Sampling bias in logistic models

Peter McCullagh

Department of Statistics
University of Chicago

JHSPH, Baltimore, Sept 19, 2007

www.stat.uchicago.edu/~pmcc/reports/bias.pdf
Outline

1. Conventional regression models
 - Gaussian models
 - Binary regression model
 - Properties of conventional models

2. Auto-generated units
 - Point process model

3. Consequences of auto-generation
 - Sampling bias
 - Non-attenuation
 - Inconsistency
 - Estimating functions
 - Robustness
 - Interference

4. Arguments pro and con
Conventional regression model

Fixed set \mathcal{U} (usually infinite): u_1, u_2, \ldots subjects, plots, ...
Covariate $x(u_1), x(u_2), \ldots$ (non-random, vector-valued)
Response $Y(u_1), Y(u_2), \ldots$ (random, real-valued)

Regression model:
For each sample u_1, \ldots, u_n with $x = (x(u_1), \ldots, x(u_n))$
Distribution $p_x(y)$ on \mathcal{R}^n depends on x

Example:

$$p_x(y \in A; \theta) = N_n(X\beta, \sigma_0^2 I_n + \sigma_1^2 K)(A)$$

$A \subset \mathcal{R}^n$, $K_{ij} = K(x_i, x_j)$
block-factor models, spatial models, generalized spline models,...
Binary regression model

Units: u_1, u_2, \ldots subjects, patients, plots (labelled)
Covariate $x(u_1), x(u_2), \ldots$ (non-random, X-valued)
Process η on X (Gaussian, for example)
Responses $Y(u_1), \ldots$ conditionally independent given η

$$\logit \Pr(Y(u) = 1 \mid \eta) = \alpha + \beta x(u) + \eta(x(u))$$

Joint distribution

$$p_x(y) = E_\eta \prod_{i=1}^n \frac{e^{(\alpha + \beta x_i + \eta(x_i))y_i}}{1 + e^{\alpha + \beta x_i + \eta(x_i)}}$$

parameters α, β, K. $K(x, x') = \text{cov}(\eta(x), \eta(x'))$.
Binary regression model: computation

Computational problem:

\[p_x(y) = \int_{\mathbb{R}^n} \prod_{i=1}^{n} \frac{e^{(\alpha + \beta x_i + \eta(x_i))y_i}}{1 + e^{\alpha + \beta x_i + \eta(x_i)}} \phi(\eta; K) \, d\eta \]

Options:

Taylor approx: Laird and Ware; Schall; Breslow and Clayton, McC and Nelder, Drum and McC,...
Laplace approximation: Wolfinger 1993; Shun and McC 1994
Numerical approximation: Egret
E.M. algorithm: McCulloch 1994 for probit models
Monte Carlo: Z&L,...
But, just a minute...

But ... $p_x(y)$ is not the correct distribution!

Why not?
Conventional regression models
Auto-generated units
Consequences of auto-generation
Arguments pro and con

Gaussian models
Binary regression model
Properties of conventional models

Binary regression model (contd)

\[
\log \text{it pr}(Y(u) = 1 | \eta) = \alpha + \beta x(u) + \eta(x(u))
\]

Approximate one-dimensional marginal distribution

\[
\log \text{it pr}(Y(u) = 1) = \alpha^* + \beta^* x(u)
\]

\(|\beta^*| < |\beta|\) (parameter attenuation)

Subject-specific approach versus population-average approach

\[
E(Y(u)) = \frac{e^{\alpha^* + \beta^* x(u)}}{1 + e^{\alpha^* + \beta^* x(u)}}
\]

\[
\text{cov}(Y(u), Y(u')) = V(x(u), x(u'))
\]

PA more acceptable than SS?
(i) Population \mathcal{U} is a fixed set of labelled units

(ii) Two samples having same \mathbf{x} also have same response distribution. (exchangeability, no unmeasured confounders,...)

