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Summary

The purpose of this paper is to draw attention to the widespread occurrence of quotient spaces in
statistical work. Quotient spaces are intrinsic to probability distributions, residuals, interaction,
test statistics, and incomplete observations. The theme is that explicit recognition of the quotient-
space can offer surprising conceptual simplification. The advantages of working directly with the
quotient space are hard to describe in general. As the examples demonstrate, the answer lies partly
in directness of approach.

1. Probability distributions

1.1 The probability simplex
Let Ω = {ω1, . . . , ωk} be a finite set containing k elements. The vector space V = RΩ is the set of
real-valued functions on Ω: V = {f : Ω 7→ R}. Clearly, V is a vector space of dimension k. One
particularly important subset, denoted here by 1, is the set of functions that are constant on Ω:

1 = {f ∈ V : f(ω1) = · · · = f(ωk)}.

It is evident that 1 is a subspace of dimension 1, isomorphic with R.
The probability simplex on Ω is that subset of V consisting of non-negative real-valued functions

whose sum is one:
S = {p ∈ V : p(ω) ≥ 0;

∑
p(ω) = 1}.

Each point p in the simplex is a probability distribution on Ω.
The simplex is a bounded set, and thus not a vector space. Nevertheless, there exists a very

natural association of S with a vector space. We associate with any point η ∈ V, a probability
distribution p ∈ S as follows:

p(ω) = pω = exp(ηω)
/ ∑

exp(ηω). (1)

It is clear that if we replace each ηω by ηω+c in the preceding expression, the probability distribution
is unaffected. In other words, (1) is a function on V that is constant on the cosets of 1. To say
the same thing in another way, (1) is a function from the quotient space V/1 into the simplex.
Further, this function is 1–1. In other words, distinct cosets are mapped to distinct points in the
simplex.

A slight complication occurs here in that every point in V/1 is mapped to an interior point of
the simplex: every interior point p in S has an inverse image η in V/1 given by

η(ω) = log(p(ω)) + c, (2)
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where c is any arbitrary constant. Boundary points on the simplex have no inverse image in V/1,
except as limit points.

As with all generalized linear models, the purpose of transformation is to associate a certain
vector space with the set of probability distributions. In the sense of isomorphism, any (k − 1)-
dimensional vector space can be used for this purpose. For example, we might have chosen the
subspace of V consisting of vectors η whose components sum to zero, while retaining (1). The
choice between these is not a choice between right and wrong, but between what is natural and
what is not. The theme of this paper is that, in this context, the quotient space is a more natural
choice than any subspace of V.

1.2 Log likelihood function
In this section Ω is interpreted as a parameter space, and V = RΩ as before. To keep matters
simple, Ω is finite, or at least countable. Let p(y; ω) be the probability of observing y when the
parameter is ω. In probability calculations, p is considered primarily as a function of y for fixed ω.
In likelihood calculations, the roles are reversed: for inferential purposes, given the particular data
y observed, l(ω; y) = log p(y; ω) is a function on Ω. It may be the case that, for the particular
y observed, p(y; ω) is constant on Ω, in which case this observation is uninformative for selecting
among the possible values in Ω. For inferential purposes, any function that is constant on Ω is
equivalent to zero. The log likelihood is a function on Ω defined by

l(ω; y) = log p(y; ω),

together with the equivalence relation l1 ∼ l2 if l1 − l2 ∈ 1. To say the same thing in another way,
the log likelihood is a vector in the quotient space V/1. Any additive constant is irrelevant even if
it depends on y.

1.3 Bayes’s theorem
Let Ω be the parameter space, and let π be a prior distribution on Ω. Let y denote the observed
data, and let p(y; ω) be the probability of y for parameter ω. Both the prior distribution π and
the posterior distribution π(ω | y) are points in the simplex, having inverse images log π + 1 and
log π(· | y) + 1, both in the quotient space V/1. Likewise, the log likelihood l(·; y) + 1 is a point in
the same space.

The usual expression for Bayes’s theorem

π(ω | y) =
p(y; ω)π(ω)∑

p(y; j) π(j)
.

can be interpreted as vector addition in the quotient space

log π(ω | y) + 1 = (l(ω; y) + 1) + (log π(ω) + 1).

This may be abbreviated to the more familiar form

log π(ω | y) = l(ω; y) + log π(ω),
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in which it is understood that these are functions in V/1, equivalent modulo constant functions.
Bayes’s theorem is thus interpreted as vector addition in V/1.

By associating the prior with a point in V/1, it is implicitly assumed that π lies in the interior
of the simplex. In other words, no element of Ω has zero prior probability. This difficulty can
be avoided by eliminating from Ω all points having zero prior probability. Alternatively, for
computational purposes, a value −∞ can be assigned to log π for those elements having zero
prior probability.

