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Conditional inference and Cauchy models

By PETER McCULLAGH

Department of Statistics, University of Chicago, 5734 University Avenue,
Chicago, Illinois 60637, U.S.A.

SUMMARY

Many computations associated with the two-parameter Cauchy model are shown to
be greatly simplified if the parameter space is represented by the complex plane rather
than the real plane. With this convention we show that the family is closed under Mobius
transformation of the sample space: there is a similar induced transformation on the
parameter space. The chief raison d’€tre of the paper, however, is that the two-parameter
Cauchy model provides an example of a nonunique configuration ancillary in the sense
of Fisher (1934), such that the maximum likelihood estimate together with either ancillary
is minimal sufficient. Some consequences for Bayesian inference and non-Bayesian
conditional inference are explored. In particular, it is shown that conditional coverage
probability assessments depend on the choice of ancillary. For moderate deviations, the
effect occurs in the Op(n") term: for large deviations the relative effect is O,,(n*).

Some key words: Ancillarity; Bayesian inference; Cauchy model; Complex-valued parameter; Conditional
inference; Confidence density; Configuration; Fiducial distribution; Group transformation model; Maximal
invariant; Mobius transformation; Non-Bayesian inference; Pivotal statistic; Probable error; Projective group.

1. PARAMETERIZATIONS OF THE CAUCHY FAMILY

Following the usual conventions, we say that the random variable Y has the Cauchy
distribution with parameters 0,, 0, if the density function has the form

1
~ wl6{1+(y—6,)%/ 63}

for —co< y <oo. It is conventional to take as parameter space the largest set for which
(1) is defined and nondegenerate, namely the upper half plane R X R* with 6,> 0. Our
purposes can be better served, however, by taking as parameter space the entire complex
plane, so that § = 6,+i6, and = 0, — if, represent the same Cauchy density (1). Real-
valued parameters with 6, =0 thus represent degenerate distributions in which all the
mass is concentrated at 6,. We adopt the short-hand notation Y ~ C(8) to mean that Y
has the Cauchy density (1) with median R(8) and probable error |I(6)|, as given by the
real and imaginary parts of the parameter.
With this convention, the density (1) can be written in the more compact form

10|
wly -6

Sfr(y; 0) (1)

fr(y; 0)=

provided that 6, #0.
While there is no obvious reason not to use the complex plane to represent a parameter
space, this choice is decidedly unusual in statistics. Why introduce complex numbers
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when only real-valued random variables are involved? To this question I can give no
better answer than to present the curious result that

ye aY+b~ <a0+b)
cY+d c0+d

for all real numbers a, b, ¢ and d. What I find curious about this result is not the fact
that the Cauchy family is preserved under linear transformation and reciprocals. Those
properties follow immediately from the definition of the Cauchy as the ratio of two
correlated normals with zero mean. No, the curiosity lies in the fact that the induced
transformation on the parameter space has the same fractional linear form as the
transformation on the sample space only if the parameter space is taken to be the complex
plane. Without the introduction of complex-valued parameters the essential simplicity
of (2) is not so easy to detect. In particular, the median and probable error of Y* are
respectively

()

(a0+ b) _ (a6, +b)(ch,+d)+ach;

cO+d (co,+d)*+c%*05 °
|)(a(9+b) _ (ad —bc)é,
co0+d (c0,+d)*+c*6%|"

Expression (2) is related to characterization results obtained by Menon (1962, 1966),
Pitman & Williams (1967) and Williams (1969). Knight (1976) shows that the Cauchy
family is the only univariate location-scale family that is closed under projective transfor-
mation, i.e. (2) with a, b, ¢ and d real. Knight & Meyer (1976), and also Dunau &
Senateur (1987), prove a similar result for projective transformations in R".