(iii) Distribution of $Y(u)$ depends only on $x(u)$, not on $x(u')$ (no interference, Kolmogorov consistency)

(iv) sample u_1, \ldots, u_n is a fixed set of units $\Rightarrow \mathbf{x}$ fixed
 No concept of random sampling of units

(v) Does not imply independence of components:
 fitted value $E(Y(u')) \neq$ predicted $E(Y(u') | \text{data})$

What if ... u_1, \ldots, u_n were generated at random?
Figure 1: A point process on \(\mathcal{C} \times X \) for \(k = 3 \), and the superposition process on \(X \).

Intensity \(\lambda_r(x) \) for class \(r \)

\(x \)-values auto-generated by the superposition process with intensity \(\lambda.(x) \).

To each auto-generated unit there corresponds an \(x \)-value and a \(y \)-value.
Binary point process model

Intensity process $\lambda_0(x)$ for class 0, $\lambda_1(x)$ for class 1
Log ratio: $\eta(x) = \log \lambda_1(x) - \log \lambda_0(x)$
Events form a PP with intensity λ on $\{0, 1\} \times \mathcal{X}$.

Conventional calculation (Bayesian and frequentist):

$$\Pr(Y = 1 \mid x, \lambda) = \frac{\lambda_1(x)}{\lambda_0(x)} = \frac{e^{\eta(x)}}{1 + e^{\eta(x)}}$$

$$\Pr(Y = 1 \mid x) = E \left(\frac{\lambda_1(x)}{\lambda_0(x)} \right) = E \left(\frac{e^{\eta(x)}}{1 + e^{\eta(x)}} \right)$$

Calculation is correct in a sense, but irrelevant. . .
. . . there might not be an event at x!
Correct calculation for auto-generated units

\[
\begin{align*}
\text{pr}(\text{event of type } r \text{ in } dx \mid \lambda) &= \lambda_r(x) \, dx + o(dx) \\
\text{pr}(\text{event of type } r \text{ in } dx) &= E(\lambda_r(x)) \, dx + o(dx) \\
\text{pr}(\text{event in SPP in } dx \mid \lambda) &= \lambda.(x) \, dx + o(dx) \\
\text{pr}(\text{event in SPP in } dx) &= E(\lambda.(x)) \, dx + o(dx)
\end{align*}
\]

\[
\text{pr}(Y(x) = r \mid \text{SPP event at } x) = \frac{E \lambda_r(x)}{E \lambda.(x)} \neq E \left(\frac{\lambda_r(x)}{\lambda.(x)} \right)
\]

Sampling bias:
Distn for fixed \(x \) versus distn for autogenerated \(x \).
Two ways of thinking

First way: waiting for Godot!

Fix \(x \in \mathcal{X} \) and wait for an event to occur at \(x \)
\[
\Pr(Y = 1 \mid \lambda, x) = \frac{\lambda_1(x)}{\lambda.(x)}
\]
\[
\Pr(Y = 1; x) = E\left(\frac{\lambda_1(x)}{\lambda.(x)}\right)
\]
Conventional, mathematically correct, but seldom relevant

Second way: come what may!

First SPP event occurs at \(x \), a random point in \(\mathcal{X} \)
joint density at \((y, x)\) proportional to \(E(\lambda_y(x)) = m_y(x) \)
\(x \) has marginal density proportional to \(E(\lambda.(x)) = m.(x) \)

\[
\Pr(Y = 1 \mid x) = \frac{E\lambda_1(x)}{E\lambda.(x)} \neq E\left(\frac{\lambda_1(x)}{\lambda.(x)}\right)
\]
Conventional regression models
Auto-generated units
Consequences of auto-generation
Arguments pro and con

Log Gaussian illustration of sampling bias

\[\eta_0(x) \sim GP(0, K), \quad \lambda_0(x) = \exp(\eta_0(x)) \]
\[\eta_1(x) \sim GP(\alpha + \beta x, K), \quad \lambda_1(x) = \exp(\eta_1(x)) \]
\[\eta(x) = \eta_1(x) - \eta_0(x) \sim GP(\alpha + \beta x, 2K), \quad K(x, x) = \sigma^2 \]