1.4 Log-linear and multinomial response models

In a multinomial response model, it is essential to distinguish between the response factor with
levels Ω, and all other factors with composite levels ΩA. The principal aim of a multinomial
response model is to study how the response vector π in S, or the corresponding vector log π in
V/1, depends on experimental or design conditions as encoded in the levels ΩA.

Let A be the vector space of real-valued functions on ΩA. In other words, a vector α ∈ A is a
function assigning to each i ∈ ΩA a real number αi.

Let π be a list of n probability vectors in S, each vector in the list being associated with an
element of the set ΩA. In other words, for any i ∈ ΩA,

πi = (πi1, . . . , πik)

is a probability vector in the simplex S, and log π is a function from ΩA into the quotient space
V/1. The ordered list of n vectors (log π1, . . . , log πn), indexed by ΩA, determine a point in the
direct sum space

(V/1)⊕ · · · ⊕ (V/1) ∼= VΩA/(1ΩA) ∼= (V ⊗A)/A.

Every point in this set corresponds to a list of multinomial probabilities. Conversely, every list of
multinomial response probabilities corresponds to a point or limit in this set.

Each element of VΩA is a list, indexed by ΩA, of functions from Ω into R. In other words,
f = (f1, . . . , fn) where fi = (fi1, . . . , fik), with i ∈ ΩA. Thus there is a natural isomorphism
between VΩA and the tensor product space V ⊗ A of real-valued functions on Ω × ΩA. The
set of multinomial response probabilities is thus in 1–1 correspondence with the quotient space
(V ⊗A)/(1⊗A), also written as (V ⊗A)/A.

Let µ be any non-negative function on Ω× ΩA and let η = log µ. Any Poisson response model
of the form η ∈M is called log-linear if M is a subspace of V ⊗A. For present purposes, however,
M is an arbitrary subset of V ⊗ A, not necessarily a subspace. The conditions under which M
corresponds to a multinomial response model are easily expressed as follows: M is a multinomial
response model if and only if M is a set of cosets of A. Equivalently, M = M + A, in which it
is understood that A ≡ A ⊗ 1. Generally speaking, in models for ordinal responses (McCullagh,
1980), or models containing multiplicative effects (Anderson, 1984), M is not a subspace.

For log-linear models in which M is a subspace, the condition M = M + A reduces to
(1⊗A) ⊂M, which is the familiar condition given by Palmgren (1981).
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1.5 Sampling
Let Ω be the population of N units, Ω0 the sample of n units, and Ω1 the unsampled units. A
statistical variate y is thus a vector in V = RΩ; the observed variate y0, the restriction of y to the
subset Ω0, is a vector in RΩ0 . Let V0 be the subspace of V consisting of all functions that are zero
on Ω0, and let V1 be the complementary subspace of functions that are zero on Ω1. Thus V1 has
dimension n and V0 has dimension N − n. Two vectors y, y′ in V such that y − y′ ∈ V0 have the
property that their restrictions to Ω0 are equal. Thus, all vectors in the coset y + V0 give rise to
the same observation in RΩ0 . In other words, each point in RΩ0 identifies a coset of V0 in V. The
vector space RΩ

0 is thus naturally isomorphic with the quotient V/V0.
It should be emphasized that, although the dimensions are equal, the quotient space V/V0 is

quite different from the subspace V1. In particular, if V is an inner product space, V1 and the
quotient V/V0 typically have incompatible inner products.

Let y0 ∈ RΩ0 denote the observed value. This can, be represented by the partitioned vector
(y0, ?), where ? denotes missing or arbitrary values on Ω1. Suppose that the distribution of the
random vector y on V has zero mean and positive-definite covariance matrix partitioned according
to (Ω0,Ω1) as follows:

Σ =
(

Σ00 Σ01

Σ10 Σ11

)
.

Then the best linear predictor for y given (y, ?) is

E
(
y | (y0, ?)

)
=

(
Σ00 Σ01

Σ10 Σ11

)(
Σ−1

00 0
0 0

)(
y0

?

)
.

In the discussion that follows, we regard V as an inner product space with inner product matrix
Σ. The transformation given above is then a self-conjugate projection on V i.e. an orthogonal
projection, with null space V0 and range V⊥0 .

2. Linear models

2.1 Regression coefficients
Let Ω be the set of statistical units on which observations are made, and let V = RΩ be the vector
space of functions on these units. The response vector y and its expectation µ = E(Y ) are points
in V. A linear regression model is an assertion that µ lies in a subspace X spanned by given vectors
x1, . . . , xp. This is usually written in the form

µ = x1β1 + · · ·+ xpβp,

or µ = Xβ, where β is a vector of coefficients to be estimated. The least-squares estimate of µ is
µ̂ = Py, where P is the orthogonal projection on to X . Alternatively, in the appropriate metric,
y − µ̂ is orthogonal to X .

