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Exponential mixtures and quadratic exponential families

By PETER McCULLAGH

Department of Statistics, University of Chicago, 5734 University Avenue, Chicago,
Illinois 60637, U.S.A.

SUMMARY

Conditions are derived under which quadratic and polynomial exponential models can
be generated as mixtures of linear exponential models. The conditions are highly restrictive
for continuous sample spaces, but less restrictive in the discrete case. Some properties of
binary quadratic exponential models are explored with a view towards finding models
that have properties suitable for epidemiological applications.

Some key words: Cluster sampling; Mixture model; Quadratic exponential model.

1. INTRODUCTION

Correlated responses are common in many fields of application such as time series,
spatial statistics and longitudinal studies. In medical statistics and in epidemiological
studies, correlation can arise because of cluster sampling. Individuals in a cluster have in
common unobserved traits, either genetic or environmental, as a result of which their
responses such as susceptibility to disease, attitude to education, political affiliation and
so on, tend to be alike. Such a description carries the implicit assumption that, conditional
on the value of the unobserved trait, individuals within a cluster respond independently.
Linear exponential-family models have been widely and successfully used for the analysis
of independent responses. Quadratic Gibbsian models such as the Ising model have a
lengthy history as models for physical phenomena such as ferromagnetism. More recently,
similar quadratic exponential models have been put forward as a way of accommodating
correlations of the type that occur in longitudinal studies and in cluster sampling (Zhao
& Prentice, 1990, 1991; Fitzmaurice & Laird, 1993). The main purpose of this note is to
investigate the conditions under which a mixture of independent linear exponential family
distributions gives rise to a quadratic exponential model, or more generally a polynomial
exponential model. Section 5 takes a critical look at how properties of quadratic
exponential models are related to the behaviour one would expect in epidemiological
applications.

2. CLUSTER SAMPLING AND EXPONENTIAL MIXTURES

Let Y',..., Y" denote the responses of the n individuals in a cluster. Suppose that,
conditionally on the unobserved trait, the observations are independent, and that the
density of Y7 is

Jo,() =& 7K O f(y)

with respect to either counting measure in the discrete case or Lebesgue measure in the
continuous case. Thus k() is the cumulant generating function of the initial distribution
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fo. The conditional distribution is of the linear exponential-family type with canonical
parameter 0; and cumulant function k(.). The joint conditional density is thus

[Texp {376, — k(0,)} fo(1") (1)

with respect to the product measure. The canonical parameter 0 is here considered to be
a function of the unobserved trait.

If the canonical parameter vector (6;,...,6,) has joint distribution function F(.) on
® < R" the unconditional distribution of the observations Y is

Pa(y) = J exp {y’0; — Y. k(6;) + log fo(y)} dF (6) (2)
(C]

with respect to the product measure on the sample space. In this paper, we seek to identify
the family of distributions & on © such that, for all F € &,

log pu(y) = Pu(y) + d(), (3)

where P,(y)= P,(y; ¢) is a polynomial in y of degree not more than m with coefficients
¢, and d=d(y,,...,y,) is an arbitrary function. An important point here is that P, is
required to be a polynomial of fixed maximal degree m independent of the cluster size n.
Also, (3) need be satisfied only for y in the sample space: in the binary case this means
y?=0,1 only. For m=2, (3) is called a quadratic exponential model.

Since d(y) is an arbitrary function, it might appear that P,, can be incorporated into d
without loss of generality and without restriction on p,. However, the term exponential
family refers not to a particular distribution, but to a family of distributions. In the case
of (3), the family is indexed by the coefficients in the polynomial P,,. Condition (3) must
be satisfied by the same function d for each F € #. Only the coefficients in P,, depend on
the particular choice of F. Thus, the condition places no restrictions on any particular F,
but it does impose restrictions on the family £.

3. TWO EXAMPLES

We consider two examples, one in which the observations are continuously distributed
and one in which the observations are binary.

The simplest examples concern the normal distribution. Suppose, in the notation pre-
viously established, that

Y0~ N(@;, 1), 6~N,(s3).

