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1. Introduction

Variance-component models are considered in which the model for the mean response
E(Y) = X[ is linear, the error distribution is Gaussian, and the family of covariance
matrices ¥ = 02V (v) is closed under scalar multiplication. The marginal likelihood based
on the residuals is derived and shown to coincide with the usual REML likelihood (Patterson
and Thompson 1971, 1974; Harville 1978). We take this construction a step further by
deriving the marginal distribution of the scaled residual vector, showing that the resulting
likelihood coincides with Diggle’s (1988) REML profile likelihood. The latter function is a
particularly convenient tool for studying variance-component models because it is a genuine
likelihood function that depends only on the variance-component ratios v. When these ratios
are determined or estimated, the regression parameters may be computed by weighted least
squares in the usual way. This paper is concerned with the estimation of variance-component
ratios in a variety of linear Gaussian models.

Threee areas of application are considered, the first being the classical application with
additive random block effects. A plot of the marginal log likelihood shows the variance-
component ratios that are compatible with the observed data. This can be followed by a
simple maximum-likelihood analysis or a fully-fledged Bayesian analysis for the treatment
effects.

The second area studied in greater detail involves spatial variation in field trials. For
a variety of reasons, we concentrate on a very special two-parameter family of Gaussian
processes, closely related to the de Wijs process, and closed under convolution. Each process
in the family is stationary, isotropic, self-similar and conformally invariant. One slight
complication here is that the processes are defined only on spatial contrasts. The means
and variances of plot yields are not defined, but means and variances of plot contrasts are
well defined. The fact that yields are invariably positive is thus not an objection to the

Gaussian assumption.
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The third area of application is a new multivariate Gaussian clustering model, which
aims to partition the units into homogeneous clusters. The marginal likelihood is especially
appropriate in this case because it depends on the data only through the configuration, the
maximal invariant under the general affine group. Thus each affine transformation of the
data necessarily produces the same likelihood function and determines the same clustering,

or posterior distribution on clusterings.

2. Marginal likelihood

2.1 The scaled Gaussian distribution

Let £ denote n-dimensional Euclidean space, and let Y ~ N,(0,X) be a zero-mean
Gaussian random variable taking values in £”. We consider in this paper various parametric
statistical models ¥ € © for the covariance matrix, in which the parameter set © is closed
under positive scalar multiplication. Some familiar examples are as follows.
(i) In the standard normal-theory linear model, © = {62V | ¢? > 0} for some known
positive definite matrix V', usually the identity.

(ii) In the standard variance-components model, the covariance matrix is expressible as a
non-negative linear combination ¥ = oV; + -+ 4+ 02V}, of known symmetric matrices
Vi,..., Vi. Here V] is positive definite, o7 > 0, the remaining matrices and coefficients
being semi-definite.

(iii) All standard linear Gaussian models, either autoregressive or moving average.

(iv) All zero-mean spatial Gaussian models such as the stationary isotropic processes with

covariance functions

cov(Y(z),Y (2)) = 0§05—a + 07 exp(—Ar)
cov(Y(z),Y(2)) = 086200 + oiAr Ki(Ar)

Here 02,03, \ are arbitrary positive numbers, 02§, .+ is the white noise variance or
nugget effect, r = |z — 2’| is the spatial separation, K7 is the Bessel function, and
rK1(r) is the covariance function of Whittle’s (1954) stationary Gaussian process in
the plane.

Other examples will emerge later in the paper.

For each y € £, the length or norm of y is well defined, so we may transform to the
scaled vector § = y/|y| provided that y # 0. It is evident from the geometry that the
distribution of ¥ under ¥ is the same as the distribution under AX for each A > 0. In fact,
the distribution of Y can be derived directly by integration as follows. First transform to
spherical polar coordinates y — (r,y) where r = |y| and ¢ is a point on the unit sphere.

The Jacobian is dy = r™~! dr du(3) where p is Lebesgue measure on the unit sphere. The



Gaussian density in €™ transforms by

|17 exp(— 'S 1y/2) dy = B[V exp(—r?y' X g/2) v dr du(y)

Now put v = 72, transform and integrate over w, giving the density of the scaled, or

projected, Gaussian distribution in the form f(y; X)) du(y) where
Fy: ) = 3L (Gn) n "2 SR (y's " y) "2, (1)
Note that f(y; A\X) = f(y; %), as claimed. The marginal log likelihood function for ¥ based

on the projected observation y/|y| is thus

[(Syy) = —Llog || — 2 log(y'Sy)
= —3log [ — % log(y'S~'y) + const @)

where the additive constant nlog|y| can be ignored.

In example (ii) above, it is natural to write
S=0(mVi+- -+ uW)

re-parameterizing in such a way that the variance-component ratios satisfy either v, = 1 or
the more symmetrical condition ) v; = 1. Ordinarily, these components are non-negative,
so v may be regarded as a point in the probability simplex. The marginal log likelihood
(2) is then a function of v alone, so we write {(7;y) in place of {(X;y). The elimination
of o from the likelihood function by marginalization is most useful when the number of
variance components is two or three, in which case marginal likelihood plots are extremely
convenient and informative.

If n = 2, the projected variable § = y/|y| is a point on the unit circle, so we may write
) = (cos ¢, sin ¢) with du(y) = d¢. For simplicity, it is helpful to take ¥ = diag(c?, 03), in

which case the quadratic form reduces to
§27g = 5(01 + 03 — (07 — 03) cos(29)) / (0703).

The projected density is on the unit circle is

(0102) dop

m(0? + 03 — (03 — 03) cos(2¢))

which depends only on the ratio o1/02. For general X, the projected distribution is bi-

polar, and symmetric about both principal axes of 3. The real-valued random variable

tan ¢ = tanarg(Y’) has the Cauchy distribution.



2.2 Regression models and residual likelihood

The Gaussian model described above has zero mean, which severely limits its usefulness in
applied work. Suppose therefore that Y ~ N, (u,Y) in which the mean vector lies in the
subspace X of dimension p in £". It is conventional to write 4 = X in matrix notation, in
which the columns of X are a basis for the subspace X. The assumptions made regarding >
are those described above, so that the extended parameter space is the Cartesian product
(1, X) € X x ©. That is to say, the regression parameters and the dispersion parameters
are assumed to be variation independent. Note that X" is a vector space, but © is a subset
of the positive definite matrices, and thus cannot be a vector space.