Suppose now that we wish to extend the model by adding a further covariate z. The extended
model is thus µ ∈ X + Z, or

µ = x1β1 + · · ·+ xpβp + γz.

The least-squares estimate γ̂ is a function γ̂(y, z) having the following properties for each x ∈ X :
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1. γ̂(y + x, z) = γ̂(y, z).
2. γ̂(y1 + y2, z) = γ̂(y1, z) + γ̂(y2, z).
3. γ̂(y, z + x) = γ̂(y, z).

Properties 1 and 2 state that γ̂ is a linear function of y that is constant on cosets of X . In
other words, γ̂ is a linear function on the quotient space V/X . So far as the second argument is
concerned, γ̂ is a non-linear function on the quotient space. These properties are apparent from
the explicit matrix expression

γ̂ =
zT WQy

zT WQz

where W is the matrix of the inner product, and Q = I−P is the orthogonal projection on to X⊥.
The matrix expression zT WQy is in fact the quotient-space inner product 〈z +X , y +X〉 in V/X .

2.2 Interaction

Consider an experimental design with two factors, A with levels ΩA and B with levels ΩB , and
a real-valued response y. By additivity of effects, we mean that the expected response µ is an
additive function of the levels of the two factors. In other words, for some functions α ∈ A and
β ∈ B

µij = αi + βj .

It is irrelevant here whether the design is complete or balanced. To say the same thing in another
way, the vector µ lies in the additive subspace A + B in A.B. Interaction is what remains in A.B
after additive effects have been eliminated or ignored. The definition is as follows.

(i) µ has zero interaction if and only if µ ∈ A + B.
(ii) Interaction is additive: I(µ1 + µ2) = I(µ1) + I(µ2).
There are various ways of defining interaction to satisfy these conditions. One way is to define

I(µ) = Qµ as the projection along A+B on to any subspace complementary to A+B in A.B. Since
no inner product is given, there is no reason to prefer one complementary subspace over another.
The most direct and effective way is to define the interaction of µ as the coset µ + (A + B),
i.e. µ modulo additivity. The interaction space is thereby identified with the quotient space
A.B/(A + B). Each point in the interaction space is a coset of A + B in the space A.B, the
zero coset being the additive subspace A + B.

It should be emphasized that the quotient space A.B/(A + B) is not at all the same as the
subspace of functions

W = {(i, j) 7→ fij :
∑

i

fij =
∑

j

fij = 0},

the usual complement of A + B in A.B. In particular, unless the design is balanced, the norm
of the projection of y on to the subspace is not the same as the norm of the projection on to
the quotient space. For numerical comparison, suppose that A and B each have two levels, and
that the inner product matrix is diagonal with components W = diag{2, 1, 1, 1}, corresponding to
replicate observations in the (1, 1)-cell only. The squared norm of the orthogonal projection of y
on to the subspace is given by

‖PWy‖2 = (2y11 − y12 − y21 + y22)2/5.
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The squared norm of the projection on to the quotient space is

‖PA.By‖2 − ‖PA+By‖2 = 2(y11 − y12 − y21 + y22)2/7.

It is clear from the definition and from the example that the property of zero interaction is
unaffected by the choice of inner product. Zero interaction does not imply a orthogonality with W.

2.3 Residuals in linear models

A linear model is a statement of the form µ ∈ X , where X is a subspace of V = RΩ, and Ω is the
set of statistical units. The residual is any departure of the observed y from this subspace having
the following properties.

(i) y has zero residual if and only if y ∈ X .
(ii) Residuals are additive.
In the absence of a preferred complementary space, these conditions are equivalent to defining

the residual space as the quotient space V/X . In other words, the residual associated with y is the
coset y + X .

This definition has a number of advantages, as well as disadvantages, over the conventional
definition, which is the orthogonal projection of y on to X⊥. The main advantage is most evident
in likelihood calculations concerning variance components, where a range of inner products is
under consideration. It is frequently convenient in probability calculations to take V to be an
inner product space in which the components of the inner product matrix are the components of
the inverse covariance matrix Σ−1. In probability calculations, the standard definition of residual,
R = Qy, as the orthogonal projection to X⊥ is perfectly satisfactory. In likelihood calculations,
however, this definition poses serious conceptual difficulties. Since Q = I−X(XT Σ−1X)−1XT Σ−1

depends on Σ, the residual also depends on Σ, and may not be observable. What is even more
perplexing, the space X⊥ itself depends on Σ, and thus on the variance components. The
usual definition of likelihood and likelihood ratio (as a Radon-Nikodym derivative) is therefore
inapplicable.

