty \sim \text{PP}(\mu); \quad Y = Z[n] \subset \mathcal{R}^n; \quad Y \sim \text{PP}(\mu_0)\]

Sampling region \(A \subset \mathcal{R}^n \) such that \(\mu_0(A) = \mu(A \times \mathcal{R}^\infty) < \infty \);

Observation \(y = Y \cap A; \quad \#y < \infty \)

Inference for sequences \(Z[A] = \{Z_i : Y_i \in A\} \)
Observation on a point process: $\mathcal{S} = \mathcal{R}^\infty$

Point process $Z \subset \mathcal{R}^\infty$: countable set of infinite sequences

PP events: $Z = \{Z_1, Z_2, \ldots\}$

one PP event $Z_i = (Z_{i1}, Z_{i2}, \ldots)$ an infinite sequence

$Z_i = (Y_i, X_i): Y_i = (Z_{i1}, \ldots, Z_{in}); X_i = (Z_{i,n+1}, Z_{i,n+2}, \ldots)$

$Y_i = Z_i[n]$ initial segment of Z_i; X_i subsequent trajectory

Observation space $\mathcal{S}_0 = \mathcal{R}^n$:
Sampling protocol: test set $A \subset \mathcal{S}_0$ such that $\mu_0(A) < \infty$
Observation: $Y \cap A$ a finite subset of \mathcal{S}_0

Inference for what?
for the subsequent trajectories $X[A] = \{X_i : Y_i \in A\}$, if any.
Bayes’s theorem for PPP

Test set $A \subset \mathcal{R}^n$ such that $\mu_0(A) = \mu(A \times \mathcal{R}^\infty) < \infty$

Observation $\mathbf{y} = Y \cap A \subset \mathcal{R}^n$;

Subsequent trajectories $\mathbf{x} = X[A] = \{X_i : Y_i \in A\}$

(i) Finiteness: $\mu_0(A) < \infty$ implies $\#\mathbf{y} < \infty$ w.p.1
(ii) Trivial case: If \mathbf{y} is empty $\mathbf{x} = \emptyset$
(iii) Assume $\mu_0(A) > 0$ and $m = \#\mathbf{y} > 0$
(iv) Label the events Y_1, \ldots, Y_m independently of Z.
(v) Given m, Y_1, \ldots, Y_m are iid $\mu_0(dy)/\mu_0(A)$
(vi) $(Y_1, X_1), \ldots, (Y_m, X_m)$ are iid with density $\mu(dx, dy)/\mu_0(A)$
(vii) Conditional distribution

$$p(dx \mid \mathbf{y}) = \prod_{i=1}^{m} \frac{\mu(dx_i, dy_i)}{\mu_0(dy_i)} = \prod_{i=1}^{n} \mu(dx_i \mid y_i)$$
Remarks on the conditional distribution

\[p(dx \mid y) = \prod_{i=1}^{m} \frac{\mu(dx_i, dy_i)}{\mu_0(dy_i)} = \prod_{i=1}^{n} \mu(dx_i \mid y_i) \]

(i) Finiteness assumption: \(\mu_0(A) < \infty \)
given \(\#(Y \cap A) = m < \infty \), the values \(Y_1, \ldots, Y_m \) are iid

(ii) Conditional independence of trajectories:
\(X_1, \ldots, X_m \) are conditionally independent given \(Y \cap A = y \)

(iii) Lack of interference:
Conditional distn of \(X_i \) given \(Y \cap A = y \) depends only on \(y_i \)
– unaffected by \(m \) or by configuration of other events

(iv) Role of test set \(A \)
no guarantee that a test set exists such that \(0 < \mu_0(A) < \infty \)
if \(y \in S_0 \) has a nbd \(A \) s.t. \(0 < \mu_0(A) < \infty \) then the test set has no effect.
Improper parametric mixtures

\[S = \mathcal{R}^n \times \Theta \text{ product space} \]
\[\{P_\theta(dy): \theta \in \Theta\} \text{ a family of prob distns} \]
\[\nu(d\theta) \text{ a countable measure on } \Theta: \nu(\Theta) = \infty \]
\[\Rightarrow \mu = P_\theta(dy)\nu(d\theta) \text{ countable on } S = \mathcal{R}^n \times \Theta \]
\[\mu_0(A) = \mu(A \times \Theta) = \int_\Theta P_\theta(A) \nu(d\theta) \text{ on } \mathcal{R}^n \]

The process:
\[Z \sim \text{PP}(\mu) \text{ a random subset of } S \]
\[Z = \{(Y_1, X_1), (Y_2, X_2), \ldots\} \text{ (countability)} \]
\[Y \sim \text{PP}(\mu_0) \text{ in } \mathcal{R}^n \text{ and } X \sim \text{PP}(\nu) \text{ in } \Theta \]