By the term ‘residual’ or ‘residual vector’ we understand any linear transformation
A: " — V such that ker A = X, together with the random point AY € V. Although
not essential to the definition, it is extremely convenient in subsequent work to choose the
transformation so that AE™ = V, so that, as a matrix, A has full rank. The primary
condition says that AX = 0, or AX = 0 in matrix notation, and the supplementary
condition that Ax = 0 implies x € X. All linear transformations having the same kernel
are regarded as equivalent residuals. Evidently, the distribution of the residual is the same
for all values of u € X, so the mean may be ignored in all distributional calculations that
follow.

To derive the distribution of the residual, we integrate over the kernel as follows. Let W
be any subspace of £" complementary to X, so that each point y € £" can be written in
the form y = y1 + yo with y; € X and y» = Qy € W. Here @ is the projection onto W
along X, and QY is a residual according to the definition. There is no suggestion that X
and W are orthogonal subspaces.

The quadratic form in the exponent of the normal density can be written in the form
Y'Yy = (Pry) Y ' Pry 4+ (Qsy)'S ' Qsy
= (Pyy)' S Poy + (Qsy2) X' Qsye
where Py, = X (X' 'X)'X'S71 Q. = I — Py, and y2 € W. Each point Pry = Xbin X
is a linear combination of the basis elements, so the quadratic form reduces to

YETly =VX'STIXb+ (Qgy)' S Qs e

The Jacobian of the transformation b — Xb is | X' X |1/2. Thus, integration over X gives the
marginal distribution of the residual QY at yo € W in the form

(2m) 2[5~ 21 XX [V2 exp(—(Qupe)' S Qe /2) X / exp(—b'X'S ' Xb/2) db
RP

— (2m) S XX P exp(—y/ (57 Qu)y/2) x (2002 X8|, (3)



The marginal log likelihood based on the residual is thus
bn(E5y) = =392 Qzy — 5 log|Z[ — 3 log | X'E71X], (4)

which is also called the residual log likelihood or the REML log likelihood or the restricted
log likelihood (Patterson and Thompson 1971, 1974; Harville 1977, 1978)

It is useful to note that the residual likelihood, obtained by sample-space integration over
y € X, is not the same as the profile likelihood obtained by parameter-space maximization
over p € X for fixed . The profile log likelihood for ¥ is the sum of the first two of
the three terms in (4). Diggle (1988) remarks that the reasons for choosing the residual
likelihood over the profile likelihood are largely intuitive. I interpret this remark to mean
that the REML likelihood function is clearly the correct one to use for variance-component
estimation, but that convincing arguments are hard to find. To my mind, the two facts that
support the use of the REML likelihood are as follows.

(i) Both functions depend on the same quadratic function of the residuals, so there can

be no difference between the profile and REML likelihoods in information content.
(ii) One is a likelihood function and the other is not.

For example the derivative of (4) has zero expectation, and the higher-order Bartlett
relations are satisfied. The profile log likelihood does not have these properties, which
accounts for much of the bias in maximum-likelihood estimation of variance components.
Note that if the mean-value component of the model is a manifold contained in X', the
derivation of the marginal likelihood by integration over X is unaffected. However, the
profile likelihood is then not equal to the first two terms in (4). The profile likelihood is not
quadratic in y, so the argument (i) above fails.

Following the line of argument in the preceding section, the marginalization argument
may be carried a step further by calculating the marginal distribution of the scaled residual
and the associated likelihood function. The argument used in section 2.1 yields the log
likelihood

[(B5y) = —"3P log(y'E ' Qgy) — 3 log|Z] — 3 log [ XS 1 X], (5)

which is constant on scalar multiples of X.

Provided that the parameter space is closed under positive scalar multiplication, expres-
sion (5) may also be derived as a profile log likelihood, by maximizing the residual log
likelihood (4) over the scale parameter. Following Diggle (1988), we write the covariance
matrix in the form o2V () and maximize over o2 for fixed positive definite V =V (). The

re-parameterized log likelihood (4) is

Ln(0®V3y) = —Ly/'V ' Qgy/o® — $log V]| — nlogo — 2 1og | X'V ' X| + plogo.



Differentiation with respect to o gives

0l/oo =y'V7'Qyy/o® — (n—p) /o
(n—p)o* =y'V 'Quy

where @y, = Qx. The marginal likelihood estimator of o2 for fixed V is the weighted mean
squared residual, the familiar unbiased estimate. Substitution into (4) yields the marginal
profile likelihood in the form (5) with ¥ replaced by V(v). We prefer to think of both (4)
and (5) as marginal likelihoods based on certain functions of the data, rather than profile
likelihoods. Accordingly, we compromise in our terminology by referring to (5) as Diggle’s
profile log likelihood. Note that the derivation of the marginal log likelihoods (4) and (5)
by sample-space integration requires only that the set of mean-values be a subset of X', and

does not require © to be closed under scalar multiplication.

2.3 Multivariate response
For later work, it is worthwhile extending the standard residual likelihood to multivariate
regression models in which the response Y; on unit ¢ is a g-variate normal vector with
covariance matrix A regarded as an unknown parameter. That is to say, Y is a matrix of
order nxgq, and Y ~ N (X3, X®A), where the coefficient matrix [ is of order px ¢. Given ¥,
the weighted least squares estimate of 3 is the familiar expression 3 = (X'S71X)~1X'S 1y,
independent of the value of A. The covariance matrix of the least-squares estimate is
(X'S71X) 1@ A

The expression E(Y) = X[ with unrestricted coeficient matrix § € RP? means that
the model space is the direct sum X®7 of ¢ copies of X, one copy for each of the response
variables. The residual is any linear transformation y + Ay having X®7 as kernel, and the
residual or REML log likelihood is

(S A;Qy) = — 3 tr(y'S1QuyA™) — Log[S @ Al - Llog | X'S71X @ A
= —% tr(y'E_leyA_l) — %(log |2| — log |X’E’1X|) — 5P log|Al.

which has a form similar to the univariate REML log likelihood. The marginal log likelihood

based on the scaled residual matrix is
[(3;Qy) = —"32 log [y~ Qy| — §log[¥| — Flog | X'X 71X, (6)
which does not depend on the matrix A. Note that, for each non-singular ¢ X ¢ matrix L,
[(Z:QyL) = I(3;Qy) — (n — p)log|L],

so the marginal log likelihood (6) is unaffected by such transformation. The similarity with
(4) and (5) is evident.