By contrast, the quotient-space definition does not require V to be an inner product space,
and the observed residual remains fixed at y + X in V/X as the range of inner products is
considered. Derivation of the residual likelihood is thus conceptually straightforward (McCullagh,
1996), leading quite directly to the REML likelihood (section 4). As a consequence, if Y is normally
distributed with mean µ ∈ X and covarince matrix Σ, the marginal log likelihood for Σ based on
the residual y + X is

− 1
2‖Qy‖2 − 1

2 log det Σ− 1
2 log det(XT Σ−1X),

where Q is the orthogonal projection, with respect to Σ−1, on to X⊥, and the columns of X form
a basis in X .

The main disadvantage of the quotient-space definition is that a coset is not a function on the
units. The coset definition is thus not suitable for plotting purposes.
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3. Covariance functions and variograms

Let V be the vector space of real-valued functions A 7→ R, where A is a given region of the plane,
or real 3-space. Let Y be a stochastic process on A, so each realization of Y is an element in V.
The mean function µ = E(Y ) is a vector in V, sometimes assumed to lie in 1, the subspace of
constant functions. The covariance function

σ(u, v) = cov(Y (u), Y (v))

is a vector in V⊗2, in the symmetric subspace, sym2(V). The variogram defined by

γ(u, v) = var(Y (u)− Y (v)),

is also a function in sym2(V). It is clear that any information in the variogram can be obtained
from the covariance function by the relation

γ(u, v) = σ(u, u) + σ(v, v)− 2σ(u, v).

But the converse is not true because, for any real-valued random variable Z, constant on A, the
variogram of the process Y + Z is identical with the variogram of Y . Further, if Z does not have
finite second moments, the covariance function of Y + Z does not exist. Nevertheless, the relation
between the two methods of specifying second-moment properties is quite close.

The statement that the variogram of the process Y + Z is the same as that of Y for any Z ∈ 1
is equivalent to saying that the variogram is a function in the quotient space (V/1)⊗2. Now, by
isomorphism,

(V/1)⊗2 ∼= V⊗2/(V ⊗ 1 + 1⊗ V)

sym2(V/1) ∼= sym2(V)/ sym2(V ⊗ 1 + 1⊗ V)

The space sym2(V⊗1+1⊗V) is the space of symmetric additive functions α(u)+α(v), isomorphic
with V, on A×A. To say the same thing in another way, if the covariance function σ is regarded
as an element in this symmetric quotient space, the set of covariance functions

σ′(u, v) = {σ(u, v) + α(u) + α(v) : α ∈ V}

constitute the coset of equivalent covariance functions. The elements in this set are equivalent as
a specification of the variance of any contrast θ ∈ 10:

∑
u,v

σ′(u, v)θ(u)θ(v) =
∑
u,v

σ(u, v)θ(u)θ(v)

for all linear functionals θ such that θ(1) =
∑

θ(u) = 0. Provided that the covariance function
is regarded as a partial specification modulo this equivalence relation, the covariance and the
variogram are equivalent, incomplete, specifications of the second moments of the process.

It is necessary, of course, that a covariance function should be positive definite, or at least semi-
definite, on the dual space of linear functionals on V. If σ is positive definite on this space, the
coset σ′ is positive definite on the dual of V/1, which is the space of contrasts 10.
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More generally, let µ be a point in X , a subspace of V, the residual y + X in V/X , and let
X 0 be that subspace of linear functionals on V taking the value zero on X . Define the subspace
sym(V ⊗ X ) by

sym(V ⊗ X ) = {(u, v) 7→ α(u)x(v) + α(v)x(u) : x ∈ X , α ∈ V}.
For any covariance function σ in sym2(V), the coset σ′ = σ + sym(V ⊗ X ) is the set of functions

σ′ = {(u, v) 7→ σ(u, v) + α(u)x(v) + α(v)x(u) : x ∈ X , α ∈ V}.
This coset is a point in the space sym2(V)/ sym(V ⊗ X ), which is isomorphic with sym2(V/X ). If
σ ∈ sym2(V) is the covariance function of Y , then σ′ ∈ sym2(V/X ) is the covariance function of
the residual Y + X in V/X .

So far as the residual space V/X is concerned, the relevant set of linear functionals is the dual
space of V/X , which is X 0. It is easy to check that for any linear functional θ ∈ X 0, all points in
the coset σ′ give the same variance:

∑
σ′(u, v)θ(u)θ(v) =

∑
σ(u, v)θ(u)θ(v).

In other words, a covariance function, regarded as a function in the quotient space sym2(V)/ sym(V⊗
X ), determines the covariance of all X -contrasts, linear functionals taking the value zero on X .
Note that if V has dimension n and X has dimension p, then sym2(V) has dimension n(n + 1)/2,
V ⊗X has dimension np, and sym(V ⊗X ) has dimension p(n− p)+ p(p+1)/2, where p = dim(X ).
So the quotient space has dimension (n− p)(n− p + 1)/2.