Infinite number of sequences \[Y \subset \mathcal{R}^n \]
on one parameter \[X_i \in \Theta \text{ for each } Y_i \in Y \]
Observation:

- a test set $A \subset \mathcal{R}^n$ such that $\mu_0(A) < \infty$
- the subset $y = Y \cap A$ (finite but could be empty)
- but $\#y > 0$ implies $\mu_0(A) > 0$

The inferential goal:

$X[A] : Y \cap A$ a finite random subset of Θ

Elements (parameters) in $X[A]$ are conditionally independent with distribution $\nu(d\theta)P_\theta(dy)/\mu_0(dy)$

Vindication of the formal Bayes calculus!
Summary of assumptions

The Poisson process:
Countability: \(\nu(A) = \sum_{j=0}^{\infty} \nu_j(A) \quad (\nu_j(S) < \infty) \);
includes nearly every imaginable improper mixture!
implies that \(\mu_0 \) is countable on \(S_0 = \mathbb{R}^n \)
\(\sigma \)-finiteness, local finiteness,.. sufficient but not needed

Observation space and sampling protocol:
need \(S_0 \) and \(A \subset S_0 \) such that \(\mu_0(A) < \infty \)
— not guaranteed by countability condition
— may be satisfied even if \(\mu_0 \) not \(\sigma \)-finite
— may require \(n \geq 2 \) or \(n \geq 3 \)
— may exclude certain points s.t. \(\mu_0(\{y\}) = \infty \)
Gaussian sequences: parametric formulation

\[S = \mathbb{R}^n \times \Theta, \quad P_{\theta, \sigma} \text{ iid } N(\theta, \sigma^2) \]

\[\nu(d\theta) = d\theta \, d\sigma / \sigma^p \text{ on } \mathbb{R} \times \mathbb{R}^+ \text{ (improper on } \Theta) \]

\[\mu(dy \, d\theta) = N_n(\theta, \sigma^2)(dy) \, d\theta \, d\sigma / \sigma \text{ (joint measure on } S) \]

\(Z \subset \mathbb{R}^n \times \Theta \text{ is a PP with mean measure } \mu \)

Marginal process \(Y \subset \mathbb{R}^n \) is Poisson with mean measure \(\mu \)

\[\mu_0(dy) = \frac{\Gamma((n + p - 2)/2)2^{(p-3)/2} \pi^{-(n-1)/2} n^{-1/2}}{\left(\sum_{i=1}^{n} (y_i - \bar{y})^2\right)^{(n+p-2)/2}} \cdot dy \]

Test sets \(A \subset \mathbb{R}^n \) such that \(0 < \mu_0(A) < \infty \)

does not exist unless \(n \geq 2 \) and \(n > 2 - p \)

For each test set \(A \), finite subset \(y \subset A \) and for each \(y \in y \)

\[p(\theta, \sigma \mid y, y \in y) = \phi_n(dy; \theta, \sigma) \sigma^{-p} / \mu_0(dy) \]
Formal Bayes inferential statements

Given a proper mixture π on Θ, what does Bayes’s theorem do? It associates with each integer $n \geq 0$, and almost every $y \in \mathcal{R}^n$, a distribution

$$P_n(d\theta \, d\sigma \mid y) \propto \phi_n(y; \theta, \sigma) \pi(d\theta \, d\sigma)$$

This holds in particular for $n = 0$ and $y = 0$ in \mathcal{R}^0.

Given an improper mixture ν on Θ, Bayes’s theorem associates with each test set $A \subset \mathcal{R}^n$, with each finite subset $y \subset A$, and with almost every $y \in y$

$$P_n(\theta, \sigma \mid y, y \in y) = \phi_n(dy; \theta, \sigma)\sigma^{-p} / \mu_0(dy)$$

independently for y_1, \ldots in y.

The first statement is not correct for improper mixtures.
Nonparametric version I

\(T \subset \mathcal{R} \times \mathcal{R}^+ \) Poisson with mean measure \(d\theta \, d\sigma / \sigma^p \)

To each \(t = (t_1, t_2) \) in \(T \) associate an iid \(N(t_1, t_2^2) \) sequence \(Z_t \)

The set \(Z \subset \mathcal{R}^\infty \) of sequences \(Z \sim \text{PP}(\mu) \)

\[
\mu_n(dz) = \frac{\Gamma((n + p - 2)/2)2^{(p-3)/2}\pi^{-(n-1)/2}n^{-1/2}}{(\sum_{i=1}^{n}(z_i - \bar{z}_n)^2)^{(n+p-2)/2}} \, dz
\]

such that \(\mu_n(A) = \mu_{n+1}(A \times \mathcal{R}) \).