2. CONNECTION WITH BROWNIAN MOTION

A simple interpretation can be given to (2) in terms of Brownian motion in the complex
plane. The distribution of the first exit point from the upper half-plane of a Brownian
particle starting at 0 is the Cauchy density on the real line with parameter . Result (2)
follows from Lévy’s theorem concerning the preservation of Brownian paths under
analytic transformation. Interested readers are referred to Rogers & Williams (1986, pp.
63-4). The transformation in our case is fractional linear with real coefficients, under
which the real axis is invariant. However, result (2) is true even if the coefficients are
complex numbers. In that case, the real Cauchy distribution is transformed to the circular
Cauchy whose support is the image of the real axis. For example, the Cauchy distribution
on the unit circle is

1116
27|z — 6

For |6| <1, this expression gives the exit density from the unit circle of a Brownian
particle starting at 6. If Y has the real Cauchy density (1), then Z=(1+iY)/(1-iY)
has the circular Cauchy density (3) with parameter (1+i0)/(1—i6).

The example that follows is presented in terms of the Cauchy density on the real axis.
Much of the discussion applies equally to the circular Cauchy density. The mathematical
treatment of configuration ancillaries is in fact considerably simplified by working on
the unit circle rather than the real line.

f(z; 0)ldz| =£(2;1/8)|dz| = |dz|. 3)
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3. CONDITIONAL INFERENCE

3-1. Foundations

The theory of conditional inference is founded on a body of examples built up over
the past 50 years by statisticians with deep insight into statistical theory and broad
experience of applications. Three particularly important papers are Fisher (1934), Pitman
(1938) and Cox (1958). The examples are highly varied and the solutions often ingenious,
but they have this feature in common. Unconditional significance probability calculations
such as those indicated by Neyman-Pearson theory are manifestly inappropriate and
possibly misleading for hypotheses concerning the data at hand. By contrast, a conditional
probability calculation often provides an answer to which no right-thinking person could
object. The overwhelming evidence, so far as significance tests are concerned, is that
conditioning on ancillary statistics is good practice.

My own assessment of the case is that, even though the evidence is largely circumstantial,

the argument for conditioning is extremely compelling. The fact that the theory is rooted
in examples is simultaneously its strength and its weakness. Certainly it seems safer to
have a theory that is rooted in examples, however stylized, than a theory based on purely
mathematical constructs whose relevance to the needs of the applied statistician is tenuous
at best. In connection with ancillarity, however, there is a parallel body of counter-
examples. As I understand it, the thrust of these counter-examples is not that conditioning
is a bad idea, but that the usual mathematical formulation is in some respects ad hoc
and not completely satisfactory. See, for example, Basu (1959, 1964) or Buehler (1982)
and the references therein.
- One of the principal pillars in the theory of conditional inference is Fisher’s (1934)
conditional solution to the location and location-scale problems. The key idea is to make
a nonsingular transformation from the original Y to ( é, A), where A is the maximal
invariant under the location or location-scale group as appropriate. This invariant is
automatically ancillary. By the conditionality principle, we require the conditional distri-
bution of 0 given the observed value A = a, which is called the sample configuration.
Conditional confidence intervals obtained via this route are equivalent to Bayesian
intervals based on a certain improper, but not obviously nonsensical, prior. The latter
point, however, is entirely incidental and fortuitous, and is rarely advanced in support
of the conditional frequency-theory solution.

The need to make significance probability calculations relevant to the particular data
at hand has been recognized by many authors, Cox (1958, 1980), Fraser (1968, p. 72),
Cox & Hinkley (1974, pp. 38, 39), Efron & Hinkley (1978), Barndorff-Nielsen (1980,
1983, 1984), Hinkley (1980) and McCullagh (1984) to name a few. The example in § 3-5
illustrates one difficulty or ambiguity that arises in Fisher’s (1934) conditional solution
to the location-scale problem.