4. Miscellaneous points

4.1 Inner product on a quotient space
Let 〈·, ·〉 be an inner product in V. This automatically determines an inner product on each
subspace of V. It is slightly less obvious, however, what we mean by a compatible inner product
〈·, ·〉V/V0

in V/V0. In principle, the inner product must be defined on cosets of V0, but it is often
simpler to define it on V with the condition that it be constant on each coset of V0. In addition to
symmetry and bi-linearity, the following conditions must be satisfied.

〈u1 + v, u2〉V/V0
= 〈u1, u2〉V/V0

for v ∈ V0

〈u, u〉V/V0
≥ 0

〈u, u〉V/V0
= 0 ⇐⇒ u ∈ V0.

These conditions are satisfied by a large number of bi-linear functions unrelated to the inner product
in V. The most natural choice to ensure compatibility is to make 〈·, ·〉V/V0

coincide with 〈·, ·〉 on
the subspace V⊥0 . In other words, 〈u, v〉V/V0

= 〈Qu, Qv〉, where Q is the orthogonal projection on
to V⊥0 . To say the same thing in another way,

〈u, v〉V/V0
= 〈u, v〉 − 〈Pu, Pv〉,

where P is the orthogonal projection on to V0 (Tjur 1974, section 11). In particular, the squared
quotient-space norm is

‖v‖2V/V0
= ‖v‖2 − ‖Pv‖2.
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4.2 Sampling and prediction

Let Ω be the population of N units, Ω0 the sample of n observed units, and Ω1 the unsampled
units. A statistical variate y is thus a vector in V = RΩ; the observed variate y0, the restriction
of y to the subset Ω0, is a vector in RΩ0 . What is the relationship between the vector spaces RΩ

and RΩ0?
Let V0 be the subspace of V consisting of all functions that are zero on Ω0, and let V1 be the

complementary subspace of functions that are zero on Ω1. Thus V1 has dimension n and V0 has
dimension N − n. Two vectors y, y′ in V such that y − y′ ∈ V0 have the property that their
restrictions to Ω0 are equal. Thus, all vectors in the coset y +V0 give rise to the same observation
in RΩ0 . In other words, each point in RΩ0 identifies a coset of V0 in V. The vector space RΩ0 is
thus naturally isomorphic with the quotient V/V0.

It should be emphasized that, although the dimensions are equal, the quotient space V/V0 is
quite different from the subspace V1. In particular, if V is an inner product space, V1 and the
quotient V/V0 typically have incompatible inner products.

Let y0 ∈ RΩ0 denote the observed value. This can, be represented by the partitioned vector
(y0, ?), where ? denotes missing or arbitrary values on Ω1. Suppose that the distribution of the
random vector y on V has zero mean and positive-definite covariance matrix partitioned according
to (Ω0,Ω1) as follows:

Σ =
(

Σ00 Σ01

Σ10 Σ11

)
.

Then the best linear predictor for y given (y0, ?) is

E
(
y | (y0, ?)

)
=

(
Σ00 Σ01

Σ10 Σ11

) (
Σ−1

00 0
0 0

)(
y0

?

)
=

(
y0

Σ10Σ−1
00 y0

)
.

It is appropriate here to regard V as an inner product space with inner product matrix Σ−1.
The quotient-space inner product is diag{Σ−1

00 , 0}. The transformation given above is then a self-
conjugate linear mapping on V with null space V0 and range V⊥0 .

4.3 Book orthogonality and Tjur systems

Two subspaces X ,Z of the inner product space V are said to be orthogonal if 〈x, z〉 = 0 for
every x ∈ X and z ∈ Z. The subspaces that occur in linear models are usually overlapping
because they ordinarily contain at least the subspace of constant functions. Consequently they
cannot be orthogonal in the usual sense. Geometric orthogonality (Tjur, 1984), also called book
orthogonality in unpublished lecture notes by M. Wichura, is the condition that the subspaces X
and Z be orthogonal modulo their intersection, i.e. 〈X , Z〉V/X∩Z = 0. This is a useful concept
thought slightly counter-intuitive in some respects. For example X is book-orthogonal to itself and
to all subspaces.

A collection L of subspaces of V is a Tjur system if three conditions are satisfied:
(i) X1,X2 ∈ L implies X1 and X2 are book orthogonal.
(ii) X1,X2 ∈ L implies X1 ∩ X2 ∈ L.
(iii) V is in L.
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The importance of a Tjur system is that it gives rise to a unique analysis-of-variance decomposition
as follows. To each X ∈ L we associate the vector space

X ′ =
∑

Z⊂X
Z,

the span of all proper subspaces of X in L. A Tjur system is not ordinarily closed under vector
spans, so X ′ need not be in L. To each X ∈ L we associate the quotient space X/X ′ and the
projection

‖PX/X ′y‖2 = ‖PX y‖2 − ‖PX ′y‖2.
Then the total sum of squares is the sum

‖y‖2 =
∑

X∈L
‖PX/X ′y‖2

of independent components.
When a Tjur system is extended to a distributive lattice by the inclusion of vector spans, each

complete lattice chain
V ≡ Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ≡ 0

gives rise to a decomposition indexed by the quotients Xi/Xi−1. Book orthogonality ensures that
all such decompositions are numerically equivalent, differing only in the order of terms.