Then the unconditional distribution is Y ~ N,(u, £ + I). The conditional distributions are
of the linear exponential type, and the unconditional distributions are of the quadratic
exponential type. The coefficients in the polynomial P, are (£ + 1) 'y and —4(Z+1)7!
respectively.

To take a second example, let the conditional distribution of Y’ be Bernoulli with
parameter 7; = e%/(1 + %). Suppose that the joint density of 0, ..., 8, is given by

Ja(0) = $a(6; 1, Z) [T (1 + )/ M, (4)

where ¢,( ) denotes the normal density with mean vector u; and covariance matrix i
and M is a normalisation constant depending on p, . Then the unconditional joint
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distribution of Y is

Pa(y) = f ' $,(0; u, T) dO/M = exp (1;y’ +3Z,;9'Y)/M. (5)
o

Evidently, M = )’ exp (4;)’ +3Z;y')’) with summation over all n-component binary vec-
tors y. This is a discrete quadratic exponential model whose canonical parameters u, X
are the mean-value parameters from the density ¢,. Because of the binary nature of the
observations, there is some redundancy in the parameterisation, which may be eliminated
most conveniently by taking either X;; = 0 or u; = 0. In other words, several distinct mixing
distributions within the class (4) produce the same quadratic exponential distribution (5).

4. CONDITIONS FOR EXISTENCE

Let S = R" be the sample space. For convenience of notation we write yf for the linear
combination )6, and k(6) for the joint cumulant generating function. We seek conditions
on the class of distributions # such that for each Fy, F, in & the ratio of unconditional
densities satisfies

Jexp {y0 — K(0)} fo(y) dFy(0) _
[exp {y0 — k(0)} fo(y) dFo(6)

The common function d(y) in (3) cancels out in the ratio. This is slightly more general
than the formulation in § 2 because the components of Y in f,(y), and in the exponential
family generated from f,, need not be conditionally independent.

We first note that (3) is satisfied, in a sense trivially with m =1, by any distribution
degenerate at a point 0, ®. With F, equal to any such point distribution, we have
from (6)

exp {P,,(y)}- (6)

J exp {y0 — k(6)} dF (0) = exp {P,.(y) + ybo — k(6,)} (7)
(]

for each F € # and for each y e S.

It is convenient in what follows to arrange matters so that 0 € S. This can be done
without loss of generality by translation of S. For each F € # we define a new probability
distribution F* on ® by

dF*(0) = M exp { —k(0)} dF (0),

where M is a normalisation constant. The family thus generated is denoted by % *. Putting
y=0in (7) gives log M = —P,,(0) + k(0,). Thus, for each F* € #*, and for each y e S we
have

J e” dF*(0) = exp {P,,(y) — P(0)}. (8)

To make further progress, it is necessary to consider a number of cases separately, the
distinctions having to do with the nature of the sample space. Three of the most important
special cases are now considered.

Continuous case. In the continuous case where S contains an open neighbourhood of
the origin, (8) implies that the cumulant generating function of F* is a polynomial.



724 PETER MCcCULLAGH

Marcinkiewicz’s theorem (Marcinkiewicz, 1938; Lukacs, 1958; Moran, 1984, p. 277) then
implies that m =2 and F* is normal. It follows that F and F* have the same support,
namely ® = R" and |k(0)| < oo for all 6. Consequently % is equal to the set of distributions
with densities

f(0)=04(0; u, Z)"?/M(u, Z) )
for 8, u e R", T positive semi-definite, and

M= Jqs,,(e; 1, 2)eH® do < co.

No polynomial exponential family of degree m > 2 can be generated as a mixture of linear
exponential models.

As a corollary, if ® does not coincide with R”, & contains only singletons or degenerate
distributions. In such cases, no nontrivial polynomial exponential family can be generated
by mixing on the canonical parameter. For example, if n =1 and fo(y) = e~ "/2 or fo(y) =
e’/(1+ €”)%, @ is the interval (— 1, 1) so & contains only singletons. In fact, the condition
M < oo implies [exp (y"Zy/2)fo(y)dy < oo for some nontrivial X, thereby excluding
exponential families whose tails are heavier than normal.