2.4 Score statistic

Let Vi be a positive definite symmetric matrix of order n, and let V5 be any other semi-
definite symmetric matrix. We use the marginal log likelihood (5) for the scaled residuals
to compute the derivative of [ at Vj in the direction V;. That is to say, we consider the
parametric family of covariance matrices proportional to Vy+~V; for a range of small values
of v, and compute the derivative of [ with respect to v at v = 0. This derivative, called the
score statistic, is often easier to compute than the full log likelihood, and serves as a test
of the hypothesis that the covariance matrix of Y is o2Vj.

The calculations are straightforward but require rather tedious computations involving

matrix derivatives. The score statistic is

Ol(viy) _ (n—p) yQVy ViV 'Qoy
0y 2 y'Vo ' Qoy

3tr(QoViVy )

where Py = X(X’Vo_lX)_lX’VO_1 and Qo = I — Py is the complementary projection.
A particular case of special interest arises when X = 1, Vj = [, is the identity, and V7 is
block-diagonal with k blocks of sizes n1,...,ng. We find that the score statistic is

(n—p) X, 7 (G —5)°> n*=3,.n;

2 S2 on

where y is the average of all observations, ¢, is the average in the rth block and S2. is
the total sum of squares about . The conventional between-blocks sum of squares is
>, nr(gr — §)?, so the numerator is not a multiple of the between-blocks sum of squares
unless the block sizes are equal. That is to say, the locally most powerful test statistic is
not a function of the conventional F-ratio.

Note that the score statistic is a homogeneous rational function of degree (2,2) in y, and is
unaffected by translation in X', which is to say that it is a function of the scaled residual. It
is also unaffected by simultaneous re-scaling of the matrices (5, V7). The null distribution
is such that the numerator and denominator may be regarded as independent. In fact, we
may take the inner product in the space to be such that the denominator is exactly one

when evaluated at 3. Slightly longer calculations demonstrate that the null variance is

(n—p) tr[(QVaVy )2 — tr?(QuVaVy )
2(n—p+2) ’

var(9l/0v) =

The distribution is determined entirely by the non-zero eigenvalues of QonV(fl.



3. Example 1: Hyperbaric O, treatment

The data for our first example are taken from a study by Dr. George Huang of the
Department of Surgery at the University of Chicago on the effect of oxygen on the rate of
healing of surgical wounds of diabetic rats. (Diabetics, both human and animal, tend to have
more complications following surgery than non-diabetics.) Thirty rats were first given a drug
that has the effect of destroying the pancreas, thereby making the rats diabetic. All the rats
underwent surgery, during which an incision was made along the entire length of the back.
This was immediately sewn up with staples. The treatment group of 15 rats was subjected
to hyperbaric O treatment, i.e., a 100% Oz environment at 2 atmospheres pressure, for
90 minutes per day following surgery. To ensure that the control rats were handled in a
manner comparable to the treated rats, the control group also received Os treatment for
90 minutes daily, but at normal atmospheric pressure. Six rats had glucose levels that
were deemed too low to be considered diabetic, and were excluded from the experiment.
After a 24 day recuperation period the 24 rats still participating in the experiment were
sacrificed, i.e., killed. Strips of skin were taken from each of five sites on each rat, each
site crossing the surgical scar in a right angle. The strips were put on a tensiometer and
stretched to breaking point. The observations in the table give the energy required to break
the specimen. Unfortunately some specimens slipped out of the clamps for reasons deemed
to be unconnected with the strength. For these specimens, no observation could be made:
the values are indicated by ‘==’ in the table. Rats 1-14 received the hyperbaric treatment:
rats 15—24 were the controls.

We consider a linear model for the log-transformed data containing additive site and
treatment effects. Two observations on the same rat are likely to be positively correlated,
so we use a variance-components model in which ¥ = o2((1 — )1 + V). Here V (i, j) is
one if observations i, j are on the same rat, and zero otherwise, so V' has rank 24. Missing
data are ignored, so I and V are matrices of order n = 104. If there were no missing data,
a standard two-sample analysis of the 24 rat means would suffice, and would be equivalent
to the present analysis.

The marginal log likelihood (4) for 4 shown in Fig. 1 is roughly quadratic in the interval

2 _
=

(0.0,0.9), with a maximum near 4 = 0.4. In other words, the between-rat variance o yo?
accounts for approximately 40% of the total variance of each observation. The within-rat
variance o2 = (1 — v)o? accounts for the remaining 60%. An approximate likelihood-based
95% confidence interval calculation for v gives (0.2, 0.65)

With ~ set equal to the value 0.4, the weighted least squares estimator of the systematic
effects is obtained from § = (X'WX) ' X'W (logy) with W~ = 0.6/ +0.4V. The weighted
residual mean square is s> = 0.3546 on 98 degrees of freedom, so the asymptotic variance

matrix of 3 is s2(X'WX)~!. The parameter estimates and their standard errors are as
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Fig. 1: Marginal log likelihood for the variance-component ratio.

The dashed line is the standardized treatment statistic ¢ .

follows.
Parameter Estimate S.E.
site 1 0.000  0.00
site 2 0.158 0.14
site 3 0.182 0.14
site 4 0.261 0.15
site —0.270 0.15
Treat —0.294  0.18

The range of values of the variance ratio that are reasonably consistent with the observed
data is the likelihood interval (0.20,0.63) shown in Fig. 1. The standardized treatment
statistic, i.e. the treatment ¢-ratio, increases roughly linearly over this range, from —2.03 at
v=0.2 to —1.18 at v = 0.63.