4.4 Lebesgue measure
A basis {e1, . . . , en} in V defines an association, a linear transformation from the point (x1, . . . , xn)
in Rn to the point

v = x1e1 + · · ·+ xnen (3)

in V. This transformation takes the unit cube [0, 1]n in Rn into the set

(0, e1)× · · · × (0, en)

in V. The measure, or n-dimensional volume of this set is det1/2{e1, . . . , en} = |G|1/2, where
grs = 〈er, es〉 is the matrix of inner products of the basis vectors. Thus, we write

dv = det1/2{e1, . . . , en} dx = |G|1/2 dx

giving the Jacobian of the transformation (3).
Let V0 be the subspace spanned by {e1, . . . , ep}. Then {ep+1, . . . , en} is a basis in some

complementary space, and {ep+1 + V0, . . . , en + V0} is a basis in V/V0. Using properties of
determinants, we find

dv = |G|1/2 dx = det1/2{e1, . . . , ep, ep+1, . . . , en} dx1 · · · dxn

= det1/2{e1, . . . , ep, Qep+1, . . . , Qen} dx1 · · · dxn

= det1/2{e1, . . . , ep} dx1 · · · dxp × det1/2{Qep+1, . . . , Qen} dxp+1 · · · dxn

= dv0 × det1/2{ep+1 + V0, . . . , en + V0} dxp+1 · · · dxn



11

where Q is the orthognal projection on to V⊥0 . The Jacobian of the transformation from Rn−p into
V/V0 associated with the transformation

v + V0 = xp+1ep+1 + · · ·+ xnen + V0

is thus
det1/2{ep+1 + V0, . . . , en + V0} = |G|1/2/ det1/2{e1, . . . , ep}.

In matrix notation, if {e1, . . . , ep} are the columns of X, dv0 = |XT GX|1/2 dx1, . . . , dxp, so
|XT GX|1/2 is the Jacobian of the transformation from Rp to V0. The Jacobian of the trans-
formation from Rn−p into V/V0 is |G|1/2/|XT GX|1/2.

4.5 Normal density

In order to construct a density in V, it is necessary first to have a measure in V. This is taken to
be the Lebesgue measure associated with the given basis. The standard normal density at v in V
is

(2π)−n/2 exp(−‖v‖2/2) dv = (2π)−n/2 exp(−‖v‖2/2) |G|1/2 dx

Associated with any subspace V0 there is a factorization into two parts. First, in the exponent,
we have

‖v‖2 = ‖Pv‖2 + ‖Qv‖2 = ‖Pv‖2 + ‖v + V0‖2V/V0
.

Second, Lebesgue measure factors as shown above. Omitting the powers of 2π, the joint density
becomes

exp(−‖Pv‖2/2)|Ḡ|1/2 dx1 · · · dxp × exp(−‖Qv‖2/2)|G|1/2|Ḡ|−1/2 dxp+1 · · · dxn,

where Ḡ = det{e1, . . . , ep}. The first factor gives the density of PY at v in V0, which is standard
normal on that subspace. The second factor gives the density at v + V0 of Y + V0, also standard
normal, but in the quotient space. The second factor is also known as the residual likelihood: For
an alternative derivation, see Patterson and Thompson (1971), Harville (1974, 1977) or Searle,
Casella and McCulloch (1992, section 6.6).

5. Test statistics

The following is a list of steps frequently used for testing a composite null hypothesis against a
specific class of alternatives. The recipe is not intended to be completely general: only hypotheses
concerning the mean response, µ = E(Y ) in V are considered.

1. The null hypothesis is formulated as a model µ ∈M0, where M0 is a smooth manifold, often
a vector subspace or a non-linear transformation of a vector subspace, in V.

2. An alternative model µ ∈M1 is formulated in which M1 is a manifold containing M0.
3. The fitted value µ̂0 ∈M0 is computed.
4. For any point µ ∈ M0, the tangent space of M1 at µ contains the tangent space of M0 at

µ. These spaces V0 ⊂ V1 ⊂ V are computed at µ̂0.
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5. The total sum of squares is decomposed into three components

‖y‖2 = ‖P0y‖2 + (‖P1y‖2 − ‖P0y‖2) + (‖y‖2 − ‖P1y‖2)
= ‖P0y‖2V0

+ ‖P1y‖2V1/V0
+ ‖y‖2V/V1

where P0 and P1 are the orthogonal projections on to V0 and V1 respectively. In the second
expression the norms are on the spaces V0, V1/V0 and V/V1 respectively.