3-2. Conditional distribution given the configuration
Let Y;,..., Y, be independent and identically distributed random variables with
density

f(y; 0)=05"f{(y—6,)/6,}

depending on the unknown parameter 6. For the moment f(y) is an arbitrary known
probability density. The usual regularity conditions are not required in what follows, so
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f(.) might represent the double triangular density |y| on (=1, 1). In what follows, it is
more critical than usual to distinguish between random vanables and their observed
values. In particular, 6 denotes the observed value of the random variable T whose
components are T, and T,: we take T,>0. Assuming that the maximum-likelihood
estimate is unique (Copas, 1975) the usual configuration ancillary is the vector with
components a;=(y;—8,)/ |02| The corresponding random variable is denoted by A.
Fisher’s definition of the configuration was (Y;,— Y(;))/ (Y(z) Y)), where Yy, is the
ith order statistic. This is equivalent to the present definition in all essential respects, the
only difference having to do with the order of the observations.

Fisher (1934) argues that inference for 6 should be based on the conditional distribution
of T given the observed value A = a of the configuration ancillary. On transforming from
Y to (T, A), the required conditional density is obtained in the form

pr(Tedt|A=a; 0)ct; > T] f(t,+ aity; 0) dt, dt,, (4)

where dt means (t,, t, +dt,) X (t,, t,+dt,). Note in particular that 1'[f(¢91 +a; 02, 0) is the
likelihood function given the data (T, A) = ( 0 a) observed.

As I understand it, Fisher’s intention is that the conditional density (4) should be used,
inter alia, for the evaluation of significance probabilities. Thus, if H, is the simple
hypothesis specifying 6 =6, and X = X(Y, 6,) is a test statistic with observed value
x = X(y, 6,), the required conditional p-value for testing H, is given by

pr(X=x|A=a;6,)= pr(Tedt|A=aj; 6,). (5)
{t: X=x}
See, for example, Pitman (1939). Fisher’s argument has some considerable appeal and,
in one sense at least, it appears to provide a completely satisfactory answer to the location
and location-scale problems. The argument can be extended to other problems where
the model is generated by the action of a group on the sample space.

3-3. Pivotal statistics
Suppose now, as would often be the case, that confidence intervals or sets are required
for the components 6, and 6, separately. In the conditional density (4) we make a change
of variables as follows:

Z,=(T,-6))/T,, Z,=T,/6,.
The joint density of Z,, Z, given A= a is then
fz(z1, 2] A=a; 8) 237" [] f{za(21+ @)}, (6)

which does not depend on 6. In other words Z,, Z, are jointly pivotal.

The marginal density of either pivot may be obtained by numerical integration of (6)
if necessary. In the case of Cauchy models, either marginal distribution can be obtained
analytically by contour integration. For example, if n =2m + 1 is odd, the marginal density
of Z, given A is found to be proportional to

n 2

as
Zafﬂ 212

s
r=1 jEr @ — o,

where a, =1/|z,+ a,| are taken to be distinct. Obviously, this expression is not in a form
suitable for computation, particularly when, as must occur for some values of z,, two of
the a; are equal.
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A typical equi-tailed confidence interval for 6, derived via this pivot has the form

(61 - éZkl-a/Za 61 - 62ka/2)a (7)

where pr (Z, <k, ) = a. Operationally, so far as coverage probability for each component
is concerned, we may interpret confidence intervals thus obtained as if

0,= él “6221, 0,= éz/Zz,

with 5, s (52 treated as fixed constants, and 6,, 6, as random variables. With this interpreta-
tion, the probability that the random variable 6, lies in the nonrandom interval (7) is
then exactly 1 — «. Extending this argument in a purely formal way to the joint density,
the joint ‘fiducial density’ for 6 is proportional to

0;" 1A {(y:—6,)/6:=6"T1f(y:; 0), (8)

with {y;} regarded as fixed numbers. For a numerically equivalent treatment from a
slightly different point of view, see Pitman (1938, p. 413). The fiducial density and the
resulting intervals are numerically identical to those obtained from the Bayesian posterior
density based on the improper but commonly used prior

‘7T(d0) oc d()l d02/ 02.

A single-parameter version of this result is given by Lindley (1958). Although it is not
clear that he would approve of the eponym, I will refer to this as the Pitman prior.
Jeffreys’s invariant prior d6, d6,/ 63 yields a different posterior that is not equivalent to
the conditional frequency-theory solution.