It was anticipated that the treatment effect, if present at all, would be positive, so the
observed negative value was a distinct disappointment. Even so, a strong negative value
would be of biological interest. However, the observed treatment effect is in the range that
could reasonably be attributed to random variation alone, so there is insufficient evidence
to overturn the null value. If there were no missing data, the preceding analysis using 4 is
equivalent to reducing the design to the rat means, and analyzing these as a two-sample
problem with 24 independent observations. This makes good sense because the rats, not

the sites, are the experimental units.
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4. Field experiments

4.1 A conformal Gaussian model

It is assumed in this section that the observations are indexed by a finite set of plots, not
necessarily rectangular in shape and not necessarily arranged in a regular lattice. The plots
are assumed to have finite positive area, and for convenience they are assumed to be of
equal area. It is also assumed that the observation is made on an extensive variable such

as yield, so the value Y (A) on plot A is an integral over the set

where dx is planar Lebesgue measure. This condition implies as a matter of arithmetic that
Y(AUA) =Y(A) + Y (4") for non-overlapping plots.

The model for treatment effects is assumed to be of the usual linear from E(Y) = X3,
where X is the model matrix for all relevant treatment effects and other incidental effects
connected with ploughing, harvesting, drainage and unevenness of topography. For the
covariance function, we focus primarily on the stationary isotropic self-similar Gaussian
model in which Y = (Y (A;),...,Y(A,)) with covariances

cov(Y) = a3|A| I, + of|APV
= o [(1 =)0 +7]A| V] (7)
Vij = —ave(log |x — 2']), (x € A;;2’ € Ay)

where |A| is the plot area in suitable units, 02 = (03 + 0?)|A|, and v = 03 /(03 + 0?). This
family is closed under convolution, and includes white noise and the de Wijs processes as
extreme points at v = 0 and v = 1 respectively.

Henceforth, the term ‘conformal model’ refers to any Gaussian model having this family
of covariance functions. For non-overlapping circular plots, V;; is exactly the negative log
of the distance between centres. If the plots are non-overlapping squares or approximate
squares, V;; is approximately the negative log of the distance between centres. For square

plots of side r, the diagonal elements are V;; = 0.8051 — log(r).

4.2 Example 2: strawberries

In the introduction to their wide-ranging paper on th analysis of agricultural field ex-
periments, Besag and Higdon (1999) have made their data freely available to encourage
discussion and to stimulate further research. In a sense, the conformal model (7) is a
special case of the Besag-Higdon formulation corresponding to a very particular choice of

interaction coefficients in their Markov model for fertility effects. The derivation, however,
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is fundamentally different because (7) is derived purely by consideration of conformal
transformations, which makes the nebulous concept of fertility entirely unnecessary.

Consider the strawberry variety trial described in section 6 of the Besag-Higdon paper, a
randomized blocks design with eight varieties grown in each of four blocks. The systematic
part of the model is thus the indicator matrix X of rank 8 for the varieties. A complication
in the design is the presence of a hedge along one side of the field, which depresses the yields
in the four adjacent plots to a noticeable degree. Accordingly, we include in the model an
indicator factor for proximity to the hedge, so X has rank 9. Lee and Nelder (2001) use
the same adjustment in their model ‘Lc’, but they also include a linear trend across the
columns.

No information is recorded on the plot geometry, so we proceed here as if the plots were
unit squares, taking V;; to be the negative log of the distance between plot centres, and
Vii = 0.805. In practice, there may well have been fallow guard strips or paths separating
the plots to allow access and to minimize cross-contamination. So this is at best an
approximation to the physical geometry of the design. Taking the covariance matrix to
be of the form

N =0 (1=l +9V)

the marginal likelihood for v shown in Fig. 2 has a maximum at 4 = 0.35. The marginal
likelihood ratio test statistic for the hypothesis that v = 0 is 5.44 on one degree of freedom,
for a p-value of 2%. Taking v = 0.290, the weighted least squares estimates of the variety

contrasts is computed in the usual way, giving the following values and standard errors.

Table 2: Variety estimates in a strawberry trial

Variety E F G M P Re Rl V  hedge
Estimate 0.00 —0.88 0.02 -0.29 0.57 -0.98 —-1.70 —-0.16 —2.57
s.e. 0.00 0.52 0.54 0.56 0.55 0.53 0.60 0.51 0.62
N-Lest 0.00 —0.68 0.00 -0.15 0.73 —-0.79 —1.54 —-0.19 —2.15
B-HI 0.00 -097 -0.31 -0.81 0.03 -1.15 =251 —-0.21
B-HII 0.00 —-1.02 —-044 —-046 0.17 —-1.31 —-1.99 —0.30

Similar estimates given by Lee and Nelder (2001) and by Besag and Higdon (1999) are
shown for comparison, though these are perhaps not strictly comparable. Nelder and Lee
use a non-spatial model with a hedge effect plus a linear trend across columns. Besag and
Higdon recognize the hedge effect, but aim to accommodate it by using a more flexible
non-isotropic model for fertility effects. Both of these papers report estimates from a range
of models, only a few of which are reproduced above. Our estimates of the variety effects,

and the ranking of the varieties PGEVM followed by F, Re, Rl, are in good agreement
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with Nelder an Lee, differing only in the inversion of V and M. Besag and Higdon’s ranking
PEVGM is in agreement with the conformal sub-model in which the hedge effect is omitted.

The root mean variance of pairwise variety contrasts in our model is 0.54, which is fairly
close to the values reported by Lee and Nelder. Contrasts with Rl have higher variance on
account of the unfavourable location of this variety in two plots adjacent to the hedge. The

large standard error means of course that the rankings are not firmly established.

3.0 7

—1.0 |

T T T AU

T
0.0 0.2 0.4 0.6 0.8

Fig. 2: Marginal log likelihood for the variance-component ratio in the straw-
berry variety trial: the solid line is the conformal model; the dashed line is the

random block model.

This analysis entirely ignores the block structure. It is thus of interest to investigate the

extended model in which
Y= 02 (’YOIn + '71V + ’72‘/17)7

where V}, is the equivalence function or matrix for blocks, and the non-negative coefficients
~v add to one. That is to say V,(i,j) = 1 if plots 4,7 are in the same block, and zero
otherwise. The marginal log likelihood with ~; fixed at zero corresponds to the dashed
line in Fig 2, and has a maximum at 5 = 0.295. In the extended model, the likelihood is
maximized at v1 = 0.29,v2 = 0.0, on the boundary of the parameter space corresponding to
the conformal model. In this example, the conformal model is more effective for absorbing
spatial variation than the random block model. The difference in maximized log likelihoods
is 1.26.