5. If the residual variance is known, the Rao score statistic is ‖PV1/V0y‖2, which has approx-
imately the χ2 distribution with degrees of freedom equal to dim(V1/V0). Otherwise, the
residual variance is estimated using the residual mean square, and the ratio

F =
‖P1y‖2V1/V0

/
dim(V1/V0)

‖y‖2V/V1

/
dim(V/V1)

is used instead.
For a definition of the tangent space, see Kass and Voss (1997, p. 312).

It is true that mutually orthogonal subspaces can be constructed such that the decomosition
given above is expressible as the sum of projections on to subspaces. The three subspaces are

V0, V1 ∩ V⊥0 , and V⊥1 .

The decomposition by orthogonal subspaces is, at best, a source for confusion. In most applications,
there is no reason to single out one complement of V0 in V1 for special consideration. Only the
quotient spaces matter.

6. Affine spaces

6.1 Tangent spaces

In the study of dependence, it is conventional to regard the response y as a point in the vector
space V = RΩ, and in much of the preceding discussion we have done so without comment. In
many cases this choice is inappropriate, but it is inappropriate in benign ways that have little effect
and can be overlooked. However, there are instances in which a more appropriate formulation is
called for. The most common problem is that most physical measurements have no preferred origin,
whereas every vector space has a definite zero point. Temperature, for example, can be recorded on
various scales for which the origins do not coincide. A better model for statistical purposes is often
an affine space, which is not closed under addition, and has no origin. The standard geometrical
construction of an affine space is a translation of a subspace, i.e. a coset of the subspace (Birkhoff
and MacLane, 1948, section 13).

An affine space A has two defining properties that are relevant for statistical purposes. First, A
is closed under averages. For any points u1, . . . , uk in A, and for any real numbers a1, . . . , ak such
that

∑
aj = 1, the combination

∑
ajuj is a point in A. Second, A has a tangent space, T (A),

T (A) = {u− v : u, v ∈ A}
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consisting of differences of the elements in A. The tangent space is a vector space. If A is a coset
of a subspace, V0, then T (A) = V0 is the subspace. Real physical space in the Newtonian sense is
the most transparent example of an affine space: it makes no sense to add positions. Displacement,
relative position, velocity, relative velocity, force, momentum and acceleration are vectors in the
tangent space.

In the case of statistical models, if the response Y lies in the affine space A, then µ = E(Y )
also lies in A and the difference Y − µ lies in the tangent space, T (A). A model for µ specifies
that µ ∈M, where M is a subset of A. In the case of linear models, M is an affine subspace. For
generalized linear models a specified transformation g(µ) lies in an affine set. More generally, in
regular problems, M is a smooth manifold in A. In all cases, the tangent space of M at µ0 is a
subspace of T (A).

6.2 Orthogonality and least-squares projection
Suppose that T (A) is an inner product space. The least squares projection of y on to M is a point
µ̂ ∈M such that

‖y − µ̂‖2 ≤ ‖y − µ‖2
for all µ ∈M. The definition involves only points in the tangent space. It follows that the residual
vector y − µ̂ is orthogonal to the tangent space of M at µ̂:

〈d̂r, y − µ̂〉 = 0,

where {d̂r} are vectors spanning the tangent space at µ̂. Reverting to matrix notation, let µ = µ(β)
be a parameterization of M, and let dr = ∂µ/∂βr be the derivative vectors, which span the tangent
space of M at µ. The orthogonality condition then becomes

D̂T W (y − µ̂) = 0, (4)

in which W is the matrix of the inner product, and {dr} are the columns of D.
The preceding derivation, which is entirely geometrical, assumes implicitly that W is a known

matrix. In practice, however, statistical criteria determine the choice of inner product matrix,
usually the inverse covariance matrix of Y . Unfortunately, Σ often depends on µ, in which case
we do not have an inner product space in the conventional sense. Rather, each tangent space
is a different inner product space, and the orthogonality condition becomes 〈d̂r, y − µ̂〉µ̂ = 0,
orthogonality in the tangent space at µ̂ with respect to the inner product on that space. In matrix
notation, we have

D̂T Ŵ (y − µ̂) = 0, (5)

in which Ŵ = Σ−1(µ̂) is the matrix of the inner product in the tangent space at µ̂.
Analogy in mathematics can make the progression from the least squares equation (4) to the

quasi-likelihood equation (5) seems obvious and trivial. This deception is justified to the extent
that the answer is correct. It should be pointed out, however, that (5) does not ordinarily satisfy
the ‘least squares’, or minimum chi-squared criterion