Binary case. Let S be the set of 2" n-component binary vectors y. Condition (8) need
only be satisfied on this set, giving a total of 2" constraints on the monomial moments of
the variables {¢%} in the distribution F*. For m =2, density (9) with u =0 satisfies the
required conditions, but, unlike the continuous case, it does not exhaust the possibilities.
We now show that any polynomial P,, of any degree gives rise to a valid set of moments.

First observe that the canonical parameter space ® coincides with R”, and the mean-
value space .# is the unit cube with components n; = €%/(1 + €%). The extreme points in
the closure of .# are the 2" n-component vectors in S. For ye S and = ecl (), the
conditional distributions have the form

fOlm)=r(1-m)', (10)

where 7” is the product [ | n}s. If = € S, that is an extreme point of cl (.#), this conditional
probability is zero at all points of S except y ==. Let p(y) be an arbitrary distribution on
S. Such a distribution can be realised as a mixture over .# of independent distributions
(10). In fact, the mixing distribution need only be supported on the extreme points of .#
as follows:

p(y)= Y fyImp(n).

meS

Any mixing distribution F on the canonical parameter space ® induces a mixing distri-
bution G on the mean-value space .# by component-wise transformation. All that is
required of G is that its 2" monomial moments should match those of p. In symbols, for
each ye S,

j ' dG(m)= ) x’p(x).

M xX€ES

The preceding argument shows that this is achievable in a trivial way for all distributions
p on S by taking G = p on the extreme points, but there are infinitely many distributions
satisfying the moment condition. To conclude, polynomial exponential models of all orders,



Exponential mixtures and quadratic exponential families 725

and without restriction on P,, can be generated as mixtures of independent Bernoulli
variables.

Lattice case S = Z". Let S be the set of integer-valued n-component vectors y. Condition
(8) gives the joint moments of all orders of the random variables {e%} in the distribution
F*. It should be borne in mind that not all polynomials P, give rise to valid moments.
Further, even if P, gives rise to a valid set of moments, these moments may not identify
F* uniquely.

Let m be a positive integer, and let P,,(.) be a polynomial of degree m satisfying P,,(0) =
0. Suppose that for each integer r, positive or negative, the exponential moment

M(r)= J e dF*(x) =exp {P,(r)} (11)
is finite. The M(¢) exists for all real t. In fact, M(iz) is an entire characteristic function of
order m. Consequently, by the Hadamard factorisation theorem

M(z) = G(2) exp {P,(2)},

where G, the canonical product of the zeros of M, takes the value unity on the integers.
If m = 1, the moments determine F* uniquely as a degenerate distribution. If m = 2, there is
a range of solutions including G=1. Any distribution having the same exponential
moments as the normal will satisfy (11). This determines the entire class of distributions F*
satisfying (11) with m = 2. For example, the distribution with density ¢(x){1 + ¢ sin (wx)}
for |e] <1 has moment generating function exp (¢3/2){1 + ce” "2 sin (wt)}. If w is an
integer multiple of 7, these moment generating functions coincide on the integers, and the
entire family has the same exponential moments as the standard normal, M(r) = exp (2/2)
for integer r.

For m > 2 convexity of M on the real line implies that r is even. In addition, Theorem A
of Lukacs (1958) imposes severe constraints on G, such that the exponent of convergence
of the canonical product of the roots must equal m. In other words, if {z,} are the
roots of M arranged in increasing order of modulus, then

logn

= lim =
p ’Hsollp log |z,| "

Consequently, the number of roots less than ¢ in modulus is O(t™*?), so the roots are
increasingly dense in the plane as |z| - oo. It follows that G cannot be periodic even
though G =1 on the real integers. While one could perhaps construct such a function G,
it seems doubtful that it could satisfy other requirements for a characteristic function.