One-dimensional sampling distributions:

\[\rho(x(u)) = \Pr(Y(u) = 1) = E\left(\frac{e^{\alpha + \beta x(u) + \eta(x)}}{1 + e^{\alpha + \beta x(u) + \eta(x)}} \right) \]
\[\text{logit}(\rho(x)) \simeq \alpha^* + \beta^* x \quad (|\beta^*| < |\beta|) \]
\[\pi(x) = \Pr(Y = 1 \mid x \in \text{SPP}) = \frac{E\lambda_1(x)}{E\lambda_0(x)} = \frac{e^{\alpha + \beta x + \sigma^2/2}}{e^{\sigma^2/2} + e^{\alpha + \beta x + \sigma^2/2}} \]
\[\text{logit pr}(Y = 1 \mid x \in \text{SPP}) = \alpha + \beta x \]
Explanation of sampling bias

Fix x, x' non-random points in \mathcal{X}
No reason to think that $\lambda(x) > \lambda(x')$ versus $\lambda(x') > \lambda(x)$

Now let x^* be the point where first superposition event occurs
Good reason to think that $\lambda(x^*) > \lambda(x)$
because x-values have density $\lambda(x)$

Correct calculation for predetermined non-random x:

$$ p_x(y) = E \prod_{j=1}^{n} \frac{\lambda_y(x_j)}{\lambda(x_j)} $$

Correct calculation for random autogenerated x

$$ p(y \mid x) = \frac{E \prod \lambda_y(x_j)}{E \prod \lambda(x_j)} $$
Attenuation

Quota sampling:
Conventional calculation for fixed subject u

$$\text{logit } \mathbb{P}(Y(u) = 1 | \eta, x) = \alpha + \beta x(u) + \eta(x(u))$$

implies marginally after integration

$$\text{logit } \mathbb{P}(Y(u) = 1; x) \simeq \alpha^* + \beta^* x(u)$$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as $1/3$.

Calculation is correct for quota samples (x fixed)
Both probabilities specific to unit u
No averaging over units $u \in \mathcal{U}$
Nevertheless β is called the subject-specific effect
β^* is called population averaged effect
Attenuation

Quota sampling:
Conventional calculation for fixed subject u

$$\text{logit pr}(Y(u) = 1 \mid \eta, x) = \alpha + \beta x(u) + \eta(x(u))$$

implies marginally after integration

$$\text{logit pr}(Y(u) = 1; x) \simeq \alpha^* + \beta^* x(u)$$

with $\tau = |\beta^*| / |\beta| < 1$, sometimes as small as 1/3.

Calculation is correct for quota samples (x fixed)
Both probabilities specific to unit u
No averaging over units $u \in U$
Nevertheless β is called the subject-specific effect
β^* is called population averaged effect
Attenuation

Quota sampling:
Conventional calculation for fixed subject u

$$\logit \Pr(Y(u) = 1 \mid \eta, x) = \alpha + \beta x(u) + \eta(x(u))$$

implies marginally after integration

$$\logit \Pr(Y(u) = 1 ; x) \simeq \alpha^* + \beta^* x(u)$$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as $1/3$.

Calculation is correct for quota samples (x fixed)
Both probabilities specific to unit u
No averaging over units $u \in U$

Nevertheless β is called the subject-specific effect
β^* is called population averaged effect
Attenuation

Quota sampling:
Conventional calculation for fixed subject u

$$\logit \, pr(Y(u) = 1 \mid \eta, x) = \alpha + \beta x(u) + \eta(x(u))$$

implies marginally after integration

$$\logit \, pr(Y(u) = 1; x) \simeq \alpha^* + \beta^* x(u)$$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as $1/3$.