My impression is that, forced to adopt a Bayesian viewpoint, most statisticians would
prefer to use the Pitman prior over the Jeffreys prior in the location-scale context (Zellner,
1984). In normal-theory linear problems the Pitman prior gives answers numerically
identical to those obtained via the usual ¢-statistic. Jeffreys’s prior gets the degrees of
freedom slightly wrong. Jeffreys (1966, p. 182) notes this difficulty and argues in favour
of the Pitman prior, particularly for inferences regarding 6, or 6, separately.

3-4. Barndorff-Nielsen’s formula

Barndorff-Nielsen (1980) noted that the conditional density (4) can be written directly
in terms of the likelihood function

L(0; y) = 05" Hf(lg—")

For an arbitrary sample point ¢,+ at, having the same configuration as that observed,
the likelihood ratio

L(6; t1+at2) e Hf{(tl+ ait,— 6,)/ 65}
L(t; t,+at,) 1202 fa)
differs from (4) by t;> times a factor depending only on a. Now, the observed information

determinant for 6 is ] ](0 a)=0; *i(a). Thus Barndorff-Nielsen’s re-expression of
Fisher’s formula is

L(6; t,+at,)

=a: j %

t, dt,. 9)
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This is sometimes written rather cryptically in the form
p(6la; 0)oc* exp {1(6) - 1(6)},

where 1(0)=1(6; y) is the log likelihood function in which all possible sample points y
having the same configuration must be written as a function of (¢, a).

The advantage of expression (9) is that it is exact not just for the location-scale problem,
but also for all such transformation models generated by the action of a group. Further-
more (9) has an interpretation even in the absence of group structure, though the existence
and/or choice of ancillary may pose a problem. For full exponential-family problems
the ancillary is immaterial by Basu’s theorem, and (9) is in fact the saddlepoint approxima-
tion to the distribution of T. The relative error is then O(n™!): with re-normalization this
may be reduced to O(n~*?). The formula is also approximately correct more generally
for large n, at least in regular cases.

Note that in order to evaluate significance probabilities based on (9) it is necessary in
Hrinciple to evaluate the likelihood function not just for the observed data point y =
6,1+ 6,a but also for all y in the two-dimensional subspace t,1+ t,a spanned by the
vectors 1 and a. Thus, the choice of ancillary appears to be critical in order that this
space be unambiguously defined.

3-5. Non-uniqueness of ancillary

Although (4) and (9) are exact, the entire argument is open to criticism on at least
two fronts. First, it is not entirely clear what meaning should be attached to (4) if 6 is
not unique, as in the Cauchy problem with n=2. Secondly, although the maximal
invariant under the location-scale group is indeed unique and equal or equivalent to A,
nothing in the formulation of the problem forces us to restrict our attention to the
location-scale group. Apart from Fraser’s (1968) treatment of transformation models,
group-theoretic considerations are not usually considered to be an intrinsic part of the
model specification. Instead, they emerge in the mathematical process of finding a
satisfactory frequency-theory solution. In the usual set-up, therefore, the choice of group
may be to some extent arbitrary. The maximal invariant under the group is always
ancillary, but there may exist noninvariant ancillaries, or ancillaries that are invariant
under a different group than the one initially considered. We now focus our attention
on the consequences of nonuniqueness of the configuration ancillary for Cauchy models.

Let R,=1/Y,;, where Y;~ C(0). It follows from (2) that R; ~ ~C(¢), with ¢=1/6 as
complex numbers. For n=3 the maximum likelihood estimate ¥ =1/ is unique, and
the configuration ancillary on the new_ scale is the vector with components b;=
(r,i— ¢11)/ |¢/2| In the algebra that follows, 4//1 , ¢2, r are the observed values of the random
variables Py, P,, R. By Fisher’s argument, the conditional density of P given B=0b is

pr(Pedp|B=b; 0)<p; 2] f(p,+ bipy; ¢) dp, dp,. (10)