The evidence for spatial dependence in this example is virtually indistinguishable from

a linear trend across the columns. If such a trend is included among the systematic effects,
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the evidence for spatial dependence disappears, and the marginal log likelihood has its

maximum at y; = 0.

4.3 FEzxzample 3: Fruit and nut plantations
Batchelor and Reed (1918) published extensive data on the yields of individual fruit trees

taken from four citrus groves and one nut plantation in California, and one apple orchard
in Utah. A brief description of all six data sets follows.

The first data set consists of yields of individual 24-year old trees from the navel-orange
grove at Arlington Station in 1915-16. The grove consists of 20 rows from north to south,
with 50 trees in a row, planted 22" by 22’. In the analysis described here, the grove was
split into the eastern and western halves, consisting of 500 trees each in a grid 20 x 25.
This procedure greatly reduces the computational effort, and also provides a check on the
adequacy of the model.

The second data set consists of yields from 480 ten-year old navel orange trees in 1916
taken from a grove called Antelope Heights located at Naranjo. There are 15 rows of 33
trees, also planted 22" x 22’.

The third data set consists of Valencia orange yields from 15-year old trees at Villa Park
in 1916. There are 12 rows of 20 trees, planted 21.5" x 22.5’. In the analysis reported here,
the grid is taken as 22" square.

The fourth data set consists of yields from 23-year old Eureka lemon trees at Upland,
California in 1916. There are 364 trees in 14 rows of 26 trees in each row, planted in a
square grid of side 24’.

The fifth data set consists of yields from 320 walnut trees from a 24-year old Santa
Barbara softshell seedling grove. This planting is laid out 10 trees wide and 28 trees long,
The trees are planted on a square lattice of side 50’. In the analysis reported here, each tree
is assumed to occupy a square cell of side 25, so there is an additional 25’ space between
rows and columns.

The last data set consists of yields of apples from a 10-year old Jonathan apple orchard
at Providence, Utah. There are eight rows of 28 trees, planted 16’ apart, east and west, and
30’ apart north and south. In the analysis reported here, each tree is assumed to occupy a
cell of side 16/, so there is a 14’ vacant space in one direction.

In preparing the data for the computer, a few minor discrepancies were uncovered, where
the values in the table did not tally with the published row and column totals. In some
instances, these were corrected, though this could seldom be done with much certainty. To
enable interested readers to duplicate or improve on the author’s analyses, all data used
here are available electronically from the author’s web site, together with functions written

in R for computing the marginal likelihood function.
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In calculating and plotting the marginal log likelihood for v in the conformal model (7),
it was found to be convenient to take the unit of area to be 100 square metres. This choice
has no substantive effect on the conclusions, but it does avoid extremely small or extremely
large values of . For plots of this area, the two terms in (7) contribute roughly equally to
the total variance so v is roughly one half. In all cases, additive row and column effects are
eliminated from the analysis whether there are significant variations or not. The marginal
log likelihoods for v in the conformal model (7) are displayed in Fig 3 for each of the six
data sets, with two parallel plots for the two halves of the Arlington navel orange grove.
In the summary statistics listed below, the log likelihood is measured relative to the model
with v = 0. )

Plantation ¥ se(y) U(H)
Arlington T~ 0.299 0.082 26.24
Arlington IT  0.295 0.091 10.92

Antelope 0.480 0.086 26.89
Valencia 0.378 0.120 10.70

Eureka 0.302 0.091 16.72
Walnuts 0.216 0.103 5.17
Jonathan 0.000 — 0.00

With the sole exception of the apple orchard at Providence, Utah, the evidence for spatial
dependence is overwhelming. For example, the log likelihood ratio statistic for the null
hypothesis of no spatial dependence among the walnut trees is 2 x 5.17 on one degree of
freedom for a p-value of 0.0013. For the Providence data, the log likelihood is fairly flat for
small 7, so all that can be said is that the data are not consistent with values of 7 in excess of
about 0.4. Any reasonable spatial covariance model is sufficient to detect spatial dependence
in these data, so these analyses provide no evidence that the spatial dependence follows
the conformal model (7). Comparisons with alternative covariance models are reported in
section 4.6.

It is quite remarkable that these six plantations, three of oranges, one of lemons, one
of walnuts, and one of apples, are fairly consistent with each other so far as the conformal
coefficient 7 is concerned. The estimated common value, obtained by maximizing the sum of
the seven marginal log likelihood functions, is 4 = 0.327, or 4/(1 —4) = 0.485 per unit area
of 100m?, and the log likelihood at that point is 93.19. The likelihood ratio test statistic for
the hypothesis of a common value is 2(96.66 —93.19) = 6.94 on six degrees of freedom. This
rough and ready analysis treats the two halves of Arlington as independent which they are
not. Even if the degrees of freedom are reduced to five to compensate, the evidence against

a common value is not strong.
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4.4 FEzample 4: Great Knott wheat

Regardless of its original purpose, an extensive uniformity trial presents the opportunity to
test the proposed conformal Gaussian model in various ways. The Mercer and Hall data on
wheat yields taken from a 20x25 grid of plots in Great Knott field at Rothamsted in the
summer of 1910 is ideal in many ways. These data have been used by later authors (Whittle
1954, Besag 1974, McBratney and Webster 1981) for a wide range of purposes. Although
most analyses focus on the grain yields, the data consist of both grain and straw yields on
a regular grid of 20 rows, each 2.59 m wide, and 25 columns each 3.30 m wide. Details of
the experiment taken from the Mercer-Hall paper are reproduced in Andrews and Herzberg
(1985) together with the data.