Projection: \(Z[n] \sim \text{PP}(\mu_n) \) in \(\mathcal{R}^n \).

Observation: test set \(A \) plus \(Z[n] \cap A = z \)

For \(z \in z \) the subsequent trajectory \(z_{n+1}, \ldots \) is distributed as

\[
\mu_{n+k}(Z_1, \ldots, Z_n, Z_{n+1}, \ldots, Z_{n+k}) / \mu_n(Z)
\]

exchangeable Student \(t \) on \(n + p - 2 \) d.f.
Nonparametric version II

\(Y[2] \subset \mathcal{R}^2 \) is Poisson with mean measure

\[dy_1 \, dy_2 / |y_1 - y_2|^p \]

Extend each \(y \in Y[2] \) by the Gosset rule

\[y_{n+1} = \bar{y}_n + s_n \epsilon_n \sqrt{(n^2 - 1)/(n(n + p - 2))} \]

where \(\epsilon_n \sim t_{n+p-2} \) independently.

Then \(Y \subset \mathcal{R}^\infty \) is the same point process as \(Z \)

\(Y \sim Z \sim \text{PP}(\mu) \) in \(\mathcal{R}^\infty \).
Bernoulli sequences

\(Y_1, \ldots, Y_n, \ldots \) iid Bernoulli(\(\theta \))

Take \(S_0 = \{0, 1\}^n \) as observation space

\[\nu(d\theta) = d\theta/(\theta(1-\theta)). \]

Product measure

\[\mu(y, d\theta) = d\theta \theta^{n_1(y)-1}(1-\theta)^{n_0(y)-1} \]

Marginal measure on \(\{0, 1\}^n \)

\[\mu_0(y) = \begin{cases} \Gamma(n_0(y))\Gamma(n_1(y))/\Gamma(n) & n_0(y), n_1(y) > 0 \\ \infty & y = 0^n \text{ or } 1^n \end{cases} \]

Test set \(A \subset \{0, 1\}^n \) excludes \(0^n, 1^n \), so \(n \geq 2 \)

\[P_{\nu}(\theta \mid Y \cap A = y, y \in y) = \text{Beta}_{n_1(y), n_0(y)}(\theta) \]
Marginalization paradox revisited

Exponential ratio model:
\(Y \sim \phi e^{-\phi y}, \quad X \sim \theta \phi e^{-\theta \phi x} \) independent

Prior: \(\pi(\theta) d\theta \, d\phi \)

Joint measure \(\phi^2 \theta e^{-\phi(y+\theta x)} \pi(\theta) \) on \(\mathcal{R}^2 \times \Theta \)

Bivariate marginal measure has a density in \(\mathcal{R}^2 \)

\[
\lambda(x, y) = 2 \int_0^\infty \frac{\theta \pi(\theta) \, d\theta}{(\theta x + y)^3}
\]

Locally finite, so observable on small test sets \(A \subset \mathcal{R}^2 \)

Bayes’s PP theorem gives

\[
p(\theta \mid Y \cap A = y, (x, y) \in y) \propto \frac{\theta \pi(\theta)}{(\theta + z)^3}
\]

where \(z = y/x \).

Correct standard conclusion derived from the Bayes calculus.
Marginalization paradox contd.

Conclusion depends on $z = y/x$ alone
Induced marginal measure on \mathbb{R}^+ for the ratios $z = y/x$

$$\Lambda_Z(A) = \begin{cases}
0 & \text{Leb}(A) = 0 \\
\infty & \text{Leb}(A) > 0
\end{cases}$$

No test set such that $0 < \Lambda(A) < \infty$
Bayes PP theorem does not support the formal Bayes calculus

Could adjust the mixture measure: $\pi(\theta) \, d\theta \, d\phi/\phi$
Two versions of Bayes calculus give $\theta \pi(\theta)/(z + \theta)^2$
But there is no PP theorem to support version II
Conclusions

(i) Is there a version of Bayes’s theorem for improper mixtures?
— Yes.

(ii) Is it the same theorem?
— No. Sampling scheme is different
— Conclusions are of a different structure

(iii) Are the conclusions compatible with the formal Bayes calculus?
— To a certain extent, yes.

(iv) How do the conclusions differ from proper Bayes?
— Nature of the sampling schemes:
 proper Bayes: sample \(\{1, 2, \ldots, n\} \), observation \(Y \in \mathcal{R}^n \)
 improper Bayes: sample \(A \subset \mathcal{R}^n \), observation \(Y \cap A \)
— Finiteness condition on sampling region \(A \):
— usually \(A \subset \mathcal{R}^n \) does not exist unless \(n \geq k \)

(v) Admissibility of estimates?