Note that, when computed at the observed values P = c/; and T= 5, the conditional
densities (4) and (10) give rise to the same likelihood function because, for the Cauchy

density,
f(l/r., 1/¢)

f( u'//)_ f( :,0))’.
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Back-transformation from P to T =1/ P yields the conditional density of T given B=5
in the form

2 2
Te dt|B=b; "-2||{ ( " ) il } :
pr(Tedt|B=b; 0)xt] f t1+bit2’0 TETYAL dt, dt, (11)

Evidently, this is not the same as (4).
The constant of integration in (4) depends on a but not on 6: likewise in (11) the
constant depends on b but not on 6. Apart from these constants, the ratio of (4) to (11)

is the rational function
Q(1; 0)=1] [t]* —26,|t)*(1,+ bit,) +|6](t, + bit,)?
’ |t|2{|0|2_201(t1+ait2)+(t1+ait2)2} '

In order for the conditional densities (4) and (11) to be approximately equal, it is necessary
and sufficient that Q(¢; #) be approximately constant in ¢ for all t-values in regions where
the probability densities are not negligibly small. The following observations suggest that
Q(t; 6) is indeed approximately constant in the region of interest. First, at the true value
t= 60 we have

1+ b}

1+a?

independently of 6. Secondly, at the observed value ¢ = (3, and in fact on the entire line
toc 6, we find

Q(8; 0)=T]

Q(6; 0)=T1(67/y) =TT+ 2

At the observed point, the ratio is independent of 6 because both (4) and (11) give rise

to the same likelihood function as the original data. The likelihood function cancels in
the ratio Q(8; 6). Finally, Taylor expansion about ¢ = 6 gives
Q(t; 0)=Q(6; 6)+ O(|t - 6]*).
The coefficients in the quadratic term are functions of the two configurations a and b.
For n> 3, numerical evidence shows that, apart from special configurations, these quad-
ratic terms are nonzero, and Q(#; 6) has a saddlepoint at ¢ = 6. In general, it appears
that there are several saddlepoints in a neighbourhood of ¢t = 6, but ¢ = 0 is not normally
a stationary point of the ratio. Figure 1 shows a typical contour plot of log Q, with
y=(0-91, 1-34, 2-84, 3-55) and 6=(1,1), and drawn so that the zero contour passes
through 6 and 6. The contours are at 0, £(0-1, 0-2, 0-3, 0-5, 0-7, 0-9). The dashed lines
are contours of the log likelihood function corresponding to nominal 20%, 50%, 80%
and 95% levels.
In the conditional density given B = b, the quantities

Zt=(P\- )/ Py, Z3=P/y, (12)
are jointly pivotal, whereas (Z,, Z,) as defined in § 3-3 are not. By the argument given
in § 3-3, the joint fiducial density for ¢ based on the pivot (Z¥, Z%) is proportional to

g2 T LA =90/ vt = w3 [T (s ).
By transformation of variables, the fiducial density for # based on the conditional
distribution given B is proportional to

617263 [1/ (v:; 6),

=Q(0; 9).
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Fig. 1. Contour plot of log density ratio log Q(t; 8) for n=4; H
and L, high and low values. Circle is at 0; square at 6. Dashed
lines are contours of the log likelihood.

which is clearly different from (8). This nonuniqueness of bivariate fiducial pivots,
previously remarked on by Tukey (1957, 1990), is a major deficiency of the fiducial method.

In general, therefore, A and B are not equivalent ancillaries, nor are they jointly
ancillary (McCullagh, 1987, p. 248). The conditional sample spaces are two-dimensional
with a one-dimensional intersection corresponding to multiples of the observed y. The
two conditional distributions are not compatible because

pr(Tedt|B; 0)+pr(Tedt|A;0).

In other words the p-values obtained from (5) do depend on the choice of ancillary.
Furthermore, because of the symmetry of the problem, Cox’s (1971) criterion cannot
distinguish between the two ancillaries unless prior information on 6 is available for use.