McBratney and Webster (1981) remark that detailed records have not neen kept, and
that the plots might not have been contiguous, the practice at the time being to separate
plots by discard strips, which would have been 3'—6" wide. Discard strips are not mentioned
in the original paper, and the total area is known to be one acre. The total recorded
grain yield of 1974 Ibs is equivalent to 2.1 tonnes per hectare in the absence of discard
strips, This seems very low by modern standards of roughly 8 tonnes/ha, but it is in good
agreement with Broadbalk yields in the same year as reported by Andrews and Herzberg
(1985, section 5). If 3’ discard strips had been used, the yield would have been equivalent
to 4.5 tonnes per hectare. By comparison, the best nine of eighteen Broadbalk plots in 1910
yielded in the range 1.8-2.2, the largest being 2.19 tonnes/ha. Mercer and Hall remark only
that the one-acre area selected ‘promised to be a fair crop for the season’. In other words,
this is strong evidence that the plots were contiguous and that discard strips were not used.
Thus, the plot area is 8.547 m?.

Since there are noticeable column effects, attributed by McBratney and Webster (1981)
to an earlier ridge and furrow system, we eliminate additive row and column effects in our
analyses, and seek to estimate the coeflicients in the spatial model. Row effects are not
necessary, but are included nonetheless. Although we study the data one variable at a time,

we consider the bivariate spatial model with covariance function
cov(Y)=I, 05+ Ve

where Y is a matrix of order n x 2, 3,3 are 2 X 2 covariance matrices, and V is the
average negative log distance between plots. Then each linear combination Y1 gives rise
to a univariate conformal model (7) with variance components o2 = 'Syl and o? = I'S41.
In computing and plotting the marginal log likelihood, it was found to be helpful to take
the unit of area to be ten square metres. The marginal log likelihoods for the coefficient ~
in the conformal model (7) are plotted for straw and grain in Fig. 4. The point estimates
are 4 = 0.393 for grain and 4 = 0.366 for straw, both with a standard error of 0.08. That
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is to say the estimated variance-component ratios §/(1 — %) are 0.65 per unit area for
grain and 0.58 for straw. For both straw and grain, the evidence for spatial dependence
after eliminating additive row and column effects is overwhelming. In itself, this is not
surprising: any reasonable model for spatial dependence will detect this. The real surprise
lies in the evidence that both processes have the same coefficient -, suggesting that the

variance-component matrices are proportional, i.e. Yo o 3.

009, e
Im(7) == TR
~1004 7,
—20.0 /
—30.0 4
—40.0 ~ ¥
T T I T T I
0.0 0.2 0.4 0.6 0.8

Fig. 4: Marginal log likelihood for the variance-component ratio.

The solid line is for grain, the dashed line for straw.

To say that the variance-component matrices are proportional is to say that X v
is a scalar, a multiple of the identity matrix. This hypothesis can easily be checked
by considering various linear combinations Y = Y'cosf + Y?sin@ of straw and grain.
For each 0 < 6 < m, the conformal model is fitted to Y?, and the variance-component
ratio 4(#) obtained. If ¥;'¥; is a scalar then ~(#) is constant, and 4(#) should be
approximately constant. We already know that §(0) is approximately equal to 4(7/2).
However, Fig 5 shows conclusively that (@) is not constant, but ranges from 0.07 to 0.50.
Then 0.07/0.93 = 0.075 and 1.0 are the estimated minimum and maximum eigenvalues of
Yo 1331, Even for the least favourable linear combination (6 ~ 140°), the evidence of spatial
dependence is very strong with a maximized log likelihood of around 4.8.

As a check on the model, it is helpful to consider four separate quadrants, each 10 x 12
and one quarter acre in area, omitting the last column for computational convenience. This
data splitting allows us to examine whether the variance-component ratio parameter « in
the conformal model is constant or varies across the region. The values of 4 obtained in

this manner are as follows
quadrant (1,1) (1,2) (2,1) (2,2)
grain 0.455 0.492 0.324 0.387
straw 0.539 0.229 0.436 0.305
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Fig. 5: Fitted conformal coefficient 5(0) as a function of the linear

combination Y cos @ + Y?sin @ of grain and straw yields.

The individual standard errors are around 0.18-0.20, so there is no evidence of trend or
excess variation. In all cases, the evidence against the null value v = 0 is at least moderately

strong.

4.5 Alternative Gaussian models

The most commonly used Gaussian models are the stationary isotropic models, which are
invariant under the group of rigid motions, so that the covariance function K(z, z’) depends
only on spatial separation z = |z — 2’|. The family {K(Az) : A > 0} is then closed under
the similarity group generated by planar translations, rotations and dilations. Three such

families suffice for illustrative purposes
o2 exp(—Az), o?(\z)Ki(A\z), and o2z /A

In the second of these, derived by Whittle (1954) specifically for planar processes, K is
the modified Bessel function of order 1. The third expression, the Newtonian potential in
Euclidean space of dimension v = 2 + A, is interpreted as —log(x) + const when A = 0.
The function z7*/X is a covariance function for spatial contrasts in Euclidean space of
dimension d provided that A < d. Other examples of covariance functions can be found
in the literature on spatial models and random fields (Stein, 1999; Chiles and Delfiner
1997 Matheron 1997). In particular, Stein recommends using the flexible Matérn class of
covariance functions o x” K, (Az), where v > 0 and K, is the modified Bessel function of
order v. One attraction of the Matérn class is that it includes Whittle’s model at v = 1 and

the exponential model at ¥ = 1/2. On the negative side, however, it may be more flexible
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than is necessary for specific applications such as field trials. The index v governs the mean
square smoothness.
In applications to agricultural processes, it is essential to include a white noise contribu-

tion, so the smallest non-trivial family has the form
050, + 01K (\x),

with two variance parameters and a range parameter. The conformal model described in the
preceding section has this form, but there is no range parameter because K(z) = — log(x).
The power family also does not have a range parameter.

We will not consider these models in great detail except by way of a check on the adequacy
of the conformal model. In the marginal log likelihood, each of the alternative models has
two free parameters whereas the conformal model has only one. The conformal model is a
sub-model of the power family, so the difference in log likelihoods constitutes the standard
test. It is not a sub-model of the other two, so only an informal comparison is available.
Table ? gives the maximized marginal log likelihoods for the conformal model and each of

the three models described above for nine data sets.

Table 7. Maximized marginal log likelihoods for various models.