5. LIMIT DISTRIBUTIONS FOR EXCHANGEABLE BINARY MODELS
5-1. Strong dependence
Let Y be an n-component binary vector with joint distribution

Pa(y) = exp (y1y. — 372%)/M, (12)

where y_is the sum of the components. Then the marginal distribution of Y is

pr(Y,=y= <Z> exp (y1y —3725°)/M. (13)
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If y, =0, Y is binomial with parameter exp (y,)/{1 + exp (y,)}, and the standardised sum
has a limiting normal distribution. We now show that if y, > 0 no limit distribution exists
but the asymptotic behaviour as n— oo is as follows:

Y = {log (ny;) —loglog n+7y:}/y2 + Op(1).

As a consequence, Y,—0 in probability. By contrast, if y, <0, Y —n tends to zero in
probability.
To prove these results, consider the function

() =v1y—37.*—log(y+1)—logT(n—y+1)

for 0 < y < n. This is the exponent in the density (13). For y, >0, g, is unimodal on [0, n]
with derivative

&) =y1—72y—¥(y+1)+y¥ymn—y+1). (14)

Now, g, is monotone, decreasing from Y(n+1)—yY(l)+y, at y=0 to
—ny, —y¥(n+ 1)+ (1) + y, at y = n. For sufficiently large n, g’(0) > 0. Similarly, if y, >0,
g'(n) <0, so g,(9,) =0 has a solution in the interval (0, n). For y, >0, the approximate
solution for large n is

V29n =1log (ny;) —loglog n +y; + o(1),
so y, is O(log n). Finally, we observe that for any fixed

gn(j)n + 5) _'gn(j}n) = - %)’252 + 0(1)5

so g, is approximately quadratic in any O(1) neighbourhood of y,, and this region contains
essentially all the probability. Were it not for the restriction to integers, the conclusion
would be that Y — y, has a limiting normal distribution with zero mean and variance
1/y,. As it is, Y is asymptotically ‘discrete normal’ with probability mass function pro-
portional to

pr (Y, =y)ocexp { —y,(y — §.)%/2} (15)

on the integers. The centred random variable Y — j, is O,(1) with roughly zero mean and
variance 1/y,, but it does not have a limit distribution. On the subsequence for which the
fractional part of p, is approximately a constant, &, the centred random variable Y —[,]
does have a limit distribution, the discrete normal with parameters «, 1/y,. For purposes
of approximation, however, it is best to use (15) directly with y, replaced by —g,(9,).

5-2. Weak dependence

Let Y have joint distribution (12) with vy, replaced by y,/n: this form is sometimes called
the Curie—Weiss model for spontaneous magnetisation (Ellis, 1985, p. 98). Then the mar-
ginal distribution of Y is

pr (Y, =y= (;) exp (y1y —3725*/m)/M.

Depending on the value of (y,, ¥,), the limiting distribution of Y can take one of several
forms.
The exponent

g(Y) =71y —372y*/n—log(y+1)—logT'(n—y+1)
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has derivative
(M =v1—r29m—yY(+D+yr—y+1)

For large n, the equation g,(y) =0 has either one or three roots: in the latter case some
of the roots may be coincident. The main cases to be distinguished are as follows:
(i) for y,> —4, g, is monotone decreasing, so there is a single root,  =nn with

O<n<l;

(ii) for y, =2y, = —4 there are three coincident roots at y =n/2;

(iii) for y, =2y, < —4 the three roots, nz, n/2, n(1 —n), are symmetrically located
about n/2;

(iv) in all other cases there is either exactly one root, or, if there are three roots, one is
dominant.

In case (i) the asymptotic behaviour of the exponent is such that

Jn(Y = m) ~ N{0, 6*(m)}, (16)

where the limiting proportion = is the root of the equation y; — y,m —log {n/(1 —m)} = 0.
The limiting variance is

(1l —m)

T

so there is excess asymptotic dispersion if y, <O.

In case (ii), n'/4(Y —1) has a nondegenerate, nonnormal limiting distribution in which
the density at ¢ is proportional to exp (—4t*/3).

In (iii), the case of so-called spontaneous magnetisation, the asymptotic distribution of
Y is an equally-weighted two-component normal mixture centred at © and 1—n with
equal variances ¢2(m)/n. So the limit distribution of Y has probability § at the points =
and 1 — 7.