3-6. Numerical example

To take a simple numerical example, suppose n=3 and y =(0-5, 1-0, 2:0) so that
6=0-92857+0-37115i and a = (—1-155,0-192, 2-887). The conditional density of T given
Ais

pr(Tedt|A=a; 0)xct,[] f(t;+aty; 0) dt, dt,.
The marginal density of the pivot Z, = (t, - 6,)/ T, is found by contour integration to be
k(a){(|lz,+ ai|+ |z, + aa|)(|z,+ ay| + |2z, + as]) (|2, + ao| + |z, + as])} 7,

which is inverse cubic in the tails and inverse linear in the centre. Numerical integration
gives k(a)=5-7024. Figure 2 shows that, although the density is continuous, cusps occur
at the points —a,, —a,, —as. The probability content of the four regions bounded by the
cusps is approximately 0-0786, 0-4214, 0-3630 and 0-1370 respectively, so that —a, is at
the median. In general, at least for odd n, it appears that the conditional median of Z,
is close to, but not exactly equal to, the median of the set —A.

The lower and upper 5% points of the density of Z, are —3-405 and 2-135 respectively.
Thus the conditional equi-tailed 90% confidence interval for 0, is

(0-9286 —0-3712 % 2-135, 0-9286+ 0:3712 x 3-:405) = (0-1363, 2:1923).
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Fig. 2. Conditional density of pivot Z; given n=3 and A ={—1-155,
0-192, 2-887}. Cusps occur at points —A. median and mode are equal.
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Fig. 3. Conditional density of pivot Z, given n =5 and A ={—0-825,
—0-639, 0-292, 2-152, 3-082}. Cusps occur in the derivative at points
—A.

The centre of this interval is 1-164, which is almost equal to the mean of the observations.
However, the normal-theory 90% interval for the mean is (—1-063, 3-397), which is more
than twice as wide as the conditional Cauchy confidence interval for the median.

The analogous pivot for normal translation-scale models has the ¢-distribution on two
degrees of freedom. In both cases, therefore, the first moment of Z, exists, but the variance
and higher-order moments are infinite. In this example E(Z,|A=a)=-0-377. More
generally, it can be shown that, for odd values of n =3, the moments of Z; up to order
n—2 are finite, while those of order n —1 or more are infinite. This result may well be
true also for even values of n, but that remains unverified.

Figure 3 shows the distribution of Z, for a sample of size 5 in which values 0-4 and
2-5 have been added to the previous sample. The tails are inverse quintic and the density
is markedly lumpy, though unimodal. The first three moments of this density are finite.

In the context of robust confidence interval estimation, S. Morgenthaler, in an unpub-
lished paper, has presented diagrams very similar to Figs 2 and 3.

As it happens, r=1/y is a permutation of y, so we have |8|=1, ¢ =6, b= a, and the
constants of integration in (4) and (11) are equal. Curve (a) in Fig. 4 shows the confidence
density or fiducial density for 6, based on the pivot Z, conditionally on A = a. The lower
and upper 5% points in this density are 0-1363 and 2-1923 respectively, which are identical
to the confidence limits obtained above. In the conditional distribution given B =0,
however, there appears to be no exact pivot for 6,, so no exact conditional confidence
limits for 6, can be obtained. However, the joint fiducial density for ¢ is proportional
to ;' I f(r;; ¢). On treating this as an ordinary bivariate density, we may transform
from ¢ to 6 and integrate out 6, to obtain the marginal fiducial density of 6, conditionally
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on B =b as shown in Fig. 4, curve (b). In density (b), however, the interval (—o0, 0-1363)
has probability 7-8%, whereas (2-1923, ) has probability approximately 0-5%. Intervals
based on density (b), unlike those obtained from (a), do not have coverage probability
equal to the nominal value. Density (b) has shorter tails than (a).

The two densities in Fig. 4 have the alternative Bayesian interpretation as marginal
posteriors for 6,, density (a) based on the prior d6, d6,/0,, and (b) based on the prior

dwl d'IJZ/ l//2'

0-5 4

Marg. fiduc. dens.