Spatial covariance model
Data set Conformal Exponential Whittle Power

Arlington I 26.24
Arlington 11 10.92

Antelope 26.89
Valencia 10.70
Eureka 16.72
Walnuts 5.17
Jonathan 0.00
M-H grain 42.20
M-H straw 27.22

5. A Gaussian model for cluster analysis

5.1 Configuration
Banfield and Raftery (1993) remark that cluster analysis has developed mainly through

the invention and empirical investigation of ad hoc methods in isolation from more formal
statistical procedures. Algorithms for clustering are plentiful in the literature, but statistical
models are scarce. See Gower (1967) for a comparison of the algorithms then in use for
taxonomic purposes. In this section, we construct a Gaussian model for cluster analysis
and illustrate its application. We do not, however, go so far as developing an algorithm for

finding the clusterings or partitions that have highest posterior probability.
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Suppose that we wish to group the n units into a small number of homogeneous clusters
based on the observed values y; € R4, and that this is to be done without benefit of covariate
information. In principle, all clusterings must be examined and compared. It is assumed
that any clustering model is, or should be, unaffected by invertible affine transformation
of the n response points in RY. In other words, the clustering model is unaffected by any

transformation in which each y; is sent to
yi—a+ By,

where a € R? and B is invertible (Friedman and Rubin 1967). Another way of saying
the same thing is that the likelihood function should depend on the data only through the
configuration statistic, and this argument leads naturally to the marginal log likelihood in
section 2.3.

A clustering of the observed units is a partition of the set n = {1,...,n} into disjoint
non-empty subsets whose union is n. The clusters are unlabelled, so a clustering is not
to be confused with a classification of the units. For example, if there are four units
n = {1,2, 3,4}, the two classifications

p={l—a, 2—0b, 3—a, 4~—b}
@ ={l—b, 2+a, 3—0b 4+ a}

are different functions. The function ¢ determines two classes, so we may talk of the class a,
i.e. the set ¢~'a = {1,3}, and the class b or the set p=!b = {2,4}. In the classification
¢, the labels are reversed. So far as clusterings are concerned, there is only one partition
13|24, an abbreviation for {{1,3},{2,4}}, and the blocks are unlabelled. This distinction
may seem pedantic, but it is crucial for modelling. It means that we cannot begin the
modelling exercise by saying ‘let x denote the class labels’ as in Scott and Symons (1971)
or Banfield and Raftery (1993). The difference is also crucial from a Bayesian perspective
in which one must begin with a prior distribution, either on classifications or on partitions,
the two being very different even for moderate vaues of n. The present approach is close in
spirit to Friedman and Rubin (1967), who use a number of invariant classification criteria

but with no explicit statistical model.

5.2 FExzchangeable random partitions

A clustering of the observed units is a partition of the set n = {1,...,n} into disjoint
non-empty subsets whose union is n. To say the same thing with less risk of ambiguity, a
partition F is an equivalence relation on n, a Boolean function E:n x n — {0, 1} that is
reflexive, symmetric and transitive. In other words, F is a symmetric binary matrix, and if

the units are suitably ordered, F is a block-diagonal matrix, the blocks being the blocks of
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the partition. The set &, of all equivalence relations on n is the finite set of partitions of n,
also called the partition lattice. Accordingly, it is natural to consider a linear Gaussian
model for the conditional distribution of Y given F in which X = 1 consists of the intercept

only. The family of covariance matrices has the form
covY |E)=1,0%+E®%; (31)

in which X, 31 are positive definite ¢ X ¢ covariance matrices, and E € &,.

The data on which our analysis will be based is the scaled residual, §J, whose distribution
depends only on the matrix ¥ 1%, together with the partition E. To simplify the calcu-
lations in the analysis that follows, this matrix is assumed to be a scalar, i.e. cov(Y | E) =
(1 —~)I,, + vE) ® E. The probability of the data is thus

Z pn y ‘ L 'Y) (32)

Eeé&n

where the second factor is given by (6) with suitable modification of notation. To
complete the specification, we require a distribution or family of distributions on the set
of partitions. Since the units are regarded as exchangeable, the sequence of distributions
{pn(E)} determines an infinitely exchangeable process. This statement is interpreted in the
standard de Finetti sense as follows. First, for each set n, the distribution p,(:) on &, is
invariant under permutation of units. Second, p,(-) is the marginal distribution of p,41(+)
under selection of units. Equivalently, if K is a random partition of {1,...,n + 1} with
distribution py,41(+) on &,41, deletion of one unit yields a random partition with distribution
pn(-) on &,.

Ewens’s distribution with scalar parameter A > 0 is the simplest infinitely exchangeable
process on partitions. To each set partition F € &, there corresponds a number partition
N(E) such that N(E) = 1122 ... n®» | this being the maximal invariant under permutation.
In other words, E contains e, blocks of size r, so that e, = > e, is the number of blocks,

and n = > re,. The Ewens distribution on &,, with parameter A > 0 is

, s L(A) A e
pn(E;N) = nH ];[ (r— 1) ml:[[(rm . (33)

This is the first factor on the right in (32). For each probability distribution 7 on the

positive numbers we write
palEim) = [ p(EN) dn(y)

for the m-mixture. As usual in the theory of infinite exchangeability, every mixture of

exchangeable processes is also an exchangeable process.
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The choice of the Ewens distribution on partitions is not so arbitrary as it might appear.
There are indeed other infinitely exchangeable random partitions, but there appear to be
no others that have the sort of limiting behaviour that one would demand for clustering
applications. In particular, the number of clusters should tend slowly to infinity as n — oo,
and the distribution of cluster fractions should have a suitable non-degenerate limit. In
particular, as Scott an Symons (1971) note, it is unreasonable that the block sizes should
be approximately equal for large n. There is no satisfactory alternative to the Ewens family
or Ewens mixtures.

For each fixed n, the Ewens family is an exponential family on the partition lattice in
which the number of blocks is the canonical sufficient statistic. The cumulant function
is K(0) = logI'(n + %) — logI'(e?), where A = €’ so the mean number of blocks is
A(¥(n+X) — (X)), which is approximately Alog(1+n/X). The probability that E consists
of a single block is T'(A\)['(n)/T'(n + A), or roughly n=*. The number of blocks is roughly
Poisson, but the variance is a little greater than the mean. For applications to clustering,
values near A = 1 are not unreasonable. If a Bayesian analysis is required, we may choose
a suitable non-degenerate prior distribution on .