‖y − µ̃‖2µ̃ ≤ ‖y − µ‖2µ
for all µ ∈M. Under fairly general conditions that are not easy to codify satisfactorily in the form
of a theorem, µ̂ is consistent but µ̃ is not (McCullagh, 1984; Heyde, 1997).
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7. Incomplete observation

Suppose that the complete response vector y lies in the vector space V = RΩ, and that the model
for the mean of Y is µ ∈M, where M is a smooth manifold in V. The incomplete response is such
that the value of y is not observed for every individual unit: only totals for certain combinations of
units are observed. One way to express this relationship is to say that y′ = Ly is a point in a new
vector space V ′ = LV obtained by some linear transformation L. The model for the transformed
mean µ′ = Lµ is µ′ ∈ M′ = LM, a manifold in the transformed space. While this formulation
is conceptually straightforward, it does have the disadvantage that the new vector space is not
directly connected with the statistical units in Ω.

Another equivalent way to express the relation in vector-space terms is to say that y′ is a coset
of V0 in V. The subspace V0 is the null space of L, the set of vectors satisfying Lv = 0. The
observation is thus regarded as a point in V ′ = V/V0. The least-squares orthogonality condition
becomes

〈d̂r, y′ − µ̂〉V/V0
= 0, (6)

where dr are vectors spanning the tangent space of M at µ. Ordinarily, unless M is an affine set,
this equation must be solved numerically to obtain µ̂.

Details of the usual algorithm for finding µ̂ are most easily expressed in matrix notation in which
W is the matrix of the inner product, Q is the orthogonal projection on to V⊥0 , and the columns
of D are the vectors dr. Beginning at a point µ0 = µ(β0), a variation of Newton’s method gives
the iterative scheme

DT WQD(β̂ − β0) = DT WQ(y′ − µ0)

in which µ(β) is a parameterization of M, and D = ∂µ/∂β at µ0. At convergence, β0 = β̂, and
equation (6) is satisfied. This algorithm usually converges at near-quadratic rate.

In the preceding expressions, y′ is a point in the quotient space, V modulo V0. If it is more
convenient to work directly in V, however, any point in the coset y′ + V0 can be used in place of
y′. In this connection, it is sometimes convenient to split the equation into two parts, an ‘E’ step
and an ‘M’ step. Given parameter values β0 and fitted values µ0 = µ(β0), the ‘E’ step generates a
complete-data vector ỹ, a point in V, from the incomplete data vector. The ‘M’ step asserts that
ỹ − µ̂ is orthogonal to the tangent space of M at µ̂, as if the data were complete.

ỹ − µ0 = Q(y′ − µ0)

〈d̂r, ỹ − µ̂〉 = D̂T W (ỹ − µ̂) = 0.
(7)

In the first part, Q is a linear transformation from V/V0 into the subspace V⊥0 . In the second part,
the orthogonal projection of ỹ − µ0 on to the tangent space at µ0 is D(DT WD)−DT W (ỹ − µ0).
One step of Newton’s method gives

D(β̂ − β0) = D(DT WD)−DT W (ỹ − µ0) = P (ỹ − µ0).

Iteration between the two parts is required to obtain the solution.
The preceding discussion assumes that the space V is Euclidean, i.e. that the matrix of the

inner product is fixed and known, at least up to a multiplicative constant. In statistical problems,
however, W ∝ Σ−1, the inverse covariance matrix of the response vector, which often depends
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on µ, and perhaps on additional parameters. We consider here the simplest case in which, apart
from a possibly unknown scalar multiple, Σ depends on µ only. To express this in purely algebraic
terms, each point µ ∈ V has its own tangent space with its own distinctive inner product. Each of
these tangent spaces is isomorphic with V, contains V0, and thus the quotient space V/V0. Each
subspace and quotient space inherits its inner product from the tangent space.

With this in mind, equation (6) and the associated iterative scheme are immediately generaliz-
able. The inner product in each case is an inner product in the tangent space at the current value
of µ. The matrices W and Q are computed at the current value µ0, which is then updated as new
estimates become available. Similar comments apply to the two-step E-M scheme in (7).

In order that (7) coincide with the E-M algorithm for maximum likelihood calculation, it is
necessary that the first step coincide with conditional expectation, and the second step with
maximization of the complete-data likelihood. In the context of exponential-family models or
exponential dispersion models, the ‘M’ step is maximization. If the complete data are jointly
normally distributed, the ‘E’ step is exactly the conditional expected value given the observed
data. Apart from a few other special cases, the first step is not conditional expectation, but only
a linear approximation to conditional expectation. Nevertheless, (7) gives consistent estimates
under fairly general conditions. Identifiability requires V0 and the tangent space at µ to be non-
overlapping vector subspaces. The approximate covariance matrix of β̂ is then proportional to the
inverse of D̂T Ŵ Q̂D̂.
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