00 T T T T T T T =
-1 0 1 2 0, 3

Fig. 4. Fiducial densities for 6, based on sample y = (0-5, 1-0, 2-0). Curve

(a), confidence density based on the pivot Z;; (b), marginal fiducial

density based on the pivot (Z§, Z¥). Density (b) has an extra cusp at
the origin.

3-7. Asymptotic analysis

Consider now two statisticians, both conditional frequentists using Fisher’s (1934)
argument, one using an analysis based on Y conditional on the configuration A, and the
other using an analysis based on R =1/ Y conditional on the reciprocal configuration B.
Suppose that the first statistician obtains his confidence interval or fiducial interval from
the pivot Z, given A, and the second statistician uses the marginal fiducial distribution
derived from the bivariate pivot Z* given B. Their computations are then identical to
those of two Bayesians. Conditioning on A is equivalent to using the prior d6, d6,/0,:
conditioning on B is equivalent to using the prior dy, dys,/ ¥, = d8, d6,/(6,|6|*). The
effect on probability calculations, either frequency-theory coverage probability or
Bayesian posterior calculations, is therefore O(n™") in large samples. In an asymptotic
sense, therefore, the discrepancy between our two conditional frequentists, one orthodox
and one fiducialist, is of the same order of magnitude as the discrepancy between two
Bayesians using different noninvariant priors. By contrast, the difference between con-
ditioning and not conditioning is typically O(n™%).

The preceding comparison is not entirely satisfactory because it presupposes acceptance
of the fiducial or joint pivotal argument. A more direct comparison of the effect of
conditioning is achieved by comparing the two probability measures whose densities are
given by (4) and (11). One way to compare the two densities is to choose an arbitrary
set S in the parameter space and to compute the arithmetic difference

Ds(a,b)=pr(TeS|A=a)—pr(TeS|B=>»b). (13)

If the random variable Dg(A, B) is O,,(n”" ) for almost all sets S not depending on a, b,
we say that the effect of conditioning appears in the O(n~*) term in large samples. It is
usual to choose sets S satisfying pr (T € S) = O(1) as n - 00, though this restriction is not
necessary.
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Although the regularity conditions required by McCullagh (1984) are not satisfied here
because the parameter is two-dimensional and A does not have an Edgeworth expansion,
the result given there suggests that the difference in (13) should be not greater than
O(n™"). For the present example it is possible to show that the Taylor expansion of
log Q(t; 0) about t = 6 has the form

log Q(t; 0) =log Q(6; 8) + Q(t—0)+ Qs(t—6)+ O(|t — 6[*),

where Q,(.) is homogeneous of degree r. The coefficients, which depend on a, b, and 6,
are O,(1) for Q,(.), O,,(n*) or smaller for Qs(.), and O,(n) or smaller for the higher-order
terms. I have obtained an explicit expression for Q,(.) in terms of certain Fourier
coefficients T,, which are functions of the configuration and are O,,(n*) with zero mean
provided that the configurations are marginally typical. For example, the coefficient of
(t,—6,)* is

{To(cos 4a —cos 4@) + T,(sin 4a —sin 44 )}/ (4632),

where o =arg (0), and & =arg (5) is expressed as a function of a and b. In the moderate
deviation range, for which =6+ O(n™?), it follows that

log Q(t; 6) =log Q(6; 8)+O,(n").

The effect on probability calculations of choosing ancillary A rather than B is therefore
O,(n"") as measured by (13).

In the case of large deviations with ¢ — 6 = O(1), however, the logarithmic or relative
difference

D¥(a,b)=logpr(TeS|A=a)—logpr(TeS|B=»b) (14)

is of order O(T,)O(a — a) at least, as evidenced by the quadratic term in the preceding
expansion. In the large-deviation regime, we have @ —a = O(1), so that the relative
difference is O,,(n*). In the case of intermediate deviations with t— 6= O(n}*7?) it is
possible to show that the relative difference in (14) is O(n*¥*>""), providing a smooth
transition between the moderate-deviation region (g =0) and the large-deviation region

(g=1).