Calculation is correct for quota samples (x fixed)
Both probabilities specific to unit u
No averaging over units $u \in U$
Nevertheless β is called the subject-specific effect
β^* is called population averaged effect
Non-attenuation

Sequential sampling for auto-generated units

\[\logit \Pr(Y(x) = 1 \mid \lambda, \text{event at } x) = \alpha + \beta x + \eta(x) \]

implies marginally after integration

\[\logit \Pr(Y(x) = 1 \mid x \text{ in superposition}) = \alpha + \beta x \]

Calculation is correct for autogenerated units
Both probabilities specific to unit at \(x \)
No averaging over units
No parameter attenuation for autogenerated units
Conventional regression models
Auto-generated units
Consequences of auto-generation
Arguments pro and con

Non-attenuation

Sequential sampling for auto-generated units

$$\text{logit pr}(Y(x) = 1 \mid \lambda, \text{event at } x) = \alpha + \beta x + \eta(x)$$

implies marginally after integration

$$\text{logit pr}(Y(x) = 1 \mid x \text{ in superposition}) = \alpha + \beta x$$

Calculation is correct for autogenerated units
Both probabilities specific to unit at \(x\)
No averaging over units
No parameter attenuation for autogenerated units
Non-attenuation

Sequential sampling for auto-generated units

\[
\text{logit pr}(Y(x) = 1 \mid \lambda, \text{event at } x) = \alpha + \beta x + \eta(x)
\]

implies marginally after integration

\[
\text{logit pr}(Y(x) = 1 \mid x \text{ in superposition}) = \alpha + \beta x
\]

Calculation is correct for autogenerated units

Both probabilities specific to unit at \(x \)

No averaging over units

No parameter attenuation for autogenerated units
Non-attenuation

Sequential sampling for auto-generated units

\[
\text{logit pr}(Y(x) = 1 \mid \lambda, \text{event at } x) = \alpha + \beta x + \eta(x)
\]

implies marginally after integration

\[
\text{logit pr}(Y(x) = 1 \mid x \text{ in superposition}) = \alpha + \beta x
\]

Calculation is correct for autogenerated units
Both probabilities specific to unit at \(x \)
No averaging over units
No parameter attenuation for autogenerated units
Consequences: inconsistency

Conventional Bayesian likelihood for predetermined \mathbf{x}:

$$p_x(\mathbf{y}) = E \prod_{j=1}^{n} \frac{\lambda_{y_j}(x_j)}{\lambda.(x_j)}$$

‘Correct’ likelihood for auto-generated \mathbf{x}

$$p(\mathbf{y} | \mathbf{x}) = \frac{E \prod \lambda_{y_j}(x_j)}{E \prod \lambda.(x_j)}$$

If conventional likelihood is used with autogenerate \mathbf{x}

parameter estimates based on $p_x(\mathbf{y})$ are inconsistent
bias is approximately $1/\tau > 1$
Consequences: estimating functions

Mean intensity for class r: $m_r(x) = E(\lambda_r(x))$

$\pi(x) = m_1(x)/m.(x); \quad \rho(x) = E(\lambda_1(x)/\lambda.(x))$

For predetermined x, $E(Y) = \rho(x)$

$$\sum_x h(x)(Y(x) - \rho(x))$$

(PA estimating function for $\rho(x)$)

For autogenerated x, $E(Y|x \in SPP) = \pi(x) \neq \rho(x)$

$$T = \sum_{x \in SPP} h(x)(Y(x) - \pi(x))$$

has zero mean for auto-generated x.
Consequences: robustness of PA

Bayes/likelihood has the right target parameter initially but ignores sampling bias in the likelihood estimates the right parameter inconsistently.

Population-average estimating equation establishes the wrong target parameter \(\rho(x) = E(Y; x) \) misses the target because sampling bias is ignored but consistently estimates \(\pi(x) = E(Y \mid x \in SPP) \) because conventional notation \(E(Y \mid x) \) is ambiguous.