In case (iv), if there is one root, the result is the same as (16). If there are three roots
T, <, <1< m,, the third is dominant. Conversely, if n, <3 <n, <ms, the first root is
dominant. The limit result is the same as (16) at the dominant root.

5-3. Implications for applications

The applications that I have in mind here are sociological or epidemiological in which
the clusters are families, households, schools, villages or small communities in which there
is a high degree of within-cluster contact or relatedness relative to that between clusters.
The intention is to construct a model in which incidence rates depend on cluster-specific
or individual-specific covariates, but the pairwise within-cluster association, however meas-
ured, is constant across clusters and accounts for the correlations among subjects. To keep
the discussion focused, we consider here the simplest case in which observations within
cluster are exchangeable, and only cluster-specific covariates are available.

A standard modelling procedure is to begin with a distribution such as (12) with param-
eters (v, y9) for the ith cluster. Dependence on cluster-specific covariates is usually incor-
porated through a linear regression model for y{: the simplest model of association is to
take 7§ to be constant over clusters, although more complicated models for association
can certainly be contemplated (Fitzmaurice & Laird, 1993). Although there is no funda-
mental reason to exclude it, cluster size is rarely included as an explicit covariate.

A quite different approach is to construct models for the mean-value parameters (Zhao
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& Prentice, 1990), as opposed to the canonical parameters (y,,y,). The criticisms that
follow refer mostly to models specified directly in terms of the canonical parameters, but
they apply also to the so-called mixed parameterisation (Fitzmaurice & Laird, 1993) in
which a regression model is set up for the association parameters of a strong-dependence
distribution of the type (12).

Two objections to the use of the strong-dependence model are as follows. First, under
the component-wise transformation Y1 — Y, the parameters in (12) transform to

Y12 NY, — Y1, Y22 Ya.

Thus, unless the cluster size is included as a covariate in the regression for {’, the model
is not closed under re-labelling of outcomes. In a technical sense, family (12) is not closed
because, if y, + 0, the transformed y; is O(n). The weakly dependent Curie-Weiss model
overcomes this objection because the induced transformation is independent of n:

Y22Y2 — V1, Y222,

and y, is invariant. Whether cluster size is included as a covariate or not, the two models
are generally different because in the first case pairwise interactions are assumed constant
across clusters, whereas in the second case they are assumed to be inversely proportional
to cluster size. The two models are equivalent only if all clusters are of equal size.

A second objection concerns the auto-logistic property

Y1— %Vz - sz(.l) (strong),
Y1—3v2/n—p,yP/n  (weak),

where y) is the sum of the others in the cluster. The case of most interest is y, < 0, which
is assumed for convenience in the discussion that follows. In the strongly dependent case
the log odds has a lower bound of y; —}y,, and an upper bound of y, + 3y, — ny, tending
to infinity with cluster size. While such asymmetry is usually undesirable in practice, a
more compelling objection is that the conditional log odds in the first part of (17) depends
on the remaining cluster total regardless of cluster size. Regardless of the parameter values,
the first equation (17) gives the same probability for the two cases (y'¥, n) = (5, 6) and
(¥, n) = (5, 101), even though y'V =5 constitutes a 100% success rate in the first case
and only 5% in the second. In the weakly-dependent model the log odds in (17) has a
lower limit of y; —4y,/n and an upper limit of y, — y, + 1y,/n. In practice one might expect
the upper limit to increase slowly with n because a 100% success rate among the neigh-
bours is more convincing for larger n. The weakly-dependent model exhibits this effect in
a weak form.

In many ways, the most plausible parameter values of epidemiological applications are
those for which the cluster mean Y has a nondegenerate limiting distribution. The actual
cluster average 7 is then considered to be indicative of the specific exposure or immunity
of the ith cluster, both of which vary from cluster to cluster. Although there is no reason
in practice to expect the limiting distribution to be discrete or symmetric about 1, this
argument favours the weakly dependent model with parameter values in the region
1= —2—¢&, Y, = —4 —¢, for small positive values of ¢,, ¢,.

log odds (Y; = 1] others) = { (17)
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