3-8. The case n=2
This apparently trivial case is of independent theoretical interest for the following
reasons.

(i) The minimal sufficient statisticc which can be written in the form S=
(Y, r=3]Y,—Y,|), is complete, so there is no nontrivial ancillary statistic.

(ii) The maximum-likelihood estimate of 6 is not a single point, but coincides with
the circle having (y,, y,) as diameter, i.e. the set {7+ r e*"* : 0 < ¢ < #}. This is the unique
equivariant estimator under the real Mobius group.

(iii) The estimator 6= y +ir maximizes the likelihood, and is the unique single-point
equivariant estimator under the location-scale group y - a+by with b#+0. Under the
location-scale group with b > 0, there exist other single-point equivariant estimators such

= im/4
as y+re”".
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(iv) With 6 taken as 7+ ir, the joint density of the pivots Z,, Z, exists and is given by
(6). Density (8) also exists both as a joint fiducial density and as a Bayesian posterior
density for 6. The marginal density of the pivot Z; is

1 z;+1
fi(z) ~2nz, log 21—1| )

which is symmetric with singularities at z, = +1. The implied confidence density for 6,
is symmetric about y, with singularities at y, and y,. Despite its startling appearance,
this is by no means an outrageous conclusion.

It is perhaps worthwhile clarifying point (ii), which, though technically correct, does
not tell the full story. There exists a one-dimensional sub-group of Mobius transforms
with real coefficients that keeps the sample points {y,, y,} invariant. Under the action of
this group, parameter points move in distinct nonoverlapping orbits. The equivariant sets
in the complex plane are these orbits. With one exception, each orbit is a complex
conjugate pair of circles having (y,, y,) as chord, but excluding the points y,, y,; the real
axis is a limiting circle that coincides with its conjugate image. The only exceptional
orbit is the set {y,, y,}. The likelihood function is constant on orbits, and takes distinct
values on different orbits: it is not defined on the exceptional orbit. In this sense, the
value assumed by the likelihood function uniquely identifies an orbit, and hence an
equivariant estimator. The orbit of maximum likelihood is the circle identified in (ii),
but excluding the exceptional orbit.

Thus, if the full implications of invariance under the Mobius group are accepted at
face value, the only equivariant statements that can be made concerning 6 are those
based on level sets of the likelihood function. Statements based on density (8) or on the
pivot Z; are typically not equivariant.

4. DISCUSSION

From a purely mathematical viewpoint, given that the two parameters of the Cauchy
model are treated on an equal footing, the choice between what we call Y and what we
call the reciprocal scale R=1/Y is an arbitrary matter of labelling. For internal con-
sistency, therefore, the conclusions from an analysis based on Y should be identical to
those based on R. However, standard methods of conditional inference, and of Bayesian
inference using the Pitman prior du do/ o, do not have this property. The defect is curable
in a Bayesian analysis by switching to the invariant prior du do/ o, but no equally simple
remedy is available in a conditional frequency-theory analysis.

From a more practical point of view, one can argue that it is rarely the case that one
would be interested in treating the components of 6 =(u, o) on an equal footing. As a
consequence, unless Y has a clear physical interpretation as a ratio or the tangent of an
angle, any model that is closed under reciprocal transformation is unlikely to be appropri-
ate. I interpret this as an eminently sensible objection to the use of Cauchy models in
many, if not most, ‘typical’ applications. From this point of view, conditioning on the
ancillary A might be more sensible than conditioning on the reciprocal configuration B.
Pitman’s (1939) arguments could be used to buttress such a claim. Nevertheless, given
circumstances for which the Cauchy model is deemed appropriate, the theoretical problem
remains.

One might view the Cauchy example as an argument against conditioning, but if
anything that is the opposite of what is intended. In terms of p-values and coverage
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probability assessments, fully conditional probability calculations differ by only O(n™").
This is similar to the difference between Bayesian posterior calculations based on different
priors. Frequency-theory probability assessments that are not fully conditional can differ
by O(n}). Thus, conditioning guarantees uniqueness, but only as far as the O(n™") term.
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