PA is remarkably robust but does not consistently estimate the variance.
v

\[(y, x)\text{ generated by point process; }\]
\[
T(x, y) = \sum_{x \in \text{SPP}} h(x)(Y(x) - \pi(x))
\]

\[
E(T(x, y)) = 0; \quad E(T | x) \neq 0
\]

\[
\text{var}(T) = \int_{\mathcal{X}} h^2(x)\pi(x)(1 - \pi(x)) m.(x) \, dx
\]

\[
+ \int_{\mathcal{X}^2} h(x)h(x') V(x, x') m..(x, x') \, dx \, dx'
\]

\[
+ \int_{\mathcal{X}^2} h(x)h(x')\Delta^2(x, x')m..(x, x') \, dx \, dx'
\]

\(V: \text{ spatial or within-cluster correlation; }\)
\(\Delta: \text{ interference}\)
Physical interference: distribution of $Y(u)$ depends on $x(u')$

Sampling interference for autogenerated units

$$m_r(x) = E(\lambda_r(x)); \quad m_{rs}(x, x') = E(\lambda_r(x)\lambda_s(x'))$$

Univariate distributions: $\pi_r(x) = m_r(x)/m.(x)$

Bivariate: $\pi_{rs}(x, x') = m_{rs}(x, x')/m.(x, x')$

$$\pi_{rs}(x, x') = \text{pr}(Y(x) = r, Y(x') = s | x, x' \in \text{SPP})$$

Hence $\pi_{r.}(x, x') = \text{pr}(Y(x) = r | x, x' \in \text{SPP})$

$$\Delta_r(x, x') = \pi_{r.}(x, x') - \pi_r(x)$$

No second-order sampling interference if $\Delta_r(x, x') = 0$
Autogeneration of units in observational studies

Q: Subject was observed to engage in behaviour X. What form Y did the behaviour take?

<table>
<thead>
<tr>
<th>Application</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing</td>
<td>car purchase</td>
<td>brand</td>
</tr>
<tr>
<td>Ecology</td>
<td>sex</td>
<td>activity class</td>
</tr>
<tr>
<td>Ecology</td>
<td>play</td>
<td>relatives or non-relatives</td>
</tr>
<tr>
<td>Traffic study</td>
<td>highway use</td>
<td>speed</td>
</tr>
<tr>
<td>Traffic study</td>
<td>highway speeding</td>
<td>colour of car/driver</td>
</tr>
<tr>
<td>Law enforcement</td>
<td>burglary</td>
<td>firearm used?</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>birth defect</td>
<td>type of defect</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>cancer death</td>
<td>cancer type</td>
</tr>
</tbody>
</table>

Units/events auto-generated by the process
Auto-generation as a model for self-selection

Economics:
Event: single; in labour force; seeks job training
Attributes (Y): (age, job training (Y/N), income)

Epidemiology:
Event: birth defect
Attributes: (age of M, type of defect, state)

Clinical trial:
Event: seeks medical help; diagnosed C.C.; informed consent;
Attributes: (age, sex, treatment status, survival)

What is the population of statistical units?
Conventional regression models
Auto-generated units
Consequences of auto-generation
Arguments pro and con

Mathematical considerations

Restriction: if \(p_k() \) is the distribution for \(k \) classes, what is the distribution for \(k - 1 \) classes? Does restricted model have same form?

Answer:

Weighted sampling
Closure under weighted or case-control sampling
Closure under aggregation of homogeneous classes
Restriction: if $p_k()$ is the distribution for k classes, what is the distribution for $k - 1$ classes? Does restricted model have same form?

Answer:

- Weighted sampling
 - Closure under weighted or case-control sampling
- Closure under aggregation of homogeneous classes
Restriction: if $p_k()$ is the distribution for k classes, what is the distribution for $k - 1$ classes? Does restricted model have same form? Answer:

Weighted sampling
 Closure under weighted or case-control sampling

Closure under aggregation of homogeneous classes