Suppose first that the parameters v and A are known, for example that both are equal

to one. Application of Bayes’s theorem gives

] p(§ | E;7) pn(E; N)
p(E ‘ s A, 7) - Zé'n p(gj | I ’7) pn(E,; )‘)

for the posterior distribution on &,. More generally, if A and v are distributed independently,

the posterior is

p(E | Yy Tx,s '/T’Y) X p(g ‘ E; '/T'y)pn(ES 7()\)

proportional to the product of the mixtures. In the example described below, we take A = 1
to be known, 7 uniformly distributed on (0,1), and use a Laplace approximation for the

first factor. Here « is the ratio of the between-blocks variance to the total variance.

5.3 Illustration

The method described in the preceding section was applied to the data shown in Fig. ?
to see if there is evidence of one or more clusters. These data are in fact the log petal
length and log petal width of Iris versicolor and Iris virginica in Fisher’s data, so the actual
classification is known. In the left panel, the 42 elements labelled ‘2’ are wersicolor; the
41 labelled ‘0’ are wvirginica. Of the 17 units labelled ‘1’, eight are versicolor and nine are
virginica. Among these 17 units, there are only 13 distinct values.

Given the identifying labels, the two types are reasonably well separated, so one might

expect that the partition should be identifiable from the measurements alone. This intuition
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Fig. 7: Scatterplot of log petal length and width for Iris versicolor and I. virginica
(left panel): Right panel includes 1. setosa.

is simply wrong. The evidence for clusters exists in the labels, not in the measurements.

That is to say, if the labels are ignored, little evidence exists for clusters.

To simplify the analysis, we consider only a few of the potential clusterings into two
groups, in which the units labelled ‘0’ and ‘2’ are kept in different classes, and the remaining

2'7 partitions of this type, one of

units are assigned to one class or the other. There are
which is the actual partition determined by the recorded varieties. One additional partition
is included in the analysis for comparative purposes, namely the partition into a single class
of size 100. The labels are otherwise ignored, and the prior is exchangeable with A = 1,
so the expected prior number of blocks is 5.2. In this simplified analysis, the marginal
likelihood is computed for each of 2'7 + 1 partitions and integrated with respect to the

uniform prior distribution on the variance-component ratio ~.

Take the trivial partition with one block as a baseline for comparisons. For each of the
217 partitions, the log likelihood has a maximum near 4 = 0.7, and the maximized log
likelihood ranges from roughly 50 to 60 above the baseline. The second derivative at A
ranges from 19 to 24. For the observed partition, the values are 4 = 0.70, Z(’y) = 54.8, and
—1"(¥) = 21.8. On the basis of the likelihood function alone, it seems that there is strong
evidence in favour of two-block partitions. However, the prior on each of these partitions is
less than the prior on the baseline partition by a factor of roughly 99!/(49!)2, or exp(70). In
order for the posterior to be concentrated on a small mumber of partitions into two roughly
similar blocks, the maximized log likelihoods need to be roughly 70 units greater than the
baseline. No partitions come close to that level in the present example, so we conclude that
no evidence can be found for variety clusters. The posterior probability of all 2'7 partitions
combined is less than 1% of the posterior probability for the baseline.

When the 50 observations for setosa are included in the analysis, the conclusion regarding
the existence of clusters is very different. The setosa cluster is visually well separated from

the other two. The two-block partition achieves a log likelihood that is 194.6 units in
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excess of the baseline, and the three-block partition is 240.6 units above the baseline. The
second derivatives are 313.4 and 235.2 respectively. The prior distributions are lower than
the baseline by 96.3 and 166.3 units on the log scale, but this is insufficient to offset the
log likelihood. Consequently, the posterior distribution on partitions places almost all of its
mass on the partition containing two blocks, one block for setosa and one for the remainder.
The posterior probability for this partition relative to the baseline is approximately 104!,
and 10! relative to the three-block partition. The evidence in the measurements points to

two clusters, not three.

5.4 Algebraic structure

The precise nature of what is required of a statistical model for cluster analysis is most
clearly revealed when all components of the system are stated in terms of categories, functors
and natural transformations (McCullagh 2002). The entire structure rests on the category
7 of injective maps on finite sets. Each object U in 7 is a finite set (of statistical units), and
each morphism ¢:U — U’ is a map that preserves distinctness of units, i.e. ¢ is one-to-one
or injective. Each map in this category selects and re-labels units, the notion being that
the only information content in the labels is their distinctness, which is the property that
is preserved by injective maps.

Consider now the functor £ that associates with each finite set U the set &, of partitions

of U, and with each map o:U — U" a map (E¢): &y — &y on partitions defined by

(EQE')(z,y) = E'(pz, py)

for each =,y € U. In other words, the square in the diagram below commutes.

U uxu 8 101y
ol el vl [
u' uxu {01}

Composition of morphisms is preserved, but the order of composition and the direction of
arrows is reversed, so £ is a contravariant functor Z — Set.

In statistical applications connected with clustering, the functor £ necessarily serves as
one component of the parameter space. It is on this object that the posterior distribution
on partitions is ultimately defined. In order for this object to be usable as a component
in a Bayesian model, there must be a prior distribution, or process, on £. Since &y is
finite for each U, it is natural to take the power set as the g-algebra of events on which
probabilities are defined. Let P(&y) be the set of all probability distributions on Fy. A

(prior) distribution, or process, is a function 7 that associates with each finite set U a
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distribution m, on & in such a way that, for each p:U4 — U’ in Z, the square in the

diagram below commutes.

U &y {00 2 P&
- || [Pee
U’ Evv [0y ™ PEw)

Here, ¢ is an injective map on units, £ is the composition map from one partition lattice
into another, and PEy is the corresponding map on probability distributions, sending each
probability distribution on the lattice &, to a marginal distribution on the lattice &;.

For each A > 0, the sequence of Ewens distributions satisfies the exchangeability
condition, and is thus a suitable choice for a prior distribution. As we remarked ealier,

there are other exchangeable processes, but they are unsuitable for different reasons.

5.5 How much